
ar
X

iv
:0

81
2.

32
15

v2
 [

he
p-

ph
]

27
 M

ay
 2

01
0

CERN-LCGAPP-2008-02
IFJPAN-IV-2008-9

MC-TESTER v. 1.23: a universal tool
for comparisons of Monte Carlo predictions

for particle decays in high energy physics†

N. Davidsona,d, P. Golonkab, T. Przedzińskic, Z. Wa̧sd,e

a University of Melbourne, Department of Physics
Australia.

bCERN, IT/CO-BE, CH-1211 Geneva 23, Switzerland.
c The Faculty of Physics, Astronomy and Applied Computer Science,

Jagellonian University, Reymonta 4, 30-059 Cracow, Poland.
dInstitute of Nuclear Physics, Radzikowsiego 152 , 31-342 Cracow, Poland.

eCERN PH-TH, CH-1211 Geneva 23, Switzerland.

Abstract
Theoretical predictions in high energy physics are routinely provided in the form of

Monte Carlo generators. Comparisons of predictions from different programs and/or dif-
ferent initialization set-ups are often necessary.MC-TESTER can be used for such tests of
decays of intermediate states (particles or resonances) ina semi-automated way.

Since 2002 new functionalities were introduced into the package. In particular, it now
works with theHepMC event record, the standard for C++ programs. The complete set-
up for benchmarking the interfaces, such as interface between τ-lepton production and
decay, including QED bremsstrahlung effects is shown. The example is chosen to illustrate
the new options introduced into the program. From the technical perspective, our paper
documents software updates and supplements previous documentation.

As in the past, our test consists of two steps. Distinct MonteCarlo programs are run
separately; events with decays of a chosen particle are searched, and information is stored
by MC-TESTER. Then, at the analysis step, information from a pair of runs may be compared
and represented in the form of tables and plots.

Updates introduced in the progam up to version 1.24.3 are also documented. In particu-
lar, new configuration scripts or script to combine results from multitude of runs into single
information file to be used in analysis step are explained.

To be submitted to Computer Physics Communications,

CERN-LCGAPP-2008-02
IFJPAN-IV-2008-9

† This work is partially supported by EU Marie Curie ResearchTraining Network grant under the contract
No. MRTN-CT-2006-0355505 and by Polish Government grant N202 06434 (2008-2010).

http://arxiv.org/abs/0812.3215v2

Contents

1 Introduction 4

2 Installation and generation step (update for ref. [1]) 5
2.1 Examples of C++ generation step 6

2.1.1 Tau decays fromPYTHIA 8.1 . 6
2.1.2 B decays fromEvtGenLHC . 7

3 Analysis (update for ref. [1]) 8
3.1 Running the analysis step from an external directory 8
3.2 New options in graphical representation of histograms 8

4 Package organization (update for ref. [1]) 11
4.1 Directory tree .11
4.2 Libraries . 12
4.3 Format and syntax of theSETUP.C file . 12
4.4 How to makeMC-TESTER run with other generators 12

4.4.1 The case ofC++ . 12
4.5 How to makeMC-TESTER run with on-flight modified event records 14

5 The use of lists in MC-TESTER 14

6 Example of advancedMC-TESTER use:
benchmarks for spin correlations in heavy object decays. 17
6.1 Default UserTreeAnalysis 17

7 Outlook 18

A Appendix: MC-TESTER setup and input parameters (update for ref. [1]) 21
A.1 Definition of parameters in theSETUP.C file 21

A.1.1 Setup::UserTreeAnalysis .. . 21
A.1.2 Setup::masspower . 22
A.1.3 Setup::massscaleon . 22
A.1.4 Setup::uselog y . 22
A.1.5 Setup::rebinfactor . 23

A.2 C++ configuration ofMC-TESTER . 23

B Appendix: updates to versions 1.24.2 and 1.24.3 23
B.1 Changes introduced in version 1.24.2 23
B.2 LCG configuration scripts; available from version 1.24.2 24
B.3 MergingMC-TESTER output files; available from version 1.24.3. 25

1

PROGRAM UPDATE SUMMARY

Title of the program: MC-TESTER, version 1.23 and version 1.24.3
Tested on various platforms and operating systems:Linux SLC 4.6 and SLC 5, Fedora 8,
Ubuntu 8.2 etc.
Programming languages used:C++, FORTRAN77

Tested and compiled with:gcc 3.4.6, 4.2.4 and 4.3.2 withg77/gfortran
Size of the package:
23.4 MB directory including example programs (6.5 MB compressed distribution archive),
withoutROOT libraries.
Additional disk space required:
Depends on the analyzed particle: 14.4 MB in the case ofτ lepton decays (30 decay channels,
594 histograms, 73-pages booklet).
Keywords:
particle physics, decay simulation, Monte Carlo methods, invariant mass distributions, pro-
grams comparison
Nature of the physical problem:
The decays of individual particles are well defined modules of a typical Monte Carlo program
chain in high energy physics. A fast, semi-automatic way of comparing results from different
programs is often desirable for the development of new programs, in order to check correctness
of the installations or for discussion of uncertainties.
Method of solution:
A typical HEP Monte Carlo program stores the generated events in event records such asHepMC,
HEPEVT or PYJETS. MC-TESTER scans, event by event, the contents of the record and searches
for the decays of the particle under study. The list of the found decay modes is successively
incremented and histograms of all invariant masses which can be calculated from the momenta
of the particle decay products are defined and filled. The outputs from the two runs of distinct
programs can be later compared. A booklet of comparisons is created: for every decay channel,
all histograms present in the two outputs are plotted and parameter quantifying shape difference
is calculated. Its maximum over every decay channel is printed in the summary table.
Restrictions on the complexity of the problem:Only first 200 decay channels that were found
will initialize histograms and if the multiplicity of decayproducts in a given channel was larger
than 7, histograms will not be created for that channel as well.
Typical running time:
Varies substantially with the analyzed decay particle, butgenerally speed estimation of the old
version remain valid. On a PC/Linux with 2.0 GHz processorsMC-TESTER increases the run
time of theτ-lepton Monte Carlo programTAUOLA by 4.0 seconds for every 100 000 analyzed
events (generation itself takes 26 seconds). The analysis step takes 13 seconds; LATEX processing
takes additionally 10 seconds. Generation step runs may be executed simultaneously on multi-
processor machines.
New features: HepMC interface, use of lists in definition of histograms and decaychannels,
filters for decay products or secondary decays to be omitted,bug fixing, extended flexibility
in representation of program output, installation configuration scripts, merging multiple output

2

files from separate generations.
Accessibility:
web page:http://mc-tester.web.cern.ch/MC-TESTER/
e-mails: Piotr.Golonka@CERN.CH,

Zbigniew.Was@CERN.CH,
tomasz.przedzinski@uj.edu.pl,
Nadia.Davidson@CERN.CH.

Reference to the program previous version:
P. Golonka, T. Pierzchała, Z. Wa̧s, Comput. Phys. Commun.,157(2004) 1

3

1 Introduction

In the phenomenology of high-energy physics, it is important to establish uncertainties for the-
oretical predictions which are used in the interpretation of the experimental data is of high
importance. Theoretical predictions need to be presented in the form of Monte Carlo event
generators; all detector effects can therefore be easily combined with the theoretical ones, using
event rejection or reweighting methods. Whenever possible, theoretical predictions are sepa-
rated into individual building blocks, which are later combined into complicated Monte Carlo
generator systems for the complete predictions.

A good example of such a building block is generatorTAUOLA [2–4] for the simulation
of τ lepton decay. In practical applications such a program needs to be combined with other
generators for theτ lepton production,TAUOLA universal interface [5,6] can be then used.
Additional complications arise due to other effects such asfinal state bremsstrahlung,PHOTOS
Monte Carlo [7–10] can be then used.

For the purpose of benchmarking our projects, we had to design and maintain tests. Some
of those tests gradually evolved into the new version ofMC-TESTER [1] presented here. The
principle of these tests is rather simple. After generationof each event by a given Monte Carlo
system, the content is searched for the decay of the particleto be studied. Once found, the
appropriate data is collected and stored in the form of automatically created histograms and
tables.

Originally the puropse of the paper was to documentMC-TESTER version 1.23. Recent
improvements, for versions up to 1.24.3, are described now as well. For the properties of the
program existing in even older versions, we address the reader to ref. [1]. We will assume that
the reader is familiar with that paper, otherwise technicalaspects of the program explained here,
may be difficult to follow.

For the convenience of readers interested in technical aspects of the update we keep orders
of the first chapters as inMC-TESTER’s first documentation [1]:

• Section 2 explains updates introduced to the first (generation) step of the program. Com-
ments on the installation procedure are also given here. In Section 3 modifications intro-
duced in the analysis, the second step ofMC-TESTER operation, are explained.

• Section 4 is devoted to the description of the package update. In particular, directory
organization and technical information on its use; furtherdetails and explanation of input
parameters may be found in the appendix A.1. Sections 4.4.1,4.5 and Appendix A.2 are
devoted to the extension ofMC-TESTER to HepMC and C++ applications.

• Section 5 is devoted to the use of lists in the algorithms responsible for defining his-
tograms and decay channels.

• New options and examples of how to obtain refined numerical results withMC-TESTER
are explained in Section 6.

• Section 7 closes the documentation with a discussion of the package limitations and pos-
sible future extensions.

4

• Changes in configuration scripts and script to merge severalMC-TESTER output files in-
troduced respectively for version 1.24.2 and 1.24.3 are documented in Appendix B.

2 Installation and generation step (update for ref. [1])

MC-TESTER is distributed in a form of an archive containing source files. Currently only the
Linux and Mac OS1 operating systems are supported: other systems may be supported in the
future if sufficient interest is found. We have checkedMC-TESTER on various platforms such as
Scientific Linux SLC 4.6 or Ubuntu 7.10, 8.04 .

In order to runMC-TESTER the following software is needed:

• gcc2 compiler suite withg++ andg77/gfortran installed.

• ROOT package properly installed and set up (please refer to [11] or ROOT INSTALL file in
doc/ subdirectory for details),

• LATEX package,

• Version 1.23 requires that environmental variablesROOTSYS andLD LIBRARY PATH, (for
some applications alsoHEPMCLOCATION) are properly set. It is optional to set those vari-
ables manually for version 1.24.3. The new installation procedure is explained in Ap-
pendix B.

One compilesMC-TESTER libraries using themake command to be executed in its main direc-
tory3. If completed successfully, the user is instructed on how toproceed with the example
tests4. Examples forMC-TESTER use, based on theτ decay generatorsTAUOLA andPYTHIA are
distributed together with the package; they reside in theexamples-F77/ subdirectory.

MC-TESTER distribution is a complete, ready-to-use testing environment, with subdirectories
dedicated to generation and analysis steps (see Section 4.1for details), and run-time parameters
controlled by simple configuration files (SETUP.C - see Section 4.3 and the Appendix A). The
SETUP.C file needs to be put in the directory from which the generationprogram is being exe-
cuted (usually it is the same directory in which the binary executable file exist). Examples of
SETUP.C files are already present in example generation directories: they are used to set some
parameters and also to note the name and details of the generator being run.

The output data file is usually put in the directory in which the generation program was
executed. The name of the file and the path may however be changed usingSETUP.C.

The issue of usingMC-TESTER with “any” Monte Carlo generators is addressed in Section
4.4. We want to stress, that it is relatively easy to useMC-TESTER with a Monte Carlo event

1For this case LCG configuration scripts explained in Appendix B have to be used.
2MC-TESTER has been tested in particular with gcc 3.2, 4.03, 4.1.2 and 4.3.2
3TheMC-TESTER version 1.23 is set to be compiled using g77 compiler. Forgfortran compiler, logical link

make.inc has to be pointed (in directoryplatform) to make-gfortran41.inc. The 1.24.3 version does not
require manual compiler setup.

4Also, how to prepare additional libraries to be loaded into user programs.

5

generator: it is sufficient to link theMC-TESTER libraries, theROOT libraries and to insert three
subroutine calls into the user’s code: forMC-TESTER initialization, finalization and analysis.

For the users interested in trying only the analysis part ofMC-TESTER (Section 3), and to
avoid a lengthy generation phase, ready-to-use data files are provided in the directory
examples-F77/pre-generated/. There, theMC-TESTER’s mc-tester.root files (produced
by long runs withTAUOLA andPYTHIA), are stored. To copy the files to the directories of the
analysis step, the commandmake move can be used. In principle these files can be used as a
reference for benchmark purposes too.

2.1 Examples of C++ generation step

Demonstrations ofMC-TESTER’s usage with C++ generation programs can be found in the sub-
directoryexample-C++/. This includes an example ofτ decay analysis forPYTHIA 8.1 [12]
(using C++ and theHepMC [13] standard) and an example of B meson decay forEvtGenLHC [14]
(using C++ and the HEPEVT standard). The examples are chosen, to demonstrate the program
use for packages of widespread popularity.

2.1.1 Tau decays fromPYTHIA 8.1

An example for thePYTHIA 8.1 event generator is given in directoryexamples-C++/pythia/.
10,000e+e−→Z0

→ τ+τ− events are generated and the decay of taus are analyzed byMC-TESTER.
The output,mc-tester.root, contains results of the processed events and includes a number
of histograms which can be compared to similar output from other Monte-Carlo generators.
Configuration of the tool is done via theexamples-C++/pythia/SETUP.C file.

To run the example, the packagesPYTHIA 8.1 andHepMC version 2 have to be installed5.
PYTHIA 8.1 has to be compiled withHepMC and thePYTHIA library libhepmcinterfacemust
exists. To run the example withMC-TESTER version 1.23:

• Set environment variableHEPMCLOCATION to the base ofHepMC’s include/ andlib/
directories

• SetPYTHIA INSTALL LOCATION to the base ofPYTHIA 8’s include/ andlib/ directo-
ries

• ThePYTHIA8DATA should point to directory containingPYTHIA xml documents. Gener-
ally these can be found in$(PYTHIA INSTALL LOCATION)/xmldoc.

• Compile the interface library by executingmake libHepMCEvent in the base directory
of MC-TESTER.

• Compile the example by executingmake in examples-C++/pythia subdirectory.

In case ofMC-TESTER version 1.24.3:
5This example has been tested withPYTHIA version 8.100 andHepMC versions 2.01.08 - 2.05.00. We assume

that the reader is familiar with these packages and their documentation.

6

• Provide the location ofHepMC during configuration step

• Compile theMC-TESTER libraries.

• Configure example inexamples-C++/pythia; provide path toPYTHIA 8.1.

• Compile withmake command.

For details ofHepMC and PYTHIA 8.1 see [12, 13]. For details regarding the configuration
procedures see Appendix B.

In order to run the example enterexamples-C++/pythia directory and execute:

./pythiatest.exe

make move1 (or make move2)

The final step moves the output file,mc-tester.root, to the directory/analyze/prod1
(/analyze/prod2) ready for the analysis step. A second output should be produced using
(preferably) different Monte Carlo generator (for examplefrom PYTHIA 6.4 generation) and
moved to/analyze/prod2.

2.1.2 B decays fromEvtGenLHC

An example of the analysis of 10,000B+ decays can be found in the sub-directory
examples-C++/evtgenlhc/. This example requiresMC-TESTER to be linked with the libraries
of EvtGenLHC, PYTHIA, PHOTOS, CLHEP andStdHep 6. The path to each must be set with the
following environmental variables:

• EVTGEN INSTALL LOCATION

• PYTHIA6 INSTALL LOCATION

• PHOTOS INSTALL LOCATION

• CLHEP INSTALL LOCATION

• CERNLIBS INSTALL LOCATION

TheEvtGenLHC example should be run in theexamples-C++/evtgenlhc/ directory with
the following commands:

make

./evtgen test.exe

6This example has been tested withEvtGenLHC version 5.15,PYTHIA version 6.227.2,PHOTOS ver-
sion 215.5,CLHEP version 1.9.3.1 andCERNLIBS 2006 on afs at CERN. See web pages of LHC Comput-
ing Grid Project Generator Services Subproject http://lcgapp.cern.ch/project/simu/generator/, LCG Savannah
https://savannah.cern.ch/projects/clhep/ and web page for Scientific Linux Installation at main CERN cluster
http://plus.web.cern.ch/plus/SLC4.html

7

make move1 (or make move2)

TheB+ meson decays need to be generated with the help of another Monte Carlo generator
to be compared to the results ofEvtGenLHC. For that purpose our example
examples-C++/pythia/pythia test B.cc can be used. The resulting booklet is particularly
large, confirming technical robustness ofMC-TESTER.

3 Analysis (update for ref. [1])

Data filesmc-tester.root, referred to in the previous section are used to produce a booklet - a
final results of theMC-TESTER executions. For this purpose the directoryanalyze/ is prepared.
No significant changes in the analysis step ofMC-TESTER were introduced since its first public
release. The original documentation, given in [1] is to a large degree up to date. In the following
subsections we present minor changes which were nonetheless introduced.

3.1 Running the analysis step from an external directory

In some cases, for example when our program is installed centrally by an administrator, users
may not have write permission for theanalyze/ directory of MC-TESTER. Therefore the anal-
ysis step will need to be executed from a directory outsideMC-TESTER. The bash script
analyze/compare.sh demonstrates how this can be done. It should be copied to the working
directory, and then edited. The following need to be set:

• FILE1: The name of the output file from the first generator (eg.mc-tester.root). The
path should be given relative to the current working directory.

• FILE2: The name of the output file from the second generator.

• MCTESTER DIR: The path toMC-TESTER

MC-TESTER can be configured by aSETUP.C file in the working directory (See Section 4.3). If
this file is not present, the default settings fromanalyze/SETUP.C are used.

Execution ofcompare.shwill produce an analysis booklet inpdf format calledtester.pdf.
Other files and directories produced during the analysis step, for exampleROOT histograms, can
also be found in the user’s current working directory.

3.2 New options in graphical representation of histograms

Graphical representation of the plots, as present already in the original version ofMC-TESTER
is adequate for tests, if agreement between the two comparedMonte Carlo samples confirms.
Generally it is however not the case. The appropriate graphical representation of tests can be
then helpful to understand the origin or nature of differences. The present version ofMC-TESTER
introduces a few additional options that make histograms more readable in specific cases.

8

The logarithmic scale option (see: A.1.4) can be activated at the analysis step ofMC-TESTER.
A nice illustration of this functionality is the validationplot for PHOTOS in the case of QED
radiation fromW+

→ µ+νµ final state, see fig. 1a. The compared distributions7 are visible only

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

Comparison of Mass(1) of gamma mu+ in channel W+ => gamma nu_mu mu+

0

1000

2000

3000

4000

5000

310×

SDP
3.09e-05

Comparison of Mass(1) of gamma mu+ in channel W+ => gamma nu_mu mu+

a

0 10 20 30 40 50 60 70 80 90 1000

0.2

0.4

0.6

0.8

1

Comparison of Mass(1) of gamma mu+ in channel W+ => gamma nu_mu mu+

1

10

210

310

410

510

610

SDP
3.09e-05

Comparison of Mass(1) of gamma mu+ in channel W+ => gamma nu_mu mu+

b

Figure 1: An example of a plot used for testing the full matrix element kernel of the W+
→

µ+νµγ channel. The invariant mass distribution of the µ+γ pair is peaked on the left side,
making the distributions unreadable. In particular, the difference between the red and green
lines can not be seen at all. Only the ratio of the compared distribution is of some use. A
theoretically unprepared reader may get the impression that differences are large. If logarithmic
scale is used, see fig. b, invariant mass distributions are visible over the whole spectrum and
the difference is clearly localized in a region containing less than10−3of the whole sample.
Calculation of SDP is not affected by the rescaling of the histograms.

in the first few bins of the histogram. If a logarithmic scale is used (see fig. 1b), one can see that
the distribution extends over all kinematically allowed spectrum. Note that the ratio (thick black
line) is still in linear scale marked on the left side of the plot. Calculation of Shape Difference
Parameter is not changed if logarithmic scale is used.

In case of tests where the coverage of some regions of phase space is enhanced because
of resonances, distribution properties are best visualized by distributions of Lorentz invariant
masses constructed of all possible sub-groups of final statemomenta. This is the key concept
of theMC-TESTER methodology.

That was the case ofτ lepton decays. Typically, one of the constructed invariantmass
distributions was peaked around the position of the intermediate state resonance. The tails
of the distributions are better populated when invariant masses are used directly, rather than
higher powers of these invariant masses. To adopt for that type of applications, two options are

7Obtained respectively from the versions of PHOTOS where thematrix element is used (and where it is not).

9

introduced intoMC-TESTER: the ability to plot given powers of the inv. mass, (see: A.1.2), and
to scale the mass to its maximum possible value8 (see: A.1.3).

The histograming of mass squared is useful if one is interested in eg. spin effects ofZ →

τ+τ−,τ± → π±ν decays. The slope of theπ− energy in the Z rest-frame is proportional to the
τ− polarization, see fig. 2a. This spectrum is identical to the spectrum of invariant mass squared
of the π+π−ν̄ system, and such distribution is now straightforward to study with MC-TESTER.
For convenience we normalize the spectrum in proportion to its maximum possible value, that

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

Comparison of Mass(2) of pi- pi+ nu_tau~ in channel Z0 => pi- pi+ nu_tau~ nu_tau

0

500

1000

1500

2000

2500

3000

3500

4000

4500

SDP
 0.0261

Comparison of Mass(2) of pi- pi+ nu_tau~ in channel Z0 => pi- pi+ nu_tau~ nu_tau

a

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

Comparison of Mass(1) of pi- pi+ nu_tau~ in channel Z0 => pi- pi+ nu_tau~ nu_tau

0

1000

2000

3000

4000

5000

6000

7000

SDP
 0.0275

Comparison of Mass(1) of pi- pi+ nu_tau~ in channel Z0 => pi- pi+ nu_tau~ nu_tau

b

Figure 2:Example of interesting benchmark for physics. In the decay Z→ τ+τ−→ π+π−νν̄, the
π− energy spectrum in the Z rest-frame has identical shape as the distribution of the invariant
mass squared ofπ+π−ν̄, see plot a. This linear distribution can be used to measure decaying
τ− polarization. The invariant mass is scaled to its kinematically allowed maximum. This
is convenient when the mass of the decaying object is not constant. In plot b, the mass square
option of MC-TESTER parameters is not used. In principle such a test is equally good to validate
spin effects, but any discrepancies are more difficult to understand.

is the invariant mass of the system of all (Z) decay products.
Without using those new options, physically equivalent plots could still be obtained, just

plotting invariant mass, see fig. 2b. It is however far more difficult to interpret differences
observed between compared Monte Carlo generators.

8The actually used power of the mass appears in the plot name asMass(2) or Mass(1) respectively if mass
square or mass itself is histogrammed.

10

4 Package organization (update for ref. [1])

This section contains technical details concerningMC-TESTER and should be used (together with
reference [1]) as a quick guide book. Further details may be found in the Appendix and in files
placed in thedoc/ subdirectory.

4.1 Directory tree

doc/ - contains documentation.

examples-F77/- includes example programs inF77:

tauola/ - using theTAUOLA generator;

pythia/ - using thePYTHIA/JetSet generator;

pre-generated/ - results of generation with high statistics.

examples-C++/ - examples inC++:

pythia/ - example for thePYTHIA 8.1 generator;

evtgenlhc/ - example for theEvtGenLHC generator (CERN GENSER version).

analyze/ - analysis step is performed in this directory, the analysiscode is contained in a set of
ROOT macros.

prod1/ - (mc-tester.root) data file obtained from the generation phase with the first
generator should be put here,

prod2/ - (mc-tester.root) data file from the results obtained with the second generator
should be put here,

booklet/ - is created during the analysis step. It contains the resulthistograms in the form
of .epsfiles.

HEPEvent/ - includes universalC++ interface toF77 event records (i.e. HEPEVT,LUJETS,PYJETS).

HepMCEvent/ - source code forlibHepMCEvent (MC-TESTER interface libraries to theHepMC
event record);

include/ - links to C++ include files.

lib/ - contains compiled libraries needed byMC-TESTER. Both the static and dynamic libraries
are provided.

src/ - contains the source code forMC-TESTER.

platform/ - platform-dependent support files; currently only forLinux.

11

4.2 Libraries

The MC-TESTER source code is build into three libraries:libMCTester, libHEPEvent and
libHepMCEvent. These libraries may be found in thelib/ directory after installation.

The librarylibMCTester contains all the code needed by the generation step; it is also
required at the analysis step, because it contains routinesfor the calculation of theShape
Difference Parameter.

The libHEPEvent library contains a unified interface for variousF77 HEP Monte Carlo
event record standards. In the current version ofMC-TESTER, it provides unified access to the
HEPEVT, LUJETS andPYJETS standards, enablingMC-TESTER to be used with a variety of Monte
Carlo event generators, based on those event record standards.

MC-TESTER was recently extended to include thelibHepMCEvent library. This library ex-
tendsMC-TESTER’s event record interface defined inlibHEPEvent by adding support for the
HepMC (versions greater than 2.0).

The source code oflibMCTester is placed in thesrc/ directory;libHEPEvent is stored in
theHEPEvent/ directory; andlibHepMCEvent is stored in theHepMCEvent/ directory.

4.3 Format and syntax of theSETUP.C file

The SETUP.C file is a C++ ROOT macro file, which controlsMC-TESTER’s settings. It is read
and executed during initialization of both phases of aMC-TESTER run: the generation and the
analysis. Nothing, except points discussed in the Appendix, require further explanation here.
Documentation for the first version of the program is up to date.

4.4 How to makeMC-TESTER run with other generators

4.4.1 The case ofC++

The infrastructure for connectingMC-TESTER to aC++ generator was in place in early versions
of MC-TESTER, but has recently been extended to allow analysis of C++ event records inHepMC
v2.0 and greater. As in the case for F77 code, the generator program should be linked to the
MC-TESTER libraries: libMCTester andlibHEPEvent, as well as a subset ofROOT libraries.
Configuration ofMC-TESTER can be done either through aSETUP.C file (see Section 4.3) or
directly in the body of the generation code (see Appendix A.2).

• C++ generation program with FORTRAN event record
All event record standards included in the current version of the HEPEvent library, i.e.
HEPEVT, LUJETS andPYJETS may directly be used in a user’sC++ code. It is sufficient to
issue calls to the following three functions inside the tested Monte Carlo analysis.

1. MC Initialize(): initializesMC-TESTER. All changes to theSetup should be com-
menced before a call to this function is invoked.

2. MC Analyze(): performs the analysis of the event record specified in theSetup::EVENT

variable;

12

3. MC Finalize(): writes the results to the output file.

Generate.h contains definitions for the functions listed above, and should be included
in the generation program.

An example of runningMC-TESTER with EvtGenLHC (C++ with HEPEVT event record
standard) can be found in the directoryexamples-C++/evtgenlhc/.

• C++ generator with HepMC event record
To analyzeHepMC9 event records the additional interface librarylibHepMCEvent should
be linked to the generation code, andHepMCEvent.H as well asGenerate.h needs to be
included. Inside the main (and to be tested) event generation program,MC-TESTER can be
called in the following way:

1. MC Initialize(): initializesMC-TESTER.

2. HepMCEvent temp event(HepMC::GenEvent event): creates anMC-TESTER in-
terface event to theHepMC::GenEvent type event;

3. MC Analyze(&temp event): performs an analysis of theHepMC::GenEventpassed
to tempevent. The variableSetup::EVENT in SETUP.C will be ignored;

4. MC Finalize(): writes the results to the output file.

An example ofMC-TESTER’s application toHepMC events can be found forPYTHIA 8.1 in
the directoryexamples-C++/pythia/.

Each Monte-Carlo generators could potentially have its ownset of particle status codes to
record the types of processes a particle can undergo. For example inPYTHIA 8.1, nega-
tive integers are used for decaying particles, while inHERWIG positive integers are used.
Therefore, it is important to document the way in whichMC-TESTER interpretsHepMC sta-
tus code information to conclude if a particle is stable, decayed, or history/documentation
(consistent with theHEPEVT standard codes of 1,2,3 respectively). The following defini-
tions have worked successful with a variety of C++ MC Programs includingPYTHIA 8.1

andHerwig++.

– Stable: If a particle has status code 1 or no end vertex of typeHepMC::GenVertex

it will be treated as stable byMC-TESTER. The particle will be placed in the list of
daughters (see Section 5.) and the decay chain will not be traversed beyond this
particle.

– History: If a particle has status code 3 it will be treated as documentation and
MC-TESTER will not place it in the list of daughters. The decay chain will not be
traversed beyond this particle.

– Decayed:All other particles will be classified as decayed. The treatment of these
particles byMC-TESTER depends on the configuration of SETUP.C (see also A.2).

9Only HepMC version 2.0 or greater is supported.

13

For the use of status codes beyond the above definitions,MC-TESTER must be run with a
modified version of the event record (see Section 4.5).

Filtering of the daughter list can be achieved usingUserTreeAnalysis (see Appendix
A.1.1).

4.5 How to makeMC-TESTER run with on-flight modified event records

Often we want to pass intoMC-TESTER, not the exact event tree as stored in the event record,
but a modified one. To date,UserTreeAnalysis (see A.1.1) has been used for this purpose.
It provides a solution which works quite well, and hence willbe discussed in the next section.
Numerous options can be introduced in this way. However, methods are limited to manipulation
during creation of the list of stable (endpoint) objects, originating from the analyzed object, or
later. Some analysis of the object itself can be introduced as well. The access to its origin or eg.
kinematical properties may be interesting.

This requires that the event record logically matches our requirements. This is not neces-
sarily always the case and one is tempted to perform some adjustment. In short, one may be
interested inHepMC to HepMC translation.

We have realized that such modules can be of interest for other applications independent
from MC-TESTER as well. We will not discuss the related topic here at all. Forpractical use
one need to call a method, which creates a temporary copy of the modified HepMC event
accordingly.
The sequence of calls, which can serve as a possible templatefor future work, may look as
follows:

HepMCaid HepMCnew;

HepMCnew.SetOption(...);

.....

HepMCnew.ModifyEvent(HepMCold);

MC Analyze(HepMCnew);

5 The use of lists in MC-TESTER

MC-TESTER was developed over many years of experience in extracting data from different
variants of event records. This section addresses the readers who are interested in this aspect of
activity. Our past experience may be of future use, it may explain some of the reasons behind
our program design too.

Even though the idea of a standardized event record structures has been in place for a long
time, technical problems arose. For programs coded inFORTRAN, event records (such asHEPEVT
or LUJETS/PYJETS) were typically expressed as integer-indexed arrays, withevery index rep-
resenting a single item, such as a particle. To express relationships between the particles or the
ordering, one had to use the arrays of indices, asFORTRAN did not provide for more complex
data structures such as lists. The emulation of such structures through the arrays of indices used
in the standards such asHEPEVT soon reached its limits: the arrays that were designed to store

14

the indexing information for doubly-linked lists representing the decay tree started to fail, due
to information overload: the place designated for the storage of pointers in the emulated decay
tree structure was re-used to store additional information. The - initially easy - way to navigate
through the tree-like structure of the decay cascade becameinconsistent, generator-dependent
and non-trivial to interpret. Moreover, to compensate for the oversimplified model of the event
structure, the authors of the event generators started to introduce their own conventions, to fit
additional information about the intermediate, internal states of the particles and objects, which
could not be expressed directly10.

Energy-momentum conservation, at the tree branchings, wasnot always assumed; branching
points had to be ‘understood’ as part of the larger group. Theoriginal arrays that stored mother
and daughter pointers to encode the decay process started toserve multiple purposes, depending
on the context: either (as originally) to indicate the decayprocesses, or to encode some other
relationship. Needless to say that for the programs such asPHOTOS [7–10], which relies on
consistent information about the decay cascade structure to extract sub-trees, orTAUOLA [5, 6],
which needs to extract the information about the hard process, it has become extremely difficult
to maintain a consistent generic and reliable interface to other event generators.

The same type of problems obviously manifested in the large detector-simulation chains,
where the input from a theory-rich physics Monte Carlo eventgenerator needed to be combined
with the phenomenological description of the detector processes, to give observables such as
energy-deposits and hits, which are in turn re-processed toreconstruct the original process.
Extracting the ”signal” process from an event record structure with overloaded data, full of
generator-specific conventions made this task, again, difficult and prone to errors; additional
analysis steps (which merely had to compensate for the insufficient data model of the event
record) had to be fitted to enable the use of each new event generator.

In the earliest version ofMC-TESTER [1] we suffered from the same type of problems with
index-based navigation through the event records. However, since version 1.1, we decided to
take advantage of possibilities given by the C++ programming language, and employ more com-
plex data structures in the processing performed byMC-TESTER. ThelibHEPEvent interface
was extended with the abstraction of ”particle list”. The particle list (HEPParticleList class)
could store pointers to any number of objects representing the particles in the event record. A
set of methods, modelled on the concept of iterators from theC++ Standard Template Library
was added as well, to facilitate the navigation in the list object, effectively replacing the native
constructs of index-based ”FOR” or ”DO” loops. The previously used methods to navigate
through the event tree using the indices were replaced with the list: each type of event record
(supported bylibHEPEvent) had a new method that returned a list of child particles, andthe
associated iterator object was implemented in such a way that all the generator-specific conven-
tions were hidden in it, presenting a clean and simple-to-use interface. The code ofMC-TESTER
was modified to make use of these new constructs - it gained significantly in clarity and stabil-

10As a result, one could see in the encoded decay trees, cases such as aτ particle decaying to anotherτ and
a photon, and then this secondτ decaying to yet some other particles with both of theτ’s being actually two
instances of the same particle, and the fact of having them listed twice in the event record was to express their state
at two distinctive stages of event construction, and express the bremsstrahlung processes ofτ production rather
than decay.

15

ity: not only the previously-used, index-based syntax being replaced with the constructs native
to Object-Oriented languages, but also the possible dependencies (or incompatibilities) could
be delegated to be served within another module (libHepEvent), making the code much easier
to maintain. Ultimately, this also enabled the implementation of theHepMCEvent interface, and
the use ofHepMC-based event generators withMC-TESTER, in a straightforward way.

The mechanisms that extracts the lists of ”daughter” particles, which is currently imple-
mented in thelibHEPEvent, still does not address the more fundamental problem of over-
simplification in the so-far proposed event record structures, includingHepMC: the inability to
express other types of relations between particles necessary for more complex models of pro-
cesses where for example quantum interference need to be included. Up to now, there is only
one type of ”relations”, being mother-daughter relations in the old event records, or ”interaction
vertices” or ”blobs” in the newer ones: they only express therelation in the decay cascade.
Other types of relations or processes still need to be ”emulated” by employing special con-
ventions, or additional, often non-physical objects (manyinstances of the same particle, etc).
As already discussed, the resulting data structure is difficult to interpret: objects as physical
entities, the actual processes taking place during (often multi-step) event generation, and to im-
plement ”content enriching” generators, such asTAUOLA andPHOTOS, which add to an already
(partially) generated event, stored in the event record. Upto this point, we treat the exercises
with list-based methods for ”reinterpretation” of the event-record data, as an initial seed for
a more concentrated effort to provide such ”re-interpreting” code in the near future, targeted
in particular as helper utilities for the software of large experimental collaborations. Addi-
tional ingredients for such utilities are provided by the experience we gained with the ”user
tree analysis” feature ofMC-TESTER, documented in Appendix A.1.1 and Section 4.5, where
we extract/re-construct/correct a fragment of the event record ”on the flight”, and present it as
the input toMC-TESTER, rather than using the original event record. Such an approach, with
re-engineered, re-interpreted event data, created on-the-flight, using a simple-to-use, pluggable
script/macro files has an additional advantage: the original event records remains unmodified,
and could still be accessed.

MC-TESTER is not the only of our projects, where the problems discussedabove have to
be addressed.TAUOLA universal interface [6] andPHOTOS [8] represent further examples.
Our program is devoted to tests, this is why it was worked out before the other two.

Similar solutions to problems as those discussed here [15],are possible. It seems that in this
respect, the case ofTAUOLA universal interface is easier thanPHOTOS. New objects need
to be added to the end points of the otherwise unmodified tree.The prototype solution, based
onHepMC exist already [16].

The standard concept of C++ lists can be used for minor practical adaptation inMC-TESTER
too. For example, at the time of list creation one can force some particles to be treated as stable,
and its consecutive daughters ignored.

16

6 Example of advancedMC-TESTER use:
benchmarks for spin correlations in heavy object decays.

One may have the impression that the modifications introduced into the present release of the
package are minor and consist of simple improvements in the graphical representation of the
output and purely technical reorganization thanks to the use of C++ lists.

To some degree this is true, but other changes were introduced because of pressure from
applications. In the present chapter, let us show, how program modifications can be used for
non-trivial practical applications.

It is quite common that information stored in the event record is too large. For example
individual soft photons which remain undetectable are present. Not only they do not influence
the detector response at all, but they exhibit technical aspects of eg. infrared regulators of
QED bremsstrahlung. In response,MC-TESTER should ignore (or group together with other
particles), those photons while analyzing decays. Otherwise comparisons of different Monte
Carlo programs would be dominated by the technical aspect ofthe implementation of infrared
regulator;MC-TESTER operation need to be adopted for this, see eg. [9,10].

Another example where the event tree may need to be simplifiedfor validation is if spin
correlations are appropriately introduced into various production processes. Let us use as an
example11 pp→ Z/γ ∗+X, Z → τ+τ−. It is convenient to start the test by restrictingτ decays
to the simplest decay mode, that isτ± → π±ν, and look at distributions in combined decay
Z → π+π−νν̄. In this case the effects of spin correlations are largest. The distribution of the
π− energy spectrum (in theZ rest-frame), manifests theτ polarization through its slope (see fig
2a). Fortunately, this frame dependent spectrum is equal tothe distribution of the invariant mass
squared ofπ−π+ν̄. This distribution can be obtained inMC-TESTER thanks to the new options
of histograming invariants squared (A.1.2) and automatic scaling of the histogram range to the
kinematically allowed maximum (A.1.3).

Final state activities will lead toZ decays where theτ-pair is accompanied eg. by bremsstrahlung
photons or soft hadrons. One may want to ignore this soft radiation in the test, or quite contrary
– look only at these cases, to verify if soft emissions did notresult from configurations of faulty
spin correlations. Finally one may want to check decays ofZ of high pT only.

On the other hand all such variants of non-standardMC-TESTER analysis were rather easy
to include into our example of theUserTreeAnalysis (see. A.1.1), but we assume that in the
future other options may also become useful. On the other hand some interesting variants of the
UserTreeAnalysis method may not be possible using decay product lists alone. For example
if one would be interested in decays ofZs originating from an objectX or accompanied inX
decay by eg. anotherZ or top quark. For that purpose some other methods following the idea
of userEventAnalysis [1] or HepMCaid (see 4.5) may be useful.

6.1 Default UserTreeAnalysis

UserTreeAnalysis, is included in the source code of MC-TESTER thus can be loaded with the

11Spin correlations in decays ofW,H,H± into τ lepton(s) are nearly identical

17

library libMCTester. The user can create his own verson of the method named eg.MyUserTree12,
and load it as a pre-compiled C++ macro instead. The parameters of the built-inUserTreeAnalysis
named"UserTreeAnalysis", have the following meaning:

1. params[0]=0.05 minimum value of the variable used to discriminate soft particles as a
fraction of the decaying particle mass.

2. params[1]=0 maximum number of possible soft particles retained, even ifpassing a
threshold of the previous option.

3. params[2]=0 type of variable used in discrimination

(a) 0 - energy in the decaying particle rest frame

(b) 1 - energy in lab frame

(c) 2 - pT in lab frame

4. params[3]=0

(a) 0 - removed particles are simply ignored

(b) 1 - removed particle momenta are added to the momenta of charged ones. For details
see [1].

5. params[4]=22 PDG Id’s of the particles to be removed. Repetition of this parameter is
allowed forparams[5], params[6] etc.

If parameters are not initialized, the default values, as given in the points above, are used.
For the example, our method defined three histograms for the properties of the decaying particle:
its pT , pseudorapidity and azimuthal angleφ. They are included, during the analysis step, in the
“User Histogram” section of theMC-TESTER booklet.

This simple method summarizes and extends the technical aspects of tests we have devel-
oped in papers [9,10].

7 Outlook

We have demonstrated thatMC-TESTER may be useful for tests of libraries of particles decays,
as well as for tests of their interfaces (see fig. 2 and refs. [5,16] for example).

The updated version of the package was found [9,10] to handlewell cases where physically
spurious information (eg. on soft photons) need to be ignored. This avoided unphysical dis-
crepancies between results from different programs. Moreover, adaptations of the program may
lead to a new spectrum of applications, which, as discussed in Sections 4.5, 5 and 6, may find
applications independent of the future evolution of theMC-TESTER software project.

12See Appendix A.1.1 for details.

18

Even with the present enrichment of functionality, the tests performed byMC-TESTER are
not complete from the physics point of view. The program has also some technical limitations.
In the following we list these points, which may be addressedin future versions ofMC-TESTER
and require stating.

1. The program does not analyze distributions in Lorentz invariants built with the help of
the totally antisymmetric (Levi-Civita) tensor. It is thusblind to some effects of parity
non-conservation.

2. Information on the spin state of the decaying particle is usually not available in event
record structures such asHepMC. To keepMC-TESTER modular, and to avoid a multitude
of options, we ignore effects of decaying particle polarization.

3. The main advantage ofMC-TESTER is that it can be used with ‘any’ production generator
in an automated way, providing a tool for quick tests. However, the final state event record
has to be stored in one of the following structures: common blocksHEPEVT, LUJETS,

PYJETS [17,18] ofFORTRAN or HepMC objects ofC++.

4. If multiplicity of the particular decay channel is very high and/or there is a lot of decay
channels, the program may find it difficult to allocate memory. An analysis of a decay
channel with 8 or more decay products results in thousands ofhistograms, which causes
output files to be large and the analysis step to be long. Hard coded limits have been
implemented: Histograms will only be created for the first 200 decay channels found and
only if the multiplicity of decay products is smaller than 8.

5. Some ofMC-TESTER’s options, especiallyMyUserTree method, see Section 6.1, may be
difficult to use within large systems like Athena13 of the ATLAS collaboration. This point
will also need to be investigated after the release of the present version of our program. It
requires interaction with the users.

The main purpose ofMC-TESTER is to analyze sub-trees starting from the objects of a given
PDG identifier without any concern of its origin, and without pre-selecting the type of distri-
butions created. This is why there is complementarity between our approach and the one of
Rivet [19]. The latter is designed to produce simulated distributions which can be directly
compared to measured data for validation and tuning purposes. TheMC-TESTER strategy is to
test decays on a technical level at the event record content first, rather than to start from al-
ready pre-identified quantities of physics interest. Only later one may, but with constrained
possibilities only, turn to physically interesting quantities.

Updates introduced to the program after version 1.23 becomepublic are described in Ap-
pendix B.

13http://atlas.physics.utoronto.ca/Members/bguo/setup-athena-12-0-0-at-cern-machines

19

Acknowledgments

We thank Elzbieta Richter-Was, Alberto Ribon, Judith Krantz and Zhonghua Qin for com-
ments on the program organization and documentation. NadiaDavidson would like to thank
the “Marie Curie Programme” for her fellowship. Partial support of Polish-French collabora-
tion no. 06-124 within IN2P3 through LAPP Annecy during finalcompletion of this work is
also acknowledged.

20

A Appendix: MC-TESTER setup and input parameters (up-
date for ref. [1])

The values of the parameters used byMC-TESTER are controlled using theSETUP.C file. Some
parameters may also be controlled usingFORTRAN77 interface routines or C++ methods (Section
A.2). This provides runtime control over all parameters, yet allowing the user not to have
SETUP.C at all. One should note thatSETUP.C always has precedence over the default values
set usingF77 or C++ code: it is always looked for in the execution directory.

A.1 Definition of parameters in theSETUP.C file

There are three sets of settings insideMC-TESTER to be distinguished: the ones specific to the
generation phase, the ones specific to the analysis phase andthe ones that are used in both
phases14. We describe only new features, quoting the scope of their use.

A.1.1 Setup::UserTreeAnalysis

Type: char*
Scope: generation
Default: null
DESCRIPTION: The name of a function that allows modificationof the list of stable parti-

cles before histograms for the decay ofMC-TESTER analyzed object are defined/filled in.
IMPORTANT: The name that is attributed (eg. ”MyUserTree”) must be a valid method

name existing in a C++ script file located in the working directory. The script must be given the
same name as the method, and ended with a ”.C” suffix. For example, for the ”MyUserTree”
method, the script filename would beMyUserTree.C. For further information on running and
compiling scripts on the fly seeREADME.UserTreeAnalysis in theMC-TESTER/doc/ directory.

Example of use:
Setup::UserTreeAnalysis = "MyUserTree";

or for the version compiled and present inlibMCTester library:
Setup::UserTreeAnalysis = "UserTreeAnalysis";

In this case, the UserTreeAnalysis.C is not needed, as the built-in UserTreeAnalysis routine
will be used.

Parameters can be passed to the function. For example
Setup::UTA params[0]=0.05;

Setup::UTA params[1]=0;

Setup::UTA params[2]=0;

Setup::UTA params[3]=0;

Setup::UTA params[4]=22;

Setup::UTA params[5]=111;

14Some parameters from the generation phase (i.e. the description of generators) are stored inside an output
data file. However, again for reasons of runtime control, their values may be altered at the analysis time using the
SETUP.C file in the analysis directory.

21

Setup::UTA nparams=6;

will passnparams=6 parameters to the function. For the actual meaning of the parameters if
passed intoUserTreeAnalysis as present in the library, see section 6.

A.1.2 Setup::masspower

Type: int
Scope: generation
Default: 1
DESCRIPTION: This option changes the variable passed for histograming, from invariant

mass to a power of invariant mass, at the generation step. It also modifies the title displayed on
histograms fromMass(1) to an appropriateMass(value), showing that the power of the mass
has been changed.

NOTE: Acceptable values: from 1 to 9. Due to properties of theLorentz group when this
option has value=2 it is particularly suitable for tests of spin polarization, see section 6.1.

Example of use:
Setup::mass power=2; //set histograms to invariant mass squared

A.1.3 Setup::massscaleon

Type: bool
Scope: generation
Default: false
DESCRIPTION: This option scales invariant masses for all plots of the decay channel to

invariant mass constructed from all daughters combined. Itscales the X values to the range
(0,1).

NOTE: When using this option consider setting default maximum bin value to 1.1, for nicer
graphical representation.

Example of use:
Setup::mass scale on=true; //enables scaling of X axis

A.1.4 Setup::uselog y

Type: bool
Scope: analysis
Default: false
DESCRIPTION: Enables the use of logarithmic scale in all histograms plotted byMC-TESTER.

Turning this option on will draw the histograms in logarithmic scale, and mark a logarithmic
scale along the right-hand-side Y axis. This option does notaffectSDP calculation or the plot
of the ratio of histograms, which remains linear. Its corresponding linear scale is marked on the
left-hand Y axis.

NOTE: This option, combined with previously presented defaults for UserTreeAnalysis can
be particularly useful if infrared regulator sensitive particles, such as soft photons are present in
the event records. See [20].

22

Example of use:
Setup::use log y=true; //enables logarithmic scale on Y axis

A.1.5 Setup::rebin factor

Type: int
Scope: analysis
Default: 1
DESCRIPTION: One may want to define a large number of bins for the generation scope

of MC-TESTER. The number of bins on the actual plots, can be adjusted at theanalysis step.
The contents of consecutive ”rebinfactor” bins are summed together. Calculation of the SDP
parameter is appropriately adjusted.

NOTE: ”rebin factor” must be the natural divider of the number of bins declared during the
generation scope ofMC-TESTER.

Example of use:
Setup::rebin factor=3; //reduces no. of bins in all histograms by factor

of 3

A.2 C++ configuration of MC-TESTER

The configuration ofMC-TESTER can be done directly in the main method of the C++ gen-
eration program, without the need for aSETUP.C file. This can be accomplished by includ-
ing the header fileSetup.H and setting parameters using the same syntax as described for
SETUP.C files (see original documentation [1]). Setup should be donebefore calling the func-
tion MC Initialize(). Note that if parameters are set in both the generation program and a
SETUP.C file, the values present inSETUP.C will be given precedence.

B Appendix: updates to versions 1.24.2 and 1.24.3

B.1 Changes introduced in version 1.24.2

To address the problems that are typically faced whenMC-TESTER is installed in a new envi-
ronment, or a new platform, an automated configuration step has been implemented in version
1.24.2. The configuration files required to set-up/compile/run MC-TESTER may be generated
through a dedicated configuration script, which facilitates the GNU autoconf [21].

To set upMC-TESTER using the new auto-configuration facility, proceed with thefollowing
steps:

• Execute./configure with additional command line options:
--with-HepMC=<path> provides the path toHepMC installation directory (alternatively
HEPMCLOCATION system variable has to be set).
--with-root=<path> Path toroot binaries.
--with-Pythia8=<path> Path toPythia version 8.1 or later (this generator is used by

23

examples only)
--prefix=<path> provides the installation path. If this option is usedinclude/ and
lib/ directories will be copied to thisprefix <path> whenmake install will be exe-
cuted. If--prefix=<path> is not provided, the default installation directory/usr/local
will be used

• Executemake; this will build MC-TESTER.

• To installMC-TESTER into the directory specified at step 1) through the--prefix param-
eter, executemake install; this will copy the include files and libraries intoinclude/
andlib/ sub-directories.

• It is worth to mention that./configure scripts only preparemake.inc files. These
files are rather short and can be easily modified or created by hand: one can also rename
README-NO-CONFIG.txt tomake.inc and modify it accordingly to instructions provided
inside the file.

Further changes and bug-fixes were implemented too. Howeverthey do not require any
changes in the way the program is used. Let us nonetheless list them here:

• A bug resulting in faulty functioning of the scriptANALYZE.Cwas fixed. Previously, when
comparing decay samples which differed by several distinctchannels, the program was
occasionally crashing.

• A bug resulting in faulty functioning ofUserTreeAnalysis scripts was fixed. The pro-
gram was crashing ifMC4Vector was used inside the script.

• All offending statements resulting in compilation errors if ’-ansi -pedantic’ flags were
activated have been removed now.

B.2 LCG configuration scripts; available from version 1.24.2

For our project still another configuration/automake system was prepared by Dmitri Konstanti-
nov and Oleg Zenin; members of the LCG project [22].

For the purpose of activation of this set of autotools-basedinstallation scripts enterplatform
directory and execute thereuse-LCG-config.sh script. Then, installation procedure and the
names of the configuration script parameters will differ from the one described in our paper.
Instruction given in ’./INSTALL’ readme file created byuse-LCG-config.sh script should be
followed. One can also execute./configure --help, it will list all options available for the
configuration script.

A short information on these scripts can be found inREADME of main directory as well.

24

B.3 Merging MC-TESTER output files; available from version 1.24.3.

Interest in using the program on distributed systems, such as the grid has been expressed on
several occasions. This calls for new functionality: to merge severalmc-tester.root files
into a single one, corresponding to all event samples combined into one.
Theanalyze/MERGE.C script can be used for this purpose:

• Enter theanalyze/ directory.

• Executeroot -b MERGE.C (or root -b and.L MERGE.C).

• Typemerge(<output file> , <input directory>/<first file> , [<pattern>])

(the last parameter is optional).

• Copy<output file> into analyze/prod1/mc-tester.root

(or analyze/prod2/mc-tester.root).

Example:

root -b

root [0] .L <path to script>/MERGE.C

root [1] merge("out.root","samples/first.root","*.root")

The input to the script may consist of just the<input directory> path where reside the
.root files to be merged. Alternatively, the name of the firstMC-TESTER .root file to be
merged (<input directory>/<first file>) can be explicitly given. Generator informa-
tion will be taken from this first file. The script will search the<input directory> to merge all
files matching the pattern. If no pattern is provided, the default pattern ismc-tester ∗.root.
The<output file> will feature all histograms for decay channels including user defined his-
tograms. Histograms for decay channels of the same name, found in different files will be
summed together. The histogram bin count and axis range of the first occurence will be used.

If histograms are found with a distinct axis range or number of bins, compared to other
histograms with the same name, then the content of these filesis ignored. However, if by
mistake, the particular input file contains data for tests ofanother particle’s decays, then all
data from this file will be taken. All decay channels for all particles under consideration will
be listed in the .pdf file constructed byMC-TESTER at the analysis step. Information printed
on the front page might then be inconsistent, for example, the overall number of entries or
the overall number of channels will represent decays of all particles. If the interest will be
expressed in future, an analysis step can be adopted to handle such cases with better front page
of the booklet.

If the script is used outside theMC-TESTER/analyze/ directory, theMCTESTERLOCATION
system variable needs to be set to theMC-TESTER root directory. In addition, user can create
and adopt his own copy ofMERGE.C and use it instead of the default one. Note that our script
cannot be used with a version ofMC-TESTER older than 1.24.3.

25

References

[1] P. Golonka, T. Pierzchala, and Z. Was,Comput. Phys. Commun.157 (2004) 39–62,
hep-ph/0210252.

[2] S. Jadach, Z. Wa̧s, R. Decker, and J. H. Kühn,Comput. Phys. Commun.76 (1993) 361.

[3] M. Jeżabek, Z. Wa̧s, S. Jadach, and J. H. Kühn,Comput. Phys. Commun.70 (1992) 69.

[4] S. Jadach, J. H. Kühn, and Z. Wa̧s,Comput. Phys. Commun.64 (1990) 275.

[5] T. Pierzchała, E. Richter-Wa̧s, Z. Wa̧s, and M. Worek,Acta Phys. Polon.B32 (2001)
1277–1296,hep-ph/0101311.

[6] P. Golonkaet al., Comput. Phys. Commun.174(2006) 818–835,hep-ph/0312240.

[7] E. Barberio, B. van Eijk, and Z. Wa̧s,Comput. Phys. Commun.66 (1991) 115.

[8] E. Barberio and Z. Wa̧s,Comput. Phys. Commun.79 (1994) 291–308.

[9] P. Golonka and Z. Was,Eur. Phys. J.C45 (2006) 97–107,hep-ph/0506026.

[10] P. Golonka and Z. Was,Eur. Phys. J.C50 (2007) 53–62,hep-ph/0604232.

[11] http://root.cern.ch/root/Availability.html .

[12] T. Sjostrand, S. Mrenna, and P. Skands,Comput. Phys. Commun.178 (2008) 852–867,
0710.3820.

[13] M. Dobbs and J. B. Hansen,Comput. Phys. Commun.134 (2001) 41–46,
https://savannah.cern.ch/projects/hepmc/.

[14] D. Lange and A. Ryd, http://lhcb-release-area.web.cern.ch/LHCb-release-
area/DOC/gauss/generator/evtgen.php and http://www.slac.stanford.edu/ lange/EvtGen/.

[15] Z. Was, Prepared for Workshop on Computer Particle Physics: (CPP 2001): Automatic
Calculation for Future Colliders, Tokyo, Japan, 28-30 Nov 2001.

[16] N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was, and Z. Was,1002.0543.

[17] Particle Data Group Collaboration, C. Casoet al., Eur. Phys. J.C3 (1998) 1.

[18] T. Sjostrandet al., Comput. Phys. Commun.135(2001) 238.

[19] A. Buckley et al., http://projects.hepforge.org/rivet/
http://projects.hepforge.org/rivet/trac/wiki.

[20] P. Golonka, G. Nanava, and Z. Was, Tests of PHOTOS Hard Bremsstrahlung, http://mc-
tester.web.cern.ch/MC-TESTER/PHOTOS-MCTESTER/.

26

[21] GNU Autoconf http://www.gnu.org/software/autoconf/.

[22] LCG project http://lcg.web.cern.ch/LCG/.

27

