
Fast computation of close-coupling exchange integrals

using polynomials in a tree representation

Markus Wallerbergera,∗, Katharina Igenbergsa, Josef Schweinzerb, Friedrich
Aumayra

aInstitute of Applied Physics, TU Wien – Vienna Univ. of Technology, Association
Euratom-ÖAW, 1040 Vienna, Austria

bMax-Planck-Institut für Plasmaphysik, Association Euratom, 85748 Garching,
Germany

Abstract

The semi-classical atomic-orbital close-coupling method is a well-known ap-
proach for the calculation of cross sections in ion-atom collisions. It strongly
relies on the fast and stable computation of exchange integrals. We present
an upgrade to earlier implementations of the Fourier transform method.

For this purpose, we implement an extensive library for symbolic storage
of polynomials, relying on sophisticated tree structures to allow fast manipu-
lation and numerically stable evaluation. Using this library, we considerably
speed up creation and computation of exchange integrals. This enables us to
compute cross sections for more complex collision systems.

Keywords: exchange integral, polynomial, symbolic manipulations,
close-coupling

NEW VERSION PROGRAM SUMMARY
Manuscript Title: Fast computation of close-coupling exchange integrals using

polynomials in a tree representation

Authors: M. Wallerberger, K. Igenbergs

Program Title: TXINT

Journal Reference:

Catalogue identifier:

∗Corresponding author.
E-mail address: wallerberger@iap.tuwien.ac.at

Preprint submitted to Computer Physics Communications September 28, 2010

Licensing provisions: none

Programming language: Fortran 95

RAM: depends heavily on input, usually less than 100 MiB

Keywords: exchange integrals, symbolic manipulations, polynomials

Classification: 16.10 Wave Functions and Integrals

Nature of problem:

Analytical calculation of one- and two-center exchange matrix elements for the

close coupling method in the impact parameter model.

Solution method:

Similar to the code of Hansen and Dubois [1], we use the Fourier transform method

suggested by Shakeshaft [2] to compute the integrals. However, we heavily speed

up calculation using a library for symbolic manipulation of polynomaials.

Restrictions:

We restrict ourselves to a defined collision system in the impact parameter model.

Unusual features:

A library for symbolic manipulation of polynomials, where polynomials are stored

in a space-saving left-child right-sibling binary tree. This provides stable numerical

evaluation and fast mutation while maintaining full compatibility with the original

code.

Running time: heavily depending on input, usually less than one CPU second.

LONG WRITE-UP

1. Introduction

The semi-classical close-coupling method provides a framework for the
calculation of cross section data for atomic collisions at low to intermediate
energies [3]. We have already used it to calculate state-selective cross sec-
tions for charge exchange in Be4+ − H(n = 1, 2) collisions [4]. For heavier
highly charged ions Aq+, the number of basis states required for a conver-
gent representation increases roughly with q9/4 [5]. This makes more efficient
numerical methods desirable.

Basically, the close-coupling method is driven by overlap and coupling of
basis states centered at different collision partners [6]. We assume that wave
functions and potentials can be expanded into cartesian coordinates in the

2

following way: ∑
i

Ai exp(−αir + ı~βi~r)r
ρixξiyηizζi

which is true for all Laguerre-type states, Slater-type orbitals and the most
common potentials used in the method. Furthermore, to shorten our nota-
tion, we introduce vector powers ~n ∈ Z3 by defining [7]:

(~x)~n :=
3∏
i=1

(xi)
ni and ∇~n :=

3∏
i=1

(
∂

∂xi

)ni

.

We can now give the most general form of exchange matrix elements in terms
of exchange integrals :

I(n1,~l1, n2,~l2) :=

ˆ
d3rAr

n1−2
A rn2−2

B (~rA)
~l1(~rB)

~l2 exp(ı~a~rA + ı~b~rB − crA − drB)

Using the Fourier-transform method suggested by Shakeshaft [2], we can
relate the infinite three-dimensional integral to a sum over one-dimensional
integrals over a finite range:

I(n1,~l1, n2,~l2) = 2π(−ı)~l1+~l2(∇~a)
~l1(∇~b)

~l2

(
− ∂

∂c

)n1−1(
− ∂

∂d

)n2−1 ˆ 1

0

dy
exp(ı ~B ~R− AR)

A
(1)

where we introduced the quantities A2 := y(1− y)|~a +~b|2 + yc2 + (1− y)d2

and ~B := y~a− (1− y)~b.
If we assume a spherically symmetric potential on both centers and use

the so-called impact parameter model, we can set ~b = 0. Furthermore, by
assuming that the incoming nucleus travels on a straight line, we get for
two-center exchange integrals ~a = v~ez and for one-center elements ~a = 0.

2. Computational challenges

The Fourier transform method requires symbolic manipulation: as a re-
sult, we need to store and mutate symbolic forms of polynomials in up to 9
variables, multiplied by the base integral I(1,~0, 1,~0). Symbolic differentia-
tion in particular is problematic because with each differentiation step, the
number of terms at least triples, but at the same time lots of linearly depen-
dent terms arise. As a result, we need to (i) insert terms in a fast fashion
and (ii) detect and add up duplicates early.

3

Evaluation poses another problem: if we evaluate a polynomial with high
powers on a term-by-term basis, we massively impair performance. Moreover,
cancellation errors occur and, as the number of terms increases, may even
become dominant. Therefore, we want to collapse the polynomial using the
Horner scheme:

b∑
n=a

cnx
n = (· · · ((cbx+ cb−1)x+ cb−2)x+ · · ·)x+ cax

a (2)

This requires (iii) the monomials (terms) to be in lexicographic order (sorted
by powers of the first variable, then by powers of next variable, and so forth).
Finally, to find a fast way to use the Horner scheme, we need to find (iv) a
fast way to know up to which variable the powers of two adjacent monomials
agree.

The well-known Fortran 77 code by Hansen and Dubois [1] stores the
monomials in an unordered fashion within arrays for coefficients and powers
of the variables. This is however inefficient with respect to aspects (i) – (iv):
Provided that we insert n terms into our polynomial,

1. detecting duplicate terms requires O(n2), since ordered insert into an
array requires costly array manipulation and is therefore not feasible.

2. ordering the terms is of complexity O(n log n). Moreover, comparing
two terms means comparing all variables, which is time-expensive.

3. evaluating an unordered set may lead to cancellation and is time-ex-
pensive.

For small basis sets or small quantum numbers, this is usually no problem.
With increasing size of our problem, on the other hand, considerable com-
puting time is spent on the creation of symbolic structures (see Figure 2).

3. Polynomial library

We improve this approach using the new features of Fortran 90: the
polynomial is now stored in a derived type polynomial, and its terms are
modelled in a left-child right-sibling binary tree (Figure 1), a popular method
to store n-ary trees. This considerably speeds up sorted insert, duplicate
detection and evaluation at the expense of increasing the time needed to find
a specific term (which we do not need to do).

4

P(x, y, z) = xy
3
z

4
 + 0.3 x

8
y

2
(z

2
 + z

3
) – x

5
(y

2
 + y

-2
)z

polynomial

nvars = 3

nterms = 4

Root node

pow = 0 pow = 8 pow = 2 pow = 3, cf = 0.3

pow = 2, cf = 0.3

pow = 5 pow = 2 pow = 1, cf = –1

pow = 1 pow = 3 pow = 4, cf = 1

Next variable (elements ptr.)

Next power (next ptr.)

pow = -2 pow = 1, cf = –1

No next power (next => null)

x powers y powers z powers

Figure 1: Internal representation of an instance of type polynomial. The nodes, imple-
mented in type polyterm, form a LC-RS tree structure where the right branch (elements
pointer, lines) distinguishes different variables and the down branch (next pointer, arrows)
points to the next power in the same variable, enforcing a descending order of powers.

Unlike a binary search tree, the two children of a node (for example x8)
have different meanings: the down branch points to the subsequent power
(in our example x5), represented by an arrow. The right branch, on the other
hand, points to the next variable, distiguishing ranks in the tree.

You can restore and evaluate a polynomial from the tree representation
in Figure 1 as follows: Start at the root node (top left) and replace each
node by the respective variables and powers cf · varpow. Always follow the
horizonal lines first, replacing each of them with an opening bracket. Then
follow the vertical lines, replacing each arrow with a ’+’ and each dead end
- with a closing bracket.

In this representation, many common operations and calculus reduce
to simple tree mutation, being considerably faster than operating on (even
sorted) arrays.

4. Computation, performance and testing

The computation is performed in a similar way to the code of Hansen
and Dubois [1, 8], which we have optimized for our collision system, but

5

with the new Fortran 90 polynomial library. For one-center exchange matrix
elements, we also improved the detection of vanishing terms.

The performance of both methods is illustrated by Figure 2: we observe
that for all cases, the performance of the new tree method is a lower bound-
ary for the running time of a modified CRERS routine [1]. Studying the
asymptotic behaviour of the radial part, we find that the complexity is re-
duced from O(n7.17) to O(n4.80) for the exchange integral I(n

2
,~0, n

2
,~0) with

c 6= d. This improves running time by O(n2.37), speeding up large integrals.
For the two-center angular part, we investigated the integral I(1, n

2
, 1, n

2
).

The complexity of the algorithm was improved from O(n10.3) to O(n6.48), a
massive performance gain by O(n3.82). All calculations were performed on an
Intel i5 750 processor with 2 GB of RAM running Ubuntu 10.04 x64 edition.
Both codes were compiled using gfortran 4.4.1 with maximum optimization
levels.

We checked the code both analytically and numerically against known
results and the original method for a wide array of integrals, showing exact
agreement with the previous results. Perfect agreement with the CRERS
method is achieved provided that the complex accuracy of both methods
match.

5. Program structure

An overview of the program’s static structure is given in Figure 3, de-
picted in an UML 2.0 class diagram.

Polynomial. The derived type polynomial is the basic building block of the
program, allowing us to model complex polynomials of arbitrary size in n
variables using the structure presented in Section 3. All members of this
type are private, so all access is performed through “methods” poly*. The
accuracy of the polynomial can be tweaked using the polykind parameter.

Exchangeint. The derived type stores the integral as well as its defining pa-
rameters. The method xintcreate is the core method of the type and the
equivalent of the CRERS method. Like the previous code, it first performs the
radial symbolic differentiations on the base integral and then evaluates the
integral for certain c and d. After this, it performs the angular differentia-
tions. For vanishing components of ~a, it tracks which terms may reach the
power 0 and thus survive the evaluation as constant terms.

6

(a)

Sheet1

Page 6

30 40 50 60 70 80 90 100

0.01

0.1

1

10

100

1000

1

10

100

1000

10000

100000

Radial part average performance

LC-RS tree
Power Regression for LC-RS
tree
CRERS
Power Regression for
CRERS
Terms
Power Regression for Terms

of differentiations

C
P

U
 s

e
co

n
d

s

N
u

m
b

e
r

o
f t

e
rm

s

(b)

Sheet1

Page 7

30 35 40 45 50 55 60

0.01

0.1

1

10

100

1000

1

10

100

1000

10000

100000

Two-center angular part performance

LC-RS tree
Power Regression for LC-RS
tree
CRERS
Power Regression for CRERS
Terms
Power Regression for Terms

of differentiations

C
P

U
 s

e
co

n
d

s

N
u

m
b

e
r

o
f t

e
rm

s

Figure 2: Performance of our tree method (∇) vs. the CRERS method (4) for the creation
of exchange integrals on an Intel i5 750 processor over the number n of differentiations
involved: (a) radial exchange integral I(n

2 , 0,
n
2 , 0) for c 6= d, (b) two-center angular ex-

change integral I(1, l
2 , 1,

l
2). A power regression was laid through the measurement points.

The number of terms (�, secondary y-axis) is identical for both methods.

7

+create() : Polynomial

+destroy()

+dump()

+iterate() : Polyiterator

+morph() : Polymorpher

+add() : Polynomial

+eval() : Polynomial

+mul() : Polynomial

Polynomial

+next()

+coeff()

+begin() : Boolean

+end() : Boolean

Polyiterator

+next()

+coeff()

+setcoeff()

+remove()

+begin() : Boolean

+end() : Boolean

Polymorpher

+create() : Exchangeint

+destroy()

+dump()

+tocrers()

+eval()

-n1, n2 : Integer

-l1(3), l2(3) : Integer

-c, d : Short

-terms : Polynomial

Exchangeint

11

Figure 3: Structure of the program in an UML class diagram [9]. Each block represents
a static unit (“class”), where fields are given in the second and methods are given in the
third section.

Fast evaluation using the Horner scheme and Gauss-Legendre quadrature
is performed by xinteval (which requires xintsetup).

The method xinttocrers provides an interface to the array storage used
by JANAL and ALAIN methods [1]. Other methods provide auxiliaries and
life-cycle management of the exchange integrals.

Test program. Provides simple user interaction, allowing the user to specify
the exchange integral desired. The user interface is printed to standard error,
whereas the results are printed to standard output, allowing you to redirect
or discard it.

Acknowledgements

This work, supported by the European Communities under the Contract
of Association between EURATOM and the Austrian Academy of Sciences,
was carried out within the framework of the European Fusion Development
Agreement. The views and opinions herein do not necessarily reflect those
of the European Commission.

Katharina Igenbergs is a fellow of the Friedrich Schiedel Foundation for
Energy Technology.

8

References

[1] Hansen, J.-P. and Dubois, A., Comput. Phys. Commun. 67 (1992) 456 .

[2] Shakeshaft, R., J. Phys. B: At. Mol. Opt. Phys. 8 (1975) L134.

[3] Bates, D. R., Proc. R. Soc. A 247 (1958) 294.

[4] Igenbergs, K., Schweinzer, J., and Aumayr, F., J. Phys. B: At. Mol. Opt.
Phys. 42 (2009) 235206.

[5] Burgdörfer, J., Morgenstern, R., and Niehaus, A., J. Phys. B: At. Mol.
Opt. Phys. 19 (1986) L507.

[6] Fritsch, W. and Lin, C. D., Physics Reports 202 (1991) 1.

[7] Kocbach, L. and Liska, R., J. Phys. B: At. Mol. Opt. Phys. 27 (1994)
L619.

[8] Hansen, J. P., Comput. Phys. Commun. 58 (1990) 217 .

[9] Object Management Group, Unified Modelling Language 2.0: Superstruc-
ture, online, 2005.

9

