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Abstract

Differential Matrix Riccati Equations (DMREs) appear in several branches of sci-
ence such as applied Physics and Engineering. For example, these equations play a
fundamental role in Control Theory, optimal control, filtering and estimation, de-
coupling and order reduction, etc. In this paper a new method based on a theorem
proved in this paper is described for solving DMREs by a piecewise-linearized ap-
proach. This method is applied for developing two block-oriented algorithms based
on Diagonal Padé Approximants. MATLAB versions of the above algorithms are de-
veloped, comparing, under equal conditions, accuracy and computational costs with
other piecewise-linearized algorithms implemented by the authors. Experimental re-
sults show the advantages of solving stiff or non-stiff DMREs by the implemented
algorithms.

Key words: Differential Matrix Riccati Equation (DMRE), Piecewise-linearized
Method, Ordinary Differential Equation (ODE), Initial Value Problem (IVP),
Linear Differential Equation (LDE), Conmutant Equation, Algebraic Matrix
Sylvester Equation (AMSE), Padé Approximants.
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1 Introduction

This paper presents a methodology for solving Differential Matrix Riccati
Equations (DMREs) based on a piecewise-linearized method which uses Padé
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approximants to compute the exponentials of two block-defined matrices.
These equations have the form

Ẋ = A21(t) + A22(t)X − XA11(t) − XA12(t)X, t0 ≤ t ≤ tf , (1)

X = X(t) ∈ Rm×n, X(t0) = X0 ∈ R
m×n,

where A11(t) ∈ Rn×n, A12(t) ∈ Rn×m, A21(t) ∈ Rm×n, A22(t) ∈ Rm×m.

DMREs play an important role in the electrodynamic theory of stratified
media, in the theory of multimode electric power lines, in the hydraulics of
pipe lines, etc. They also appear in Control Theory, for example in the time-
invariant linear quadratic optimal control problem, in the estimation of the
system parameters and in the system state, etc.

Since the mid seventies, many different methods have been proposed: lineariza-
tion methods [1–3], Chandrasekhar method [4], superposition methods [5,6],
BDF methods [7–11], Hamiltonian methods [12], unconventional reflexive nu-
merical methods [13], Piecewise-linearized methods [14], etc.

In [14] we developed a piecewise-linearized method based on the Conmutant
and we implemented efficient block-oriented algorithms for solving DMREs. In
this paper a new piecewise-linearized method for solving DMREs is presented
based on Theorem 3 in Section 4, and two block-oriented algorithms based on
this method have been developed.

This paper is structured as follows. Section 2 describes a numerical integra-
tion of ODEs based on a piecewise-linearized method [15], which has served
as the basis for the methods that are described in the following sections. Sec-
tion 3 describes a piecewise-linearized method developed by the authors [14]
which solves DMREs by the Con mutant Equation. Section 4 presents an-
other piecewise-linearized method based on a theorem proved in this paper
(Theorem 3) and two block-oriented algorithms. A theoretical study in terms
of flops requirements is included. The experimental results of the MATLAB
implementations are shown in Section 5. Finally, some conclusions and future
work are outlined in Section 6.

2 Solving ODEs by a Piecewise-linearized Method

In this section we show a piecewise-linearized method to solve ODEs [15] which
is used in Sections 3 and 4. A family of one step methods for solving ODEs
are the piecewise-linearized methods [16,17,15]. These methods solve an IVP
by approximating the right hand-side of the ODE by a degree one Taylor
polynomial. The resulting approximation can be integrated analytically to
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obtain the solution in each subinterval and yields the exact solution for linear
problems.

Let
ẋ(t) = f(t, x(t)), t ∈ [t0, tf ], (2)

be an ODE with initial value

x(t0) = x0 ∈ R
n,

so that the first order partial derivatives of f(t, x) are continuous on [t0, tf ]×
Rn. Given a mesh t0 < t1 < ∙ ∙ ∙ < tl−1 < tl = tf , the ODE (2) can be
approximated by a set of Linear Differential Equations (LDEs) obtained as a
result of a linear approximation of f(t, x(t)) at each subinterval,

ẏ(t) = fi + Ji(y(t) − yi) + gi(t − ti), t ∈ [ti, ti+1], (3)

y(ti) = yi, i = 0, 1, . . . , l − 1,

where

fi = f(ti, yi) ∈ R
n,

Ji =
∂f

∂x
(ti, yi) ∈ R

n×n (Jacobian matrix),

gi =
∂f

∂t
(ti, yi) ∈ R

n (gradient vector).

The LDE associated to the first subinterval,

ẏ(t) = f0 + J0(y(t) − y0) + g0(t − t0), t ∈ [t0, t1],

is solved considering the initial value y(t0) = y0 = x0. Its solution is given by

y(t) = y0 +
∫ t
t0

eJ0(t−τ)[f0 + g0(τ − t0)]dτ, t ∈ [t0, t1].

Thus, it is possible to compute y1 = y(t1).

By proceeding in the same way, the solution of the LDE associated to the
subinterval i, i = 1, . . . , l − 1, is

y(t) = yi +
∫ t
ti

eJi(t−τ)[fi + gi(τ − ti)]dτ, t ∈ [ti, ti+1].

If f(t, x) is a Lipschitz function on [t0, tf ] × Rn and its second order partial
derivatives are bounded on that region, the above piecewise-linearized method
converges [16, pp. 281]. If the (1,1) Padé approximation is used to compute
eJi(t−ti), the above method is consistent of order 2 for autonomous ODEs and
1 for non autonomous ODEs, and linearly stable [18, pp. 26].
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Theorem 1 ([15]) The solution of the LDE

ẏ(t) = fi + Ji(y(t) − yi) + gi(t − ti), t ∈ [ti, ti+1],

y(ti) = yi,

fi ∈ R
n, Ji ∈R

n×n, gi ∈ R
n,

is
y(t) = yi + E

(i)
12 (t − ti)fi + E

(i)
13 (t − ti)gi, (4)

where E
(i)
12 (t − ti) and E

(i)
13 (t − ti) are blocks (1, 2) and (1, 3) of E = eCi(t−ti),

where

Ci =










Ji In 0n

0n 0n In

0n 0n 0n










. �

If t is replaced by ti+1 in (4), the approximate solution of the ODE (2) at ti+1

is given by
yi+1 = yi + E

(i)
12 (Δti)fi + E

(i)
13 (Δti)gi.

Therefore, the solutions of the ODE (2) at t1, t2, . . . , tl = tf can be computed
by using the above expression.

3 Solving DMREs by a Piecewise-linearized Method based on the
Conmutant Equation

This section describes a piecewise-linearized method developed by the authors
[14], which is compared with the piecewise-linearized method developed in this
paper. Let us suppose that the right-hand side of (1) ,

F (t,X) = A21(t) + A22(t)X − XA11(t) − XA12(t)X,

is a Lipschitz function on [t0, tf ]×Rm×n and its second order partial derivatives
are bounded on that region. If vec operator [19, p. 244] is applied to DMRE
(1), then

ẋ(t) = f(t, x(t)), x(t0) = vec(X0),

where
x(t) = vec(X(t)) ∈ Rmn,

and

f(t, x(t)) = vec(A21(t) + A22(t)X(t) − X(t)A11(t) − X(t)A12(t)X(t)),
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which can be expressed as

f(t, x(t)) = vec(A21(t))+[In⊗A22(t)−AT
11(t)⊗Im]x(t)−[In⊗(X(t)A12(t))]x(t)

or

f(t, x(t)) = vec(A21(t))+[In⊗A22(t)−AT
11(t)⊗Im]x(t)−[(A12(t)X(t))T⊗Im]x(t).

If we consider the mesh t0 < t1 < ∙ ∙ ∙ < tl−1 < tl = tf , and we apply the
piecewise-linearized process explained in Section 2, the following LDEs are
obtained

ẏ(t) = vec(Fi) + Ji(y(t) − yi) + vec(Gi)(t − ti), t ∈ [ti, ti+1], (5)

y(ti) = yi, i = 0, 1, . . . , l − 1,

where

Fi = A21(ti) + A22(ti)Yi − YiA11(ti) − YiA12(ti)Yi,

Gi = Ȧ21(ti) + Ȧ22(ti)Yi − YiȦ11(ti) − YiȦ12(ti)Yi.

Since f(t, x) is a Lipschitz function on [t0, tf ] × Rmn and its second order
partial derivatives are bounded on that region, the above piecewise-linearized
process converges [16]. If we apply Theorem 1, the solution of (5) at ti+1 is

yi+1 = yi + E
(i)
12 (Δti)fi + E

(i)
13 (Δti)gi, (6)

where E
(i)
12 (Δti) and E

(i)
13 (Δti) are the (1,2) and (1,3) blocks of matrix Ei =

eCiΔti , where

Ci =










Ji Imn 0mn

0mn 0mn Imn

0mn 0mn 0mn










, (7)

and

Ji =
∂f

∂x
(ti, yi) = In ⊗ Ai − BT

i ⊗ Im,

Ai = A22(ti) − YiA12(ti), (8)

Bi = A11(ti) + A12(ti)Yi.

If matm×n operator [20, p. 2104] is applied to (6), the approximate solution of
(1) at ti+1 can be obtained from expression

Yi+1 = Yi + matm×n(E
(i)
12 (Δti)vec(Fi) + E

(i)
13 (Δti)vec(Gi)). (9)

Based on the Conmutant Equation, the authors proved in [14] the following
theorem and corollary which allow to compute matrix Yi+1 in (9).
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Theorem 2 If matrices Ai and Bi of (8) do not have eigenvalues in common,
then the matrix Yi+1 in (9) can be computed from

Yi+1 = Yi + Wf + Wg, (10)

where Wf , Wg are the solutions of the Algebraic Matrix Sylvester Equations
(AMSEs)

AiWf − WfBi = eAiΔtiFie
−BiΔti − Fi, (11)

AiWg − WgBi = Wi − GiΔti, (12)

and Wi satisfies the AMSE

AiWi − WiBi = eAiΔtiGie
−BiΔti − Gi. � (13)

As (11), (12) and (13) have the same coefficient matrices Ai, Bi, the compu-
tational cost of computing Yi+1 can be reduced.

Corollary 1 If the DMRE (1) is time-invariant and matrices Ai and Bi of
(8) do not have eigenvalues in common, then matrix Yi+1 in (9) can be com-
puted as

Yi+1 = Yi + Wf , (14)

where Wf is the solution of the AMSE

AiWf − WfBi = eAiΔtiFie
−BiΔti − Fi. � (15)

4 A Piecewise-linearized Method for Solving DMREs based on
Padé Approximants

As the solution of LDE (5) associated to subinterval [ti, ti+1] is

y(t) = yi +
∫ t

ti
eJi(t−τ)[vec(Fi) + vec(Gi)(τ − ti)]dτ, t ∈ [ti, ti+1], (16)

then the approximate solution of DMRE (1) at ti+1 can be obtained as

Yi+1 = matm×n(yi+1), (17)

where

yi+1 = yi +
∫ ti+1

ti
eJi(t−τ)[vec(Fi) + vec(Gi)(τ − ti)]dτ. (18)

Theorem 3 The matrix Yi+1, which appears in (17), can be computed as fol-
lows

Yi+1 = Yi + [F
(i)
12 (Δti) + H

(i)
13 (Δti)][F

(i)
22 (Δti)]

−1, (19)
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where Yi = matm×n(yi), F
(i)
12 (Δti) and F

(i)
22 (Δti) are (1,2) and (2,2) blocks of

matrix eCiΔti,

Ci =






Ai Fi

0n×m Bi




 , (20)

and H
(i)
13 (Δti) is the (1,3) block of matrix eDiΔti,

Di =










Ai Gi 0m×n

0n×m Bi In

0n×m 0n×n Bi










, (21)

Fi = A21(ti) + A22(ti)Yi − YiA11(ti) − YiA12(ti)Yi,

Gi = Ȧ21(ti) + Ȧ22(ti)Yi − YiȦ11(ti) − YiȦ12(ti)Yi,

Ai = A22(ti) − YiA12(ti),

Bi = A11(ti) + A12(ti)Yi.

Proof. If we define s = τ − ti and θ = t − ti , vector y(t) in (16) can be
expressed as

y(t) = yi +

θ∫

0

eJi(θ−s)vec(Fi)ds +

θ∫

0

eJi(θ−s)givec(Gi)sds =

= yi +

θ∫

0

e(In⊗Ai−BT
i ⊗Im)(θ−s)vec(Fi)ds +

θ∫

0

e(In⊗Ai−BT
i ⊗Im)(θ−s)vec(Gi)sds =

= yi +

θ∫

0

(e−BT
i (θ−s) ⊗ eAi(θ−s))vec(Fi)ds +

θ∫

0

(e−BT
i (θ−s) ⊗ eAi(θ−s))vec(Fi)sds.

If property (4) of Section 1 is applied, Y (t) = matm×n(y(t)) is obtained as

Y (t) = Yi +
∫ θ

0
eAi(θ−s)Fie

−Bi(θ−s)ds +
∫ θ

0
eAi(θ−s)Gie

−Bi(θ−s)sds, (22)

where

Fi = matm×n(fi), Gi = matm×n(gi).

In order to compute the first integral in (22), let us consider

Ci =






Ai Fi

0n×m Bi




 ,
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and the exponential of matrix Ciθ,

eCiθ =






F
(i)
11 (θ) F

(i)
12 (θ)

0n×m F
(i)
22 (θ)




 .

Since
deCiθ

dθ
= Cie

Ciθ,

then






dF
(i)
11 (θ)

dθ

dF
(i)
12 (θ)

dθ

0n×m
dF

(i)
22 (θ)

dθ




 =






Ai Fi

0n×m Bi











F
(i)
11 (θ) F

(i)
12 (θ)

0n×m F
(i)
22 (θ)






=






AiF
(i)
11 (θ) AiF

(i)
12 (θ) + FiF

(i)
22 (θ)

0n×m BiF
(i)
22 (θ)




 .

Equating blocks (1,1), (1,2) and (2,2) of both members of the previous equa-
tion and considering that

eCiθ
∣
∣
∣
θ=0

= Im+n,

the following LDEs are obtained

dF
(i)
11 (θ)

dθ
= AiF

(i)
11 (θ), F

(i)
11 (0) = Im, (23)

dF
(i)
22 (θ)

dθ
= BiF

(i)
22 (θ), F

(i)
22 (0) = In, (24)

dF
(i)
12 (θ)

dθ
= AiF

(i)
12 (θ) + FiF

(i)
22 (θ), F

(i)
12 (0) = 0m×n. (25)

Solving (23) and (24), then

F
(i)
11 (θ) = eAiθ,

F
(i)
22 (θ) = eBiθ.

If we replace F
(i)
22 (θ) = eBiθ in (25), the following LDE is obtained

dF
(i)
12 (θ)

dθ
= AiF

(i)
12 (θ) + Fie

Biθ, F
(i)
12 (0) = 0m×n,

therefore

F
(i)
12 (θ) =

∫ θ

0
eAi(θ−s)Fie

Bisds.
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In order to compute the second integral that appears in expression (22), let

Di =










Ai Gi 0m×n

0n×m Bi In

0n×m 0n×n Bi










,

and exponential of matrix Diθ,

eDiθ =










H
(i)
11 (θ) H

(i)
12 (θ) H

(i)
13 (θ)

0n×m H
(i)
22 (θ) H

(i)
23 (θ)

0n×m 0n×n H
(i)
33 (θ)










. (26)

Since
deDiθ

dθ
= Die

Diθ,

then









dH
(i)
11 (θ)

dθ

dH
(i)
12 (θ)

dθ

dH
(i)
13 (θ)

dθ

0n×m
dH

(i)
22 (θ)

dθ

dH
(i)
23 (θ)

dθ

0n×m 0n×n
dH

(i)
33 (θ)

dθ










=










Ai Gi 0m×n

0n×m Bi In

0n×m 0n×n Bi



















H
(i)
11 (θ) H

(i)
12 (θ) H

(i)
13 (θ)

0n×m H
(i)
22 (θ) H

(i)
23 (θ)

0n×m 0n×n H
(i)
33 (θ)










=










AiH
(i)
11 (θ) AiH

(i)
12 (θ) + GiH

(i)
22 (θ) AiH

(i)
13 (θ) + GiH

(i)
23 (θ)

0n×m BiH
(i)
22 (θ) BiH

(i)
23 (θ) + H

(i)
33 (θ)

0n×m 0n×n BiH
(i)
33 (θ)










.

Equating the corresponding blocks of both members of the previous equation
and considering that

eDiθ
∣
∣
∣
θ=0

= Im+2n,

the following LDEs can be obtained

dH
(i)
11 (θ)

dθ
= AiH

(i)
11 (θ), H

(i)
11 (0) = Im, (27)
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dH
(i)
22 (θ)

dθ
= BiH

(i)
22 (θ), H

(i)
22 (0) = In, (28)

dH
(i)
33 (θ)

dθ
= BiH

(i)
33 (θ), H

(i)
33 (0) = In, (29)

dH
(i)
12 (θ)

dθ
= AiH

(i)
12 (θ) + GiH

(i)
22 (θ), H

(i)
12 (0) = 0m×n, (30)

dH
(i)
23 (θ)

dθ
= BiH

(i)
23 (θ) + H

(i)
33 (θ), H

(i)
23 (0) = 0n×n, (31)

dH
(i)
13 (θ)

dθ
= AiH

(i)
13 (θ) + GiH

(i)
23 (θ), H

(i)
13 (0) = 0m×n. (32)

The solutions of (27), (28) and (29) are

H
(i)
11 (θ) = eAiθ,

H
(i)
22 (θ) = eBiθ,

H
(i)
33 (θ) = eBiθ.

Since H
(i)
22 (θ) = eBiθ and H

(i)
33 (θ) = eBiθ, the solutions of (30) and (31) are

H
(i)
12 (θ) =

∫ θ

0
eAi(θ−s)Gie

Bisds,

H
(i)
23 (θ) = eBiθθ.

Finally, replacing H
(i)
23 (θ) = eBiθθ in (32), the following equation can be ob-

tained
dH

(i)
13 (θ)

dθ
= AiH

(i)
13 (θ) + Gie

Biθθ, H
(i)
13 (0) = 0m×n,

whose solution is

H
(i)
13 (θ) =

∫ θ

0
eAi(θ−s)Gie

Bissds. (33)

Considering the previous expressions and H
(i)
22 (θ) = F

(i)
22 (θ) = eBiθ,

Y (t) = Yi + [F
(i)
12 (θ) + H

(i)
13 (θ)][F

(i)
22 (θ)]−1.

If t is replaced by ti+1 in the previous expression, we obtain

Yi+1 = Yi + [F
(i)
12 (Δti) + H

(i)
13 (Δti)][F

(i)
22 (Δti)]

−1, (34)

where Δti = ti+1 − ti. �
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4.1 Algorithm based on Padé approximants with scale-squaring

The (s, t) Padé approximation to eA is defined by

Rst = [Dst(A)]−1Nst(A),

where

Nst(A) =
s∑

k=0

pkA
k, pk =

(s + t − k)!s!

(s + t)!k!(s − k)!
(35)

and

Dst(A) =
s∑

k=0

qkA
k, qk =

(−1)k(s + t − k)!s!

(s + t)!k!(s − k)!
. (36)

Non-singularity of Dst(A) is assured if s and t are large enough or if the
eigenvalues of A are negative. The problem with this method is that it only
provides good approaches near the origin [21, p.573].

Scaling-squaring method is one of the most widely used methods for comput-
ing the matrix exponential [22,23] and avoids that problem by exploiting the
equality

eA =
(
eA/2j

)2j

.

The idea is to choose j so that eA/2j
can be reliably and efficiently computed,

and then to form the matrix
(
eA/2j

)2j

by repeated squaring. One commonly
used criterion for choosing j is to select the smallest natural number such that
||A||/2j ≤ 1/2 [21, p. 573]. There are reasons for favoring the diagonal Padé
approximants (s = t), such as for example, their lower computational costs in
comparison to the non diagonal Padé approximants.

Algorithm 1 (exmdpa) computes the exponential of a matrix by means of a
scaling-squaring diagonal Padé approximation method.

Since diagonal blocks (1,1) and (2,2) of matrices eCiΔt and eDiΔt are equal, it
is possible to obtain a block-oriented algorithm based on Algorithm 1 which
allows to compute simultaneously F

(i)
12 (Δti) and H

(i)
13 (Δti) without explicitly

forming the exponential of matrices Ci and Di in expressions (20) and (21).
This is done in Algorithm 3. Algorithm 3 (dauvdreplpa) is a double preci-
sion auxiliary algorithm that computes the approximate solution at ti+1 of
time-varying DMRE (1) using a piecewise-linearized method based on Padé
approximants. Lines 4-7 of this algorithm avoid overflow problems by con-
trolling that the norms of ΔtiCi or ΔtiDi (see expressions (20) and (21)) are
lower than a prefixed constant M .The approximate computational cost of this

11



Algorithm 1 computes a matrix exponential by a scaling-squaring method
based on diagonal Padé approximants.

Function F = exmdpa(A, s)
Inputs: Matrix A ∈ Rn×n; order s ∈ N of the diagonal Padé approxima-
tion of the exponential function
Output: Matrix F = eA ∈ Rn×n

1: Compute the vectors of coefficients p and q (expressions (35) and (36)) of
the diagonal Padé approximants of the exponential function (p0 = 1, q0 =
1)

2: nor = ||A||∞
3: j = max(0, 1 + dlog2(nor)e)
4: A = A/2j

5: X = A
6: N = In + p1X
7: D = In + q1X
8: for k = 2 : s do
9: X = XA

10: N = N + pkX
11: D = D + qkX
12: end for
13: Solve DF = N for F using Gaussian elimination
14: for k = 1 : j do
15: F = F 2

16: end for

algorithm is (2m3 + 6m2n + 6mn2 + 4n3)s + (2m3 + 6m2n + 8mn2 + 6n3)j +
2
3
m3 + 2m2n + 10

3
n3 flops.

Algorithm 2 (dgevdreplpa) solves, for double precision general matrices, time-
varying DMREs by a piecewise-linearized method based on Padé approxi-
mants. The approximate cost by iteration of this algorithm is 8m2n+6mn2 +
cost(data) + cost(datad) + cost(Algorithm 3) flops.

Algorithms 2 and 3 can easily be adapted for time-invariant DMREs : it is
sufficient to evaluate the coefficient matrices Aij once, consider Ȧ22 = 0, and
therefore eliminate matrix G from these algorithms. The adapted algorithms
for time-invariant will be denoted as dauidreplpa and dgeidreplpa respec-
tively.

5 Numerical experiments

In this section the algorithms shown in the previous sections are compared
with the algorithms presented in [14]. The implementations were tested on

12



Algorithm 2 solves time-varying DMREs by means of a piecewise-linearized
method based on diagonal Padé approximants of the exponential function.

Function {Yi} = dgevdreplpa(data, datad, t0, X0, tf , Δt, s)
Inputs: Function data(τ) that computes the matrices A11(τ) ∈ Rn×n,
A12(τ) ∈ Rn×m, A21(τ) ∈ Rm×n and A22(τ) ∈ Rm×m, (τ ∈ R), of
time-varying DMRE (1); function datad(τ) that computes the derivatives
Ȧ11(τ) ∈ Rn×n, Ȧ12(τ) ∈ Rn×n, Ȧ21(τ) ∈ Rn×n and Ȧ22(τ) ∈ Rm×m (τ ∈
R) of the above matrices; initial condition (t0, X0), t0 ∈ R, X0 ∈ Rm×n;
final time tf ∈ R; step size Δt ∈ R; order s ∈ N of the diagonal Padé
approximation of the exponential function
Outputs: Solution matrices {Yi} (Yi ∈ Rm×n) at t0, t0 + Δt, t0 + 2Δt,. . .

1: Compute coefficient vectors p and q of (35) and (36) (p0 = q0 = 1 are not
computed)

2: l = d(tf − t0)/Δte
3: Y0 = X0

4: for i = 0 to l − 1 do
5: [Ȧ11, Ȧ12, Ȧ21, Ȧ22] = datad(ti)
6: Ȧ22 = Ȧ22 − YiȦ12

7: G = Ȧ21 + Ȧ22Yi

8: G = G − YiȦ11

9: [A11, A12, A21, A22] = data(ti)
10: A22 = A22 − YiA12

11: F = A21 + A22Yi

12: F = F − YiA11

13: A11 = A11 + A12Yi

14: Yi+1 = dauvdreplpa(A22, A11, F,G, Yi, Δt, p, q) . Algorithm 3
15: ti+1 = ti + Δt
16: end for

an Intel Core 2 Duo T9400 at 2.52 GHz with 4 GB main memory, using 7.7
(R2008b) MATLAB version. The implemented algorithms are available online
at [24].

To test the algorithms a set of six case studies were considered, all with well-
known solutions. For each case study, the values of parameters which offer
better accuracy and lower computational cost were determined. Three kinds
of tests were carried out varying Δt, tf and the dimension of the problem.

In all case studies, the following results are shown:

• Tables which contain the relative error

Er =
‖X − X∗‖∞

‖X‖∞
,

where X∗ is the computed solution and X is the analytic solution.
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Algorithm 3 computes the approximate solution of DMRE (1) at ti+1.

Function Yi+1 = dauvdreplpa(Ai, Bi, Fi, Gi, Yi, Δti, p, q)
Inputs: Matrices Ai ∈ Rm×m, Bi ∈ Rn×n, Fi ∈ Rm×n, Gi ∈ Rm×n and Yi ∈
Rm×n; step size Δti ∈ R; vectors p, q ∈ Rs which contain the coefficients
p1, p2, ..., ps, q1, q2, ..., qs of the (s, s) Padé approximation of the exponential
function
Output: Matrix Yi+1 ∈ Rm×n of (34)

1: M = log(realmax)/10 . realmax is the largest positive float point
number

2: norA = ||Ai||∞; norB = ||Bi||∞; norF = ||Fi||∞
3: nor = Δti max(norA + max(norF, norG), norB + 1)
4: if nor > M then
5: Yi+1 = dauvdreplce(Ai, Bi, Fi, Gi, Yi, Δti, p, q) . Algorithm 5 of [14]
6: return
7: end if
8: j = max(0, 1 + dlog2(nor)e); t = Δti

2j

9: Ai = tAi;Bi = tBi;Fi = tFi; Gi = tGi

10: X11 = Ai; X12 = Gi; Y12 = Fi

11: X22 = Bi; X13 = 0m×n; X23 = tIn

12: N11 = Im + p1X11; N12 = p1X12;M12 = p1Y12

13: N13 = p1X13; N22 = In + p1X22; N23 = p1X23

14: D11 = Im + q1X11; D12 = q1X12;P12 = q1Y12

15: D13 = q1X13; D22 = In + q1X22; D23 = q1X23

16: for k = 2 to s do
17: X11 = AiX11; X12 = AiX12 + GiX22; Y12 = AiY12 + FiX22

18: X13 = AiX13 + GiX23; X23 = BiX23 + sX22; X22 = BiX22

19: N11 = N11 + pkX11; N12 = N12 + pkX12; M12 = M12 + pkY12

20: N13 = N13 + pkX13; N22 = N22 + pkX22; N23 = N23 + pkX23

21: D11 = D11 + qkX11; D12 = D12 + qkX12; P12 = P12 + qkY12

22: D13 = D13 + qkX13; D22 = D22 + qkX22; D23 = D23 + qkX23

23: end for
24: Solve D11F11 = N11 for F11 using the LU decomposition
25: Solve D22F22 = N22 for F22 using the LU decomposition
26: Solve D11F12 = N12 − D12F22 for F12 LU decomposition
27: Solve D11G12 = M12 − P12F22 for G12 using the LU decomposition
28: Solve D22F23 = N23 − D23F22 for F23 using the LU decomposition
29: Solve D11F13 = N13−D12F23−D13F22 for F13 using the LU decomposition
30: for k = 1 to j do
31: F13 = F11F13 + F12F23 + F13F22

32: F12 = F11F12 + F12F22

33: G12 = F11G12 + G12F22; F23 = F22F23 + F23F22

34: F11 = F 2
11; F22 = F 2

22

35: end for
36: Solve Yi+1F22 = G12 + F13 for Yi+1 using the LU decomposition

14



• Tables/graphics with execution times (Te) in seconds.

Below is a short description of compared algorithms:

• dgevdreplpa (Algorithm 2) and dgeidreplpa: They solve time-varying and
time-invariant DMREs by the piecewise-linearized method based on the
diagonal Padé approximants presented in this paper.

• dgevdreplce (Algorithm 7 of [14]) and dgeidreplce: They solve time-
varying and time-invariant DMREs by the piecewise-linearized method based
on the Conmutant Equation explained in Section 3.

5.1 Case Study 1

The first time-invariant DMRE is taken from a two-point boundary value
problem [25]. This DMRE is defined for t ≥ 0 by the coefficient matrices

A11 =






0 0

−100 −1




 , A12 =






0 1

100 0




 ,

A21 =






0 1

10 0




 , A22 =






0 0

−10 −1




 ,

and the initial condition

X(0) =






0 0

−1 0




 .

If t is large, the solution of the previous DMRE is approximately equal to

X =






1 0.11

0 −0.1




 .

In this case study s=1 was used for dgeidreplpa and dgeidreplce. In the
only test done, final time tf = 30 was considered and Δt was varied between
0.1, 0.05 and 0.01. Tables 1 and 2 show the results.

Considering the same step size, the conclusions for this case study are:

• Both functions have similar accuracy.

15



Table 1
Case study 1: Relative error considering tf = 30 and Δt variable.

Er Δt=0.1 Δt=0.05 Δt=0.01

dgeidreplpa 3.243e-14 7.760e-15 8.588e-16

dgeidreplce 3.180e-14 6.671e-15 8.618e-16

Table 2
Case study 1: Execution time considering tf = 30 and Δt variable.

Te Δt=0.1 Δt=0.05 Δt=0.01

dgeidreplpa 0.034 0.058 0.293

dgeidreplce 0.197 0.364 1.817

• Relative errors decreased as Δt decreased.
• dgeidreplpa has the shorter execution time.

5.2 Case Study 2

The second case study [26,7] consists of the following time-invariant DMRE

Ẋ(t) = A21 + A22X(t) − X(t)A11 − X(t)A12X(t), 0 ≤ t ≤ tf ,

where A11 = 0n, A12 = A21 = αIn, (α > 0), A22 = 0n, and X0 ∈ Rn×n.

The exact solution is given by

X(t) = (α(X0 + In)eαt − α(X0 − In)e−αt)−1(α(X0 + In)eαt + α(X0 − In)e−αt).

For this case study we considered s=1 both for dgeidreplpa and dgeidreplce.
Table 3 and Figure 1 show execution times for α = 100 (stiff problem),
Δt = 0.1, tf = 1 and the dimension of problem equal to 50, 100, 150 and
200. For two implementations, the relative errors were 0.

Considering the same step size, the conclusions for this case study are:

• Both functions achieved very high accuracy.
• dgeidreplce execution times are longer than dgeidreplpa execution times.

5.3 Case Study 3

The third case study [27] consists of the following time-invariant DMRE

16



Table 3
Case study 2: Execution time considering Δt = 0.1, tf = 1 and n variable.

Te n=50 n=100 n=150 n=200

dgeidreplpa 0.984 3.989 8.990 16.394

dgeidreplce 2.941 11.709 26.293 47.282
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Fig. 1. Case study 2: Execution time considering Δt = 0.1, tf = 2 and variable
dimension of problem .

Ẋ(t) = αT2k + T2kX(t) + X(t)T2k − X(t)T2kX(t), t ≥ 0 ,

X(t0) = X0,

where X(t), T2k ∈ R2k×2k
and α ∈ R+.

The matrices T2k are generated recursively as follows:

T2 =





−1 1

α 1




 ,

T2k =





−T2k−1 T2k−1

αT2k−1 T2k−1




 , k ≥ 2.

The solution is given by

X(t) = I2k +
(α + 1)

ω
tanh(ωt)T2k ,

17



Table 4
Case study 3: Relative error (Er) considering Δt = 0.1, tf = 5 and m = n variable.

Er n=32 n=64 n=128 n=256

dgeidreplpa 1.185e-16 1.999e-16 3.357e-18 7.297e-16

dgeidreplce 1.185e-16 1.999e-16 3.357e-18 7.297e-16

Table 5
Case study 3: Execution time (Te) considering Δt = 0.1, tf = 5 and m = n variable.

Te n=32 n=64 n=128 n=256

dgeidreplpa 4.894 18.221 67.976 247.246

dgeidreplce 4.925 18.023 67.663 248.415
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Fig. 2. Case study 3: Execution time considering tf = 5, Δt = 0.1 and n variable.

where ω = (α + 1)
k+1
2 .

The parameters of problem were α = 100 (stiff problem) and X(0) = I. The
order of Padé approximants for the two implementations was s = 2. In tests
tf = 5 was considered, varying the dimension of the problem between 32, 64,
128 and 256, and step sizes between 0.1, 0.05, 0.01, 0.005 and 0.001. Both
functions achieved smaller relative error for Δt = 0.1. Tables 4 and 5 and
Figure 2 show the results for Δt = 0.1. In this case study dgeidreplpa and
dgeidreplce achieved very high accuracy for Δt = 0.1 with similar execution
times.
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Table 6
Case study 4: Relative error (Er) with n = 1, Δt = 0.1 and tf variable.

Er tf=10 tf=20 tf=30 tf=40 tf=50

dgevdreplpa 4.999e-7 2.500e-7 1.667e-7 1.250e-7 1.000e-7

dgevdreplce 4.999e-7 2.500e-7 1.667e-7 1.250e-7 1.000e-7

Table 7
Case study 4: Execution time (Te) with n = 1, Δt = 0.1 and tf variable.

Te tf=10 tf=20 tf=30 tf=40 tf=50

dgevdreplpa 0.063 0.121 0.178 0.235 0.293

dgevdreplce 0.061 0.116 0.173 0.226 0.283

5.4 Case Study 4

This scalar time-varying DMRE is a widely used for testing stiff problems,
known as the “knee problem” ([28,7]), defined as

ẋ = 1 −
t

ε
x +

x2

ε
,−1 ≤ t ≤ 1, x(−1) = −1, 0 < ε << 1,

associated to the coefficient matrix

A(t) =






a11(t) a12(t)

a21(t) a22(t)




 =






t/ε −1/ε

0.5 0




 , n = m = 1.

The reduced solution x ∼= t is stable before 0 and x ∼= 0 is stable past it.

In the tests done ε = 10−5 (stiff problem) and the same order of the diagonal
Padé approximants (s = 1) was considered. Both functions achieved smaller
relative error for Δt = 0.1. Tables 6 and 7 and Figure 3 show relative errors and
execution times for Δt = 0.1 and tf variable. In this case study, dgevdreplpa
and dgevdreplce achieved smaller relative error for Δt = 0.1, with similar
execution times.

5.5 Case study 5

This stiff time-varying DMRE [29,7] comes from a stiff two-point boundary
value problem. This DMRE is defined as
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Fig. 3. Case study 4: Execution time considering Δt = 0.001 and tf variable.

A11(t) =





−t/2ε 0

0 0




 , A12(t) =






1/ε 0

0 1/ε




 ,

A21(t) =






1/2 1

0 1




 , A22(t) =






0 t/2ε

0 0




 ,

where t ≥ −1, 0 < ε << 1. The initial condition is

X(−1) =






0 0

0 0




 .

The solution has an initial layer and then it approaches

X(t) =





−ε/t (

√
ε + 1)/(

√
ε − 1)

0
√

ε




 .

For t away from 0, there is a smooth transition around the origin and then

X(t) ∼=






t/2
√

ε

0
√

ε




 .

In the tests ε = 10−5 (stiff problem), and the same order of the diagonal Padé
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Table 8
Case study 5: Relative error (Er) with n = 2, Δt = 0.1 and tf variable.

Er tf=10 tf=20 tf=30 tf=40 tf=50

dgevdreplpa 8.668e-20 1.776e-16 2.891e-20 2.168e-20 1.421e-16

dgevdreplce 8.668e-20 1.776e-16 2.891e-20 2.168e-20 1.421e-16

Table 9
Case study 5: Execution time (Te) with n = 2, Δt = 0.1 and tf variable.

Te tf=10 tf=20 tf=30 tf=40 tf=50

dgevdreplpa 0.178 0.343 0.508 0.672 0.835

dgevdreplce 0.177 0.342 0.502 0.667 0.829
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Fig. 4. Case study 5: Execution time considering Δt = 0.1 and tf variable.

approximants (s = 1) was considered. In the tests tf was variable with step
size Δt = 0.1. Tables 8 and 9 and Figure 4 show that both implementations
achieved high accuracy with a similar execution time.

5.6 Case study 6

This equation corresponds to a time-varying DMRE [27] defined as

Ẋ(t) = −X(t)T2k(t) + T2k(t)X(t) − b(t)X2(t) − b(t)I2k , X(0) = I2k ,

where X(t) ∈ R2k
, and T2k ∈ R2k

are generated recursively as follows
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Table 10
Case study 6: Relative error (Er) considering n = 8, tf = 5 and Δt variable.

Er Δt=0.1 Δt=0.05 Δt=0.01 Δt=0.005 Δt=0.001

dgevdreplpa 1.209e-02 4.014e-03 1.958e-04 5.000e-05 2.034e-06

dgevdreplce 1.620e-02 4.134e-03 1.967e-04 5.006e-05 2.035e-06

Table 11
Case study 6: Execution time (Te) considering n = 8, tf = 5 and Δt variable.

Te Δt=0.1 Δt=0.05 Δt=0.01 Δt=0.005 Δt=0.001

dgevdreplpa 0.021 0.043 0.228 0.418 2.092

dgevdreplce 0.328 0.668 3.414 6.748 33.389

Table 12
Case Study 6: Relative error (Er) considering Δt = 0.01, tf = 5 and n variable.

Er n=8 n=16 n=32 n=64

dgevdreplpa 1.958e-04 1.959e-04 1.962e-04 1.970e-04

dgevdreplce 1.967e-04 1.983e-04 2.014e-04 2.068e-04

T2 =






a(t) b(t)

−b(t) a(t)




 ,

T2k = T2 ⊗ I2k−1 + I2 ⊗ T2k−1 , k ≥ 2,

where a(t) = cos t and b(t) = sin t. The analytic solution is

X(t) =
1 + tan(cos t − 1)

1 − tan(cos t − 1)
I2k .

In this case study an order of Padé approximants s = 2 was selected. Tables 10
and 11 show the results for n = m = 16 (k=4), tf=1 and Δt variable. Tables
12 and 13 and Figure 5 show the results for Δt=0.01, tf = 5 and dimension
of problem variable. The following conclusions can be emphasized:

• Considering the same step size, both implementations have similar accuracy,
but dgevdreplpa has the shorter execution time.

• For both implementations, relative error decreased as Δt decreased.
• As dimension of problem is increased dgevdreplce execution time increased

quicker than dgevdreplpa execution time: For n = 8 the execution time
ratio is 3.433

0.212
∼= 16.193 and for n = 64 is 285.013

2.381
∼= 119.703.
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Table 13
Case Study 6: Execution time (Te) considering Δt = 0.01, tf = 5 and n variable.

Te n=8 n=16 n=32 n=64

dgevdreplpa 0.212 0.311 0.621 2.381

dgevdreplce 3.433 19.593 54.235 285.013
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Fig. 5. Case Study 6: Execution time considering tf = 5, Δt=0.01 and variable
dimension of problem.

Table 14
Comparison of execution times for the six case studies: the symbols +, ∼= and −
indicate longer, similar and shorter execution time. The symbols S and NS indicate
stiff and non-stiff problem.

Case Study 1: NS 2: S 3: S 4: S 5: S 6: NS

dgeidreplpa-dgevdreplpa + + ∼= ∼= ∼= +

dgeidreplce-dgevdreplce − − ∼= ∼= ∼= −

5.7 Summary of results

Table 14 show a comparison of execution times for the six case studies ana-
lyzed, when the implementations have similar accuracy. For each case study,
problem stiffness (S= stiff problem, NS=non-stiff problem) is indicated.

• In general, for the same step size, the relative errors of all implementations
were similar.

• In three case studies, dgeidreplpa-dgevdreplpa execution times were lower
than dgeidreplce-dgevdreplce execution times.
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• All implementations showed a good behavior in stiff problems.

6 Conclusions and future work

In this paper a method for solving DMREs has been developed. This method
is based on Theorem 3 in Section 4 which allows an efficient computation of
the integral that appears in the piecewise-linearized methods.

Two MATLAB implementations have been developed based on the piecewise-
linearized method developed in Section 4. In order to verify the benefits of
these implementations, numerous tests were made on six case studies, com-
paring, under equal conditions all implementations.

Possible future lines of research are:

• To develop other methods to solve DMREs based on the piecewise-linearized
approach. A possibility consists in computing the product of a matrix ex-
ponential by a vector using Krylov subspaces (this case will be suitable for
higher dimension problems).

• To include adaptive selection of the step size in the algorithms developed
in this paper.

• To adapt the implementations for special DMREs such as DMREs with
sparse coefficient matrices.
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[18] C. M. Garćıa, Métodos de linealización para la resolución numérica de
ecuaciones diferenciales, Ph.D. thesis, Departamento de Lenguajes y Ciencias
de la Computación, Universidad de Málaga (1998).

[19] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, London, 1991.
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Physics Communications(To appear).

[21] G. H. Golub, C. V. Loan, Matrix Computations, 3rd Edition, Johns Hopkins
Studies in Mathematical Sciences, The Johns Hopkins University Press, 1996.

25



[22] C. B. Moler, C. V. Loan, Nineteen dubious ways to compute the exponential of
a matrix, twenty-five years later*, SIAM Review 45 (2003) 3–49.

[23] N. J. Higham, The scaling and squaring method for the matrix exponential
revisited, SIAM J. Matrix Anal. Appl. 26 (4) (2005) 1179–1193.

[24] http://www.grycap.upv.es/dmretoolbox.

[25] S. Pruess, Interpolation schemes for collocation solution of TPBVPs, SIAM
Journal on Scientific and Statistical Computing 7 (1986) 322–333.

[26] G. H. Meyer, Initial Value Methods for Boundary Value Problems, Academic
Press, New York, 1973.

[27] C. H. Choi, Time-varying Riccati differential equations with known analytic
solutions, IEEE Trans. Automat. Contr. 37 (1992) 642–645.
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