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Abstract

SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the
masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write
model files for CalcHep/CompHep or FeynArts/FormCalc. In addition, the second version of SARAH can
derive the renormalization group equations for the gauge couplings, parameters of the superpotential and
soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies
and the one-loop corrections to the tadpoles. SARAH can handle all N = 1 SUSY models whose gauge sector
is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary
number of chiral superfields transforming as any irreducible representation with respect to the gauge groups.
To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and
the field rotations to mass eigenstates.
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1. Introduction

The LHC has started its work and will hopefully find soon the first clues for physics beyond the stan-
dard model (SM). Supersymmetry (SUSY) is the most prominent and well studied extension of the SM.
However, most studies were done in the context of the Minimal Supersymmetric Standard Model (MSSM)
[1–6]. Therefore, many computer tools can handle the MSSM out of the box but it demands some effort to
implement new models. Also the analytical expressions for all possible interactions, renormalization group
equations or self-energies for the MSSM are nicely presented in literature (see e.g. [7–10]). Of course, this
is not the case for all possible extensions of the MSSM. The Mathematica package SARAH is supposed to
close this gap. The first version [11] already allowed a comprehensive analysis of supersymmetric models by
calculating the tree-level masses and tadpole equations as well as all interactions of the model. The obtained
information can either be written in LATEX files or used to generate model files for CalcHep/CompHep [14]
and FeynArts/FormCalc [13]. To calculate all of these results, only the minimal amount of information
about a model is needed: the gauge sector, the particle content, the superpotential and the field rotations.
The new version of SARAH goes one step further. First, the set of possible models which can be handled has
been significantly extended. SARAH is no longer restricted to chiral superfields in the fundamental represen-
tation, but can work with any irreducible representation of SU(N). Second, SARAH provides now functions
for the calculation of the one-loop masses and the renormalization group equations (RGEs) at one- and two-
loop level: it calculates the anomalous dimensions for all chiral superfields and the β-functions for all gauge
couplings, superpotential parameters, soft-breaking parameters and vacuum expectation values (VEVs).
Furthermore, it calculates the one-loop self-energies of all fields as well as for the one-loop corrections to
the tadpoles. This information can be easily used to get the radiative corrections to the masses at one-loop
level.
Before we discuss the new features of SARAH 2, we give a brief, general introduction to SARAH: in sec. 2 we
explain the installation and the first evaluation of a model. Afterwards, in sec. 3 we show the main features
for obtaining tree-level results and producing model files for CalcHep/CompHep or FeynArts/FormCalc. In
sec. 4, we discuss the possibilities to derive one- and two-loop RGEs, before we show in sec. 5 how to cal-
culate the one-loop corrections to one- and two-point functions. Finally, we explain how to implement new
models in SARAH in sec. 6.
The appendix contains supplementary information about the check for gauge anomalies (Appendix A), the
calculation of the Lagrangian in component fields (Appendix B) and the derivation of gauge group factors
(Appendix C). In addition, we list all formulas used for the calculation of the RGEs and self-energies in
Appendix D, show our conventions for the MSSM in Appendix E and Appendix F, before we summarize
the changes in comparison to the first version of SARAH in Appendix G.

2. Download, installation and first evaluation

SARAH can be downloaded from

http://theorie.physik.uni-wuerzburg.de/~fnstaub/sarah.html

The package should be extracted to the application directory of Mathematica. This directory under Linux
in

home/user/.Mathematica/Applications/

and

Mathematica-Directory\AddOns\Applications\

in Windows.
Initially, the package itself consists of two directories: the directory Package contains all Mathematica
package files, while in the directory Models the definitions of the different models are located. During the
work, a third directory called Output is generated by SARAH. The results of different calculations as well as
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the model files for the diagram calculators are written to this directory. A fourth directory LaTeX contains
LATEX packages which are needed for the appropriate output.
A comprehensive manual (sarah.pdf) is included in the package archive and can also be found on the web
page and on arXiv [12]. In addition, a file (models.pdf) with information about all models delivered with
the package is part of the archive. Furthermore, a file with a short introduction to the main commands is
included (Readme.txt) as well as an example for the usage (Example.nb).
After the installation, the package is loaded in Mathematica via

<<"sarah-2.0/SARAH.m"

and a supersymmetric model is initialized by

Start["Modelname"];

Here, Modelname is the name of the corresponding model file, e.g. for the minimal supersymmetric standard
model the command would read

Start["MSSM"];

or for the next-to-minimal supersymmetric model in CKM basis

Start["NMSSM","CKM"];

is used. In the following, we refer for all given examples the model file of the MSSM. Our conventions
concerning the fields definitions and rotations in the MSSM are given in Appendix E. Even if the meaning
of most symbols used in the examples should be intuitively clear, we list the internal names for parameters
and particles in Appendix F. In addition, we give in Appendix G an overview about the main changes
happened in the second version of SARAH in comparison to the first version presented in [11].

3. Tree-level calculations

When a model is initialized using the Start command, this model is first checked for gauge anomalies
and charge conservation. If not all checks are fulfilled, a warning is printed. More information about the
different checks is given in Appendix A. Afterwards, the calculation of the complete Lagrangian at tree-
level starts. The performed steps are presented in Appendix B. When this calculation is finished, several
tree-level results can easily be obtained.

3.1. Particle content

To get an overview of all particles of the different eigenstates,

Particles[Eigenstates]

is used. This can be, for instance, Particles[GaugeES] or Particles[EWSB] for the gauge eigenstates or
the eigenstates after electroweak symmetry breaking (EWSB), respectively. The output is a list with the
following information about each particle: (i) name of the particle, (ii) type of the particle (F for fermion, S
for scalar, V for vector boson, G for ghosts, A for auxiliary field), (iii) number of first generation, (iv) number
of last generation, (v) indices of the particle. Fermions are listed using Weyl and not Dirac spinors. For
instance, the entry for the gauge eigenstates of the left-down quark reads

{FdL, 1, 3, F, {generation, color}}
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3.2. Masses and tadpole equations

The masses and tadpole equations are derived automatically during the evaluation of a model. In this
regard, the masses or the entries of a mass matrix are calculated as second derivative of the Lagrangian

mij = − ∂2L

∂φi∂φ∗j
(1)

with respect to the considered fields φi. The tadpoles Ti are the first derivative of the scalar potential with
respect to the different VEVs vi

∂V

∂vi
≡ Ti . (2)

The user has access to both information by using the command MassMatrix[Particle] for the mass matrix
of Particle and TadpoleEquation[VEV] for the tadpole equation corresponding to the vacuum expectation
value VEV.

Examples.

1. Higgs mass matrix. The (1, 2)-entry of the mass matrix of the scalar Higgs in the MSSM is saved
in MassMatrix[hh][[1,2]]. This returns

-(g1^2*vd*vu)/4 - (g2^2*vd*vu)/4 - B[\[Mu]]/2 -conj[B[\[Mu]]]/2

2. Squark mass matrix. In the same way, the (1,1)-entry of the 6 × 6 down squark mass matrix is
obtained by MassMatrix[Sd][[1,1]]. The output is

(-3*g2^2*(vd^2 + vu^2) + g1^2*(vu^2 - vd^2) + 24*mq2[1,1] +

12*vd^2*sum[j1, 1, 3,conj[Yd[j1, 1]]*Yd[j1, 1]])/24

3. Squark mass matrix with generation indices as variable. To get the result for the 2× 2 down
squark matrix without the explicit insertion of generation indices, MassMatrixUnexpanded[Sd][[1,1]]
is used. The output is

(Delta[cm1,cn1]*(-((g1^2+3*g2^2)*(vd^2-vu^2)*Delta[gm1,gn1])

+ vd^2*sum[j1,1,3,conj[Yd[j1,gn1]]*Yd[j1,gm1]] + 12*(2*mq2[gm1,gn1] )))/24

4. Tadpole equation. The tadpole equation corresponding to ∂V
∂vd

= 0 is obtained by TadpoleEquation[vd]
and reads

(8*mHd2*vd + g1^2*vd^3 + g2^2*vd^3 - g1^2*vd*vu^2 - g2^2*vd*vu^2 - 4*vu*B[\[Mu]] +

( 8*vd*\[Mu]*conj[\[Mu]] - 4*vu*conj[B[\[Mu]]])/8 == 0

3.3. Vertices

The vertices are calculated as partial derivatives of the Lagrangian with respect to the involved fields
and applying afterwards the vacuum conditions. The vertices can be calculated in two ways. Either it is
possible to calculate the vertices for a specific choice of external particles or to calculate all vertices of the
complete model at once. The former task is evolved by

Vertex[{Particles},Options];

The argument of this function is a list with the external particles. The options define the set of eigenstates
(Eigenstates → name) and usage of relations among the parameters (UseDependences → True/False).
In the result, the coefficients corresponding to different Lorentz structures are separately listed. If possible,
the expressions are simplified by using the unitarity of rotation matrices, the properties of generators and,
if defined, simplifying assumptions about parameters.
All vertices for a set of eigenstates are calculated at once by

MakeVertexList[Eigenstates, Options];
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This searches for all possible interactions present in the Lagrangian and creates lists for the generic sub-
classes of interactions, e.g. VertexList[FFS] or VertexList[SSVV] for all two-fermion-one-scalar in-
teractions and all two-scalar-two-vector-boson interactions, respectively. If effective theories are consid-
ered, six-particle interaction (SixParticleInteractions → False) or all higher-dimensional operators
(effectiveOperators → False) can be switched off during this calculation. Those interactions slow down
the computation and they are sometimes not needed.

Examples.

1. One possible Lorentz structure. Vertex[{hh,Ah,Z}] leads to the vertex of scalar and a pseudo
scalar Higgs with a Z-boson

{{hh[{gt1}], Ah[{gt2}], VZ[{lt3}]},

{((ZA[gt2,1]*ZH[gt1,1] - ZA[gt2,2]*ZH[gt1,2])*(g2*Cos[ThetaW]+g1*Sin[ThetaW]))/2,

Mom[Ah[{gt2}], lt3] - Mom[hh[{gt1}],lt3]}}

The output is divided in two parts. First, the involved particles are given, second, the value of the
vertex is given. This second part is again split in two parts: one is the Lorentz independent part and
the second part defines the transformation under the Lorentz group.

2. Several possible Lorentz structures. Vertex[{bar[Fd],Fd,hh}] is the interaction between two
d-quarks and a Higgs:

{{bar[Fd[{gt1, ct1}]], Fd[{gt2, ct2}], hh[{gt3}]},

{((-I)*Delta[ct1,ct2]*Delta[gt1,gt2]*ZH[gt3,2]*Yd[gt2,gt1])/Sqrt[2],PL},

{((-I)*Delta[ct1,ct2]*Delta[gt1,gt2]*ZH[gt3,2]*Yd[gt1,gt2])/Sqrt[2],PR}}

Obviously, there are three parts: one for the involved particles and two for the different Lorentz
structures. PL and PR are the polarization projectors PL = 1

2 (1− γ5), PR = 1
2 (1 + γ5).

3. Changing the considered eigenstates and using Weyl fermions It is also possible to calculate
the vertices for Weyl fermions and/or to consider the gauge eigenstates. For instance,

Vertex[{fB, FdL, conj[SdL]}, Eigenstates -> GaugeES]

gives

{{fB, FdL[{gt2, ct2}], conj[SdL[{gt3, ct3}]]},

{((-I/3)*g1*Delta[ct2, ct3]*Delta[gt2, gt3])/Sqrt[2],1}}

4. Using dependences. With Vertex[{conj[Se], Se, VP}, UseDependences -> True] g1 and g2
are replaced by the electric charge e. This and similar relations can be defined in the parameter file
(see sec. 6.2.2).

{{conj[Se[{gt1}]], Se[{gt2}], VP[{lt3}]},

{(-I)*e*Delta[gt1,gt2],-Mom[conj[Se[{gt1}]],lt3]+Mom[Se[{gt2}],lt3]}}

5. Fixing the generations. It is possible to give the indices of the particles already as input

Vertex[{hh[{1}], hh[{1}], Ah[{2}], Ah[{2}]}]

leads to

{{hh[{1}], hh[{1}], Ah[{2}], Ah[{2}]},

{(-I/4)*(g1^2 + g2^2)*Cos[2*\[Alpha]]*Cos[2*\[Beta]], 1}}

Obviously, the given definition of the mixing matrices for the Higgs fields was automatically inserted.
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3.4. Output for diagram calculators and LATEX

CalcHep/CompHep. CalcHep and CompHep are well known and widely used programs for calculating cross
sections and decay widths via a diagrammatic approach at tree-level. The model files produced by SARAH

support both Feynman gauge and unitarity gauge. Furthermore, SARAH can split interactions between four
colored particles in a way that they can be handled by CalcHep/CompHep and also models with CP violation
are possible. The model files for CalcHep/CompHep are created by

MakeCHep[Options];

The options define, whether the Feynman gauge should be included (FeynmanGauge → True/False) and
if CP violation should be considered (CPViolation → True). Also the splitting of specific four-scalar
interactions can be suppressed as long as they are not colored (NoSplitting → list of fields). In addition,
the running of the strong coupling constant can be included as it is usually done in the standard CalcHep

files (UseRunningCoupling → True).

FeynArts/FormCalc. FeynArts is a Mathematica package for creating Feynman diagrams and the corre-
sponding amplitudes. This information is afterwards used by FormCalc to simplify the amplitudes and
square them by using FORM. In contrast to CalcHep/CompHep FeynArts/FormCalc can deal also with loop
diagrams. Beside the standard model file for FeynArts, SARAH writes a second file including supplementary
information about the model: all defined dependences, the numerical values for the parameters and masses,
if they are available, and special abbreviations to speed up the calculations with FormCalc. The model files
are generated via

MakeFeynArts;

LATEX. The generated LATEX files include all information about a model for one set of eigenstates: particle
content, mixing matrices, tadpole equations, RGEs, one-loop self-energies and one-loop corrections to the
tadpoles as well as all interactions. The LATEX output using the standard functions of Mathematica is not
really readable when dealing with long expressions. Therefore, special functions were developed for a better
typesetting. For each vertex, the corresponding Feynman diagram is automatically drawn using FeynMF [15].
In addition, a batch file for Linux and for Windows are written by SARAH to simplify the compilation of the
different LATEX files including all Feynman diagrams. The command for producing the LATEX output is

MakeTeX[Options];

One option is to disable the output of the Feynman diagrams (FeynmanDiagrams → False), another to use
a shorter notation for the interactions (ShortForm → True).

4. Renormalization Group Equations

SARAH calculates the RGEs for the parameters of the superpotential, the soft-breaking terms, the gauge
couplings at one- and two-loop level and the VEVs. This is done by using the generic formulas of [9, 17–19]
which we have summarized in Appendix D.1.
The calculation of the RGEs can be started after the initialization of a model via

CalcRGEs[Options];

Options. The options offer a possibility to disable the calculation of the two-loop RGEs (TwoLoop →
False). Another option is to handle the number of generations of specific chiral superfields as variable
(VariableGenerations → list of fields). This might be used for models which include chiral superfields
much heavier than the SUSY scale to make the dependence on these fields obvious. Normally, the β-function
are written in a compact form using matrix multiplication, as explained below. This can be switched off by
the option NoMatrixMultiplication → True. The last option offers the possibility to read the results of
former calculations (ReadLists → True)
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GUT normalization. The gauge couplings of abelian gauge groups are often normalized at the GUT scale.
Therefore, it is possible to define for each U(1) gauge coupling the GUT-normalization by the corresponding
entry in the parameters file. See sec. 6.2.2 for more information.

Results. The RGEs are saved in different arrays in Mathematica whose names are given in brackets: anoma-
lous dimensions of all superfields (Gij), trilinear superpotential parameters (BetaYijk), bilinear superpoten-
tial parameters (BetaMuij), linear superpotential parameters (BetaLi), trilinear soft-breaking parameters
(BetaTijk), bilinear soft-breaking parameters (BetaBij), linear soft-breaking parameters (BetaLSi), scalar
soft-breaking masses (Betam2ij), gaugino soft-breaking masses (BetaMi), gauge couplings (BetaGauge) and
VEVs (BetaVEVs).
All entries of these arrays are three-dimensional: the first entry gives the name of the parameter, the second
one the one-loop β-function and the third one the two-loop β-function. Furthermore, the results for the
RGEs of the scalar masses are simplified by using abbreviations for often appearing traces (see also [9]).
The definition of the traces is saved in the array TraceAbbr. In TraceAbbr[[1]] all abbreviations needed
for the one-loop RGEs are given, and in TraceAbbr[[2]] those are for the two-loop.
The results are also saved as text files in the directory

PackageDirectory/Output/Modelname/RGEs/

Matrix Multiplication. Generally, the results contain sums over the generation indices of the particles in
the loop. SARAH always tries to write them as matrix multiplications, in order to shorten the expressions.
Therefore, new symbols are introduced:

• MatMul[A,B,C,...][i,j]: (ABC . . . )i,j . Matrix multiplication, also used for vector-matrix and
vector-vector multiplication.

• trace[A,B,C,...]: Tr(ABC . . . ). Trace of a matrix or product of matrices.

• Adj[M]: M †. Adjoint of a matrix.

• Tp[M]: MT . Transposed of a matrix.

As already mentioned, the usage of matrix multiplication can be switched off with the corresponding option.
In addition, it is automatically switched off, if the model contains a parameter with three generation indices.

Examples.

1. β-function of Yukawa couplings. The Yukawa couplings of the MSSM are saved in BetaYijk. The
first entry consists of

BetaYijk[[1,1]]: Ye[i1,i2] ,

i.e. this entry contains the β-functions for the electron Yukawa coupling. The corresponding one-loop
β-function is

BetaYijk[[1,2]]:

(-9*g1^2*Ye[i1,i2])/5-3*g2^2*Ye[i1,i2]+3*trace[Yd,Adj[Yd]]*Ye[i1,i2]+

trace[Ye,Adj[Ye]]*Ye[i1, i2]+3*MatMul[Ye,Adj[Ye],Ye][i1, i2]

The two-loop β-function is saved in BetaYijk[[1,3]] but we skip it here because of its length.

2. β-function of soft-breaking masses and abbreviations for traces. The first entry of Betam2ij
corresponds to the soft-breaking mass of the selectron

Betam2ij[[1,1]]: me2[i1,i2]

and the one-loop β-function is saved in Betam2ij[[1,2]]:
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(-24*g1^2*MassB*conj[MassB]+10*g1^2*Tr1[1])*Kronecker[i1,i2]/5 +

4*mHd2*MatMul[Ye,Adj[Ye]][i1,i2]+4*MatMul[T[Ye],Adj[T[Ye]]][i1,i2] +

2*MatMul[me2,Ye,Adj[Ye]][i1,i2]+4*MatMul[Ye, ml2, Adj[Ye]][i1,i2] +

2*MatMul[Ye,Adj[Ye],me2][i1,i2]

The definition of the element Tr1[1] is saved in TraceAbbr[[1,1]]:

{Tr1[1], -mHd2 + mHu2 + trace[md2] + trace[me2] - trace[ml2] +

trace[mq2] - 2*trace[mu2]}

3. Number of generations as variable. With

CalcRGEs[VariableGenerations -> {q}]

the number of generations of the left-quark superfield is handled as variable. Therefore, the one-loop
β-function of the hypercharge couplings reads

(63*g1^3)/10 + (g1^3*NumberGenerations[q])/10

4. No matrix multiplication. Using matrix multiplication can be switched off by

CalcRGEs[NoMatrixMultiplication -> True]

The one-loop β-function for the electron Yukawa coupling is now written as

sum[j2,1,3,sum[j1,1,3,conj[Yd[j2,j1]]*Yu[i1,j1]]*Yd[j2,i2]] +

2*sum[j2,1,3,sum[j1,1,3,conj[Yu[j1,j2]]*Yu[j1,i2]]*Yu[i1,j2]] +

sum[j2,1,3,sum[j1,1,3,conj[Yu[j2,j1]]*Yu[i1,j1]]*Yu[j2,i2]] +

(3*sum[j2,1,3,sum[j1,1,3,conj[Yu[j1,j2]]*Yu[j1,j2]]]*Yu[i1,i2])/2 +

(3*sum[j2,1,3,sum[j1,1,3,conj[Yu[j2,j1]]*Yu[j2,j1]]]*Yu[i1,i2])/2 -

(13*g1^2*Yu[i1,i2])/15-3*g2^2*Yu[i1,i2]-(16*g3^2*Yu[i1,i2])/3

5. Loop Corrections

SARAH calculates the analytical expressions for the one-loop corrections to the tadpoles and the self energy
of all particles. These calculations are performed in DR-scheme and in the ’t Hooft gauge. In principle, this
is a generalization of the calculations for the MSSM presented in [10]. The command to start the calculation
is

CalcLoopCorrections[Eigenstates];

As usual, Eigenstates can in the case of the MSSM either be GaugeES for the gauge eigenstates or EWSB
for the eigenstates after EWSB. If the vertices for the given set of eigenstates were not calculated before,
this is done before the calculation of the loop contributions begins.

Conventions. Using the conventions of [10], the results will contain the Passarino Veltman integrals listed
in Appendix D.2. The involved couplings are abbreviated by

• Cp[p1,p2,p3] and Cp[p1,p2,p3,p4] for non-chiral, three- and four-point interactions involving the
particles p1 - p4.

• Cp[p1,p2,p3][PL] and Cp[p1,p2,p3][PR] for chiral, three-point interactions involving the fields p1
- p3.

The self-energies can be used for calculating the radiative corrections to masses and mass matrices, respec-
tively. We have summarized the needed formulas for this purpose in Appendix D.2.3. For calculating the
loop corrections to a mass matrix, it is convenient to use unrotated, external fields, while the fields in the
loop are rotated. Therefore, SARAH adds to the symbols of the external particle in the interaction an U for
’unrotated’, e.g. Sd → USd. The mixing matrix associated to this field in the vertex has to be replaced by
the identity matrix when calculating the correction to the mass matrix.
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Results. The results for the loop corrections are saved in two different ways. First as list containing the dif-
ferent loop contribution for each particle. Every entry includes the following information: internal particles,
generic type of the diagram, numerical factors coming from symmetry considerations and possible charges
in the loop. The second output is a sum of all contributions, where the generic results of Appendix D.2 have
already been inserted. This can afterwards be written as pdf file using the LATEX output of SARAH.
The results for the self-energies are saved in SelfEnergy1LoopList as list of the contributions and in
SelfEnergy1LoopSum written as sums. The last one is a two-dimensional array. The first column gives the
name of the external particle, the entry in the second column depends on the type of the field. For scalars
the one-loop self energy Π(p2) is given, for fermions the one-loop self-energies for the different polarizations
(ΣL(p2),ΣR(p2), ΣS(p2)) are written in a three-dimensional array, while for vector bosons the transversal
part of the self energy ΠT (p2) is shown.
Also the results for corrections to the tadpoles are saved twice: in Tadpoles1LoopSum[Eigenstates] ex-
plicitly written as sum and in Tadpoles1LoopList[Eigenstates] as list of the different contributions.

Examples.

1. One-loop tadpoles. The radiative correction of the tadpoles due to a chargino loop is saved in

Tadpoles1LoopList[EWSB][[1]];

and reads

{bar[Cha],Cp[Uhh[{gO1}],bar[Cha[{gI1}]],Cha[{gI1}]],FFS,1,1/2}

The meaning of the different entries is: (i) a chargino (Cha) is in the loop, (ii) the vertex with an
external, unrotated Higgs (Uhh) with generation index gO1 and two charginos with index gI1 is needed,
(iii) the generic type of the diagram is FFS, (iv) the charge factor is 1, (v) the diagram is weighted by
a factor 1

2 with respect to the generic expression (see Appendix D.2).
The corresponding term in Tadpoles1LoopSum[EWSB] is

4*sum[gI1,1,2, A0[Mass[bar[Cha[{gI1}]]]^2]*

Cp[phid,bar[Cha[{gI1}]],Cha[{gI1}]]*Mass[Cha[{gI1}]]]

2. One-loop self-energies.
(a) The correction to the down squark matrix due to a four-point interaction with a pseudo scalar

Higgs is saved in SelfEnergy1LoopList[EWSB][[1, 12]] and reads
{Ah,Cp[conj[USd[{gO1}]],USd[{gO2}],Ah[{gI1}],Ah[{gI1}]],SSSS,1,1/2}

This has the same meaning as the term
-sum[gI1,1,2,A0[Mass[Ah[{gI1}]]^2]*

Cp[conj[USd[{gO1}]],USd[{gO2}],Ah[{gI1}],Ah[{gI1}]]]/2

in SelfEnergy1LoopSum[EWSB].
(b) Corrections to the Z boson are saved in SelfEnergy1LoopList[EWSB][[15]]. An arbitrary entry

looks like
{bar[Fd], Fd, Cp[VZ, bar[Fd[{gI1}]], Fd[{gI2}]], FFV, 3, 1/2}

and corresponds to
(3*sum[gI1, 1, 3, sum[gI2, 1, 3,

H0[p^2, Mass[bar[Fd[{gI1}]]]^2, Mass[Fd[{gI2}]]^2]*

(conj[Cp[VZ,bar[Fd[{gI1}]],Fd[{gI2}]][PL]]*

Cp[VZ,bar[Fd[{gI1}]],Fd[{gI2}]][PL] +

conj[Cp[VZ,bar[Fd[{gI1}]],Fd[{gI2}]][PR]]*

Cp[VZ,bar[Fd[{gI1}]],Fd[{gI2}]][PR]) +

2*B0[p^2,Mass[bar[Fd[{gI1}]]]^2,Mass[Fd[{gI2}]]^2]*

Mass[bar[Fd[{gI1}]]]*Mass[Fd[{gI2}]]*

Re[Cp[VZ,bar[Fd[{gI1}]],Fd[{gI2}]][PL]*

Cp[VZ,bar[Fd[{gI1}]],Fd[{gI2}]][PR])]])/2

in SelfEnergy1LoopListSum[EWSB].
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6. Definition of models

All information of the different models is saved in three different files, which have to be in one directory

PackageDirectory/Models/ModelName/

The three files are: one model file with the same name as the directory (ModelName.m), a file containing
additional information about the particles of the model (particles.m) and a file containing additional
information about the parameters of the model (parameters.m). Only the first file is really necessary for
calculating the Lagrangian and to get a first impression of a model. However, the other two files are needed
for defining properties of parameters and particles and for producing an appropriate output.
In addition, it is possible to include LesHouches spectrum files in the model directory [16]. These can be
read with the command ReadSpectrum["Filename"]. If spectrum files are located in another directory, the
complete path has to be added to the filename to read them.

6.1. The model file

The model file contains the following parts: first, the gauge structure and the particle content are given.
Afterwards, the matter interactions are defined by the superpotential. These are general information which
must always be apparent.
This part is followed by the definition of the names for all eigenstates (NameOfStates). For these eigen-
states, several properties can be defined using the corresponding DEFINITION statement: decomposition
of complex scalars in scalar, pseudo scalar and VEV (DEFINITION[States][VEVs]), rotations in the mat-
ter (DEFINITION[States][MatterSector]) and gauge sector (DEFINITION[States][GaugeSector]), the
corresponding gauge fixing terms (DEFINITION[States][GaugeFixing]), the flavor decomposition of fields
(DEFINITION[States][Flavors]) and possible phases of fields (DEFINITION[States][Phases]). New cou-
plings can be added and existing couplings can be changed by hand (DEFINITION[States][Additional]).
Afterwards, optionally the particles are states, which should be integrated out or deleted. At the end, the
Dirac spinors have to be built out of Weyl spinors, a spectrum file can be defined and a choice for an
automatic output can be made.

6.1.1. Vector and chiral superfields

SARAH supports all SU(N) gauge groups. The gauge sector in SARAH is defined by adding a vector
superfield for each gauge group to the list Gauge in the model file, e.g.

Gauge[[3]]={G, SU[3], color, g3, False};

The different parts define the names of the superfield, of the gauge group and of the gauge coupling. In
addition, the dimension of the gauge group is given. The last entry states, if the gauge indices should be
implicit or explicit. The name of the gaugino component of the vector superfield starts with f and the vector
boson with V, i.e. based on the above definition, the gluino is called fG and the gluon VG. The ghost field is
named using g, i.e. gG.
Chiral superfields are defined by using the list Fields, e.g.

Fields[[1]] = {{uL, dL}, 3, q, 1/6, 2, 3};

...

Fields[[5]] = {conj[dR], 3, d, 1/3, 1, -3};

The first entry defines the names used for the component fields, then the number of generation and the
name for the superfield follows. The automatically created name of the fermionic component starts with F

and the scalar one with S: the squarks are named SuL, SdL or SdR, while the quarks are FuL, FdL and FdR.
After the superfield name, the representation with respect to the gauge groups defined by Gauge is assigned.
The transformation of an irreducible representation r under a given gauge group is in most cases fixed by
its dimension D. Therefore, it is sufficient to assign only D if it is unique. Otherwise, the Dynkin labels of
r have to be given as additional input.
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For all gauge groups, the generators of all appearing representations are needed in order to write the kinetic
part of the Lagrangian and the D-terms. In this context, all generators for non-fundamental representations
are written as tensor products in SARAH. Furthermore, the eigenvalues C2(r) of the quadratic Casimir as well
as the Dynkin index I(r) are needed. The performed steps to obtain these results are given in Appendix C.

6.1.2. Superpotential

The superpotential is defined in a compact form using the variable SuperPotential:

SuperPotential = {{{Coefficient,Parameter,(Contraction)},

{Particle 1, Particle 2, Particle 3} }, ...}

Each term of the superpotential is defined by two lists. The second list assigns all involved fields by using the
superfield names. The first list is two- or three-dimensional. It defines a numerical coefficient and the name
of the coupling. The gauge and generation indices of the involved superfields are automatically contracted
by SARAH. The used contraction can be displayed via

ShowSuperpotentialContractions;

Sometimes, there are more possibilities to contract all indices. Thus, it is possible to fix the contraction of
each term using the third entry of the first list.

6.1.3. Symmetry breaking and rotations

Rotations for all matter and gauge fields as well as the decomposition of scalar fields into their scalar
component, pseudo scalar components and VEVs can be performed. All appearing coefficients as well as the
names of the rotation matrices to parametrize this change of the basis can be chosen individually. Besides,
it is possible to decompose a field carrying a generation index into its different flavors in order to treat them
separately. Afterwards, the complete Lagrangian for the new set of eigenstates is calculated.
We give here again only the generic syntax for the different tasks and refer to 6.1.5 for a discussion of the
MSSM. The definition of rotations in the matter sector has either the form

{Old Basis, {New Basis, Mixing Matrix}}

or

{{1.Old Basis,2.Old Basis},

{{1.New Basis,1.Matrix},{2.New basis,2.Matrix}}}

depending on whether the mass matrix is hermitian or not. The decomposition of scalar fields is done via

{Scalar, {{VEV, 1.Coeff.}, {Pseudoscalar, 2.Coeff.},{Scalar,3.Coeff.}};

Finally, the syntax for the flavor decomposition of fields is

{Field, {Name for 1.Generation, Name for 2.Generation, ...}};

In principle, these steps can be repeated as often as needed. Therefore, it is no problem to go first to the
SCKM basis and afterwards to the mass eigenbasis. GUT theories involving several symmetry breakings
can be treated in the same way. The information of all intermediate steps is saved. Hence, it is possible
to calculate the vertices or masses of all eigenstates without the necessity of a new model file or a new
evaluation of the model.
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6.1.4. Effective or non-supersymmetric theories

It is easy in SARAH to integrate particles out of the spectrum to get an effective theory, or just to delete
some particles to get a non-supersymmetric limit of the model. Integrating out particles happens by adding
them to the list IntegrateOut

IntegrateOut = {Particle 1, Particle 2, ...}

If particles are integrated out, all higher dimensional operators up to dimension 6 are calculated. Delet-
ing particles can be done in the same way as integrating them out. The corresponding list is called
DeleteParticle. The difference is that there are no effective operators calculated. Deleting is therefore, of
course, faster and should be used if the higher dimensional operators are not needed.

6.1.5. Example: Model file for the MSSM

We show in the following the implementation of the MSSM in SARAH. Our conventions are discussed in
Appendix E.

1. The gauge sector is U(1) × SU(2) × SU(3) and is just defined by adding the corresponding vector
superfields.

Gauge[[1]]={B, U[1], hypercharge, g1, False};

Gauge[[2]]={WB, SU[2], left, g2, True};

Gauge[[3]]={G, SU[3], color, g3, False};

2. The doublet superfields q̂, l̂, Ĥd, Ĥu are added by

Fields[[1]] = {{uL, dL}, 3, q, 1/6, 2, 3};

Fields[[2]] = {{vL, eL}, 3, l, -1/2, 2, 1};

Fields[[3]] = {{Hd0, Hdm}, 1, Hd, -1/2, 2, 1};

Fields[[4]] = {{Hup, Hu0}, 1, Hu, 1/2, 2, 1};

3. The singlet superfields d̂, û, ê are added by

Fields[[5]] = {conj[dR], 3, d, 1/3, 1, -3};

Fields[[6]] = {conj[uR], 3, u, -2/3, 1, -3};

Fields[[7]] = {conj[eR], 3, e, 1, 1, 1};

4. The superpotential of the MSSM is

W = q̂YuûĤu − q̂Ydd̂Ĥd − l̂YeêĤd + µĤuĤd (3)

and given in SARAH by

SuperPotential = { {{1, Yu},{u,q,Hu}}, {{-1,Yd},{d,q,Hd}},

{{-1,Ye},{e,l,Hd}}, {{1,\[Mu]},{Hu,Hd}} };

5. There are two different sets of eigenstates: the gauge eigenstates before EWSB and the mass eigenstates
after EWSB. The internal names are

NameOfStates={GaugeES, EWSB};

6. The gauge fixing terms for the unbroken gauge groups are

DEFINITION[GaugeES][GaugeFixing]=

{ {Der[VWB], -1/(2 RXi[W])},

{Der[VG], -1/(2 RXi[G]) }};

This has the same meaning as

LGF = − 1

2ξW
|∂µWµ,i|2 − 1

2ξg
|∂µgµ,i|2 (4)
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7. The vector bosons and gauginos rotate after EWSB as follows

DEFINITION[EWSB][GaugeSector]=

{ {VWB, {1,{VWm, 1/Sqrt[2]}, {conj[VWm],1/Sqrt[2]}},

{2,{VWm,-I/Sqrt[2]}, {conj[VWm],I/Sqrt[2]}},

{3,{VP,Sin[ThetaW]}, {VZ, Cos[ThetaW]}}},

{VB, {1,{VP,Cos[ThetaW]}, {VZ, -Sin[ThetaW]}}},

{fWB, {1,{fWm, 1/Sqrt[2]}, {fWp 1/Sqrt[2]}},

{2,{fWm,-I/Sqrt[2]}, {fWp, I/Sqrt[2]}},

{3,{fW0, 1}}}

};

This is the common mixing of vector bosons and gauginos after EWSB, see Appendix E.5.
8. The neutral components of the scalar Higgs receive VEVs vd/vu and split in scalar and pseudo scalar

components according to Appendix E.4. This is added to SARAH by

DEFINITION[EWSB][VEVs]=

{{SHd0, {vd, 1/Sqrt[2]}, {sigmad, I/Sqrt[2]},{phid, 1/Sqrt[2]}},

{SHu0, {vu, 1/Sqrt[2]}, {sigmau, I/Sqrt[2]},{phiu, 1/Sqrt[2]}}};

9. The particles mix after EWSB to new mass eigenstates

DEFINITION[EWSB][MatterSector]=

{{{SdL, SdR }, {Sd, ZD}},

{{SuL, SuR }, {Su, ZU}},

{{SeL, SeR }, {Se, ZE}},

{{SvL }, {Sv, ZV}},

{{phid, phiu }, {hh, ZH}},

{{sigmad, sigmau }, {Ah, ZA}},

{{SHdm, conj[SHup] }, {Hpm,ZP}},

{{fB, fW0, FHd0, FHu0}, {L0, ZN}},

{{{fWm, FHdm}, {fWp, FHup}}, {{Lm,Um}, {Lp,Up}}},

{{{FeL}, {conj[FeR]}}, {{FEL,ZEL},{FER,ZER}}},

{{{FdL}, {conj[FdR]}}, {{FDL,ZDL},{FDR,ZDR}}},

{{{FuL}, {conj[FuR]}}, {{FUL,ZUL},{FUR,ZUR}}} };

This defines the mixings to the mass eigenstates described in Appendix E.6.
10. The new gauge fixing terms after EWSB are

DEFINITION[EWSB][GaugeFixing]=

{{Der[VP], - 1/(2 RXi[P])},

{Der[VWm]+ I Mass[VWm] RXi[W] Hpm[{1}], - 1/(RXi[W])},

{Der[VZ] - Mass[VZ] RXi[Z] Ah[{1}], - 1/(2 RXi[Z])},

{Der[VG], - 1/(2 RXi[G])}};

Based on this definition, A0
1 and H±

1 are recognized in all calculations as Goldstone bosons.
11. No particles should be integrated out or deleted

IntegrateOut={};

DeleteParticles={};

12. The Dirac spinors for the mass eigenstates are

dirac[[1]] = {Fd, FdL, FdR};

dirac[[2]] = {Fe, FeL, FeR};

dirac[[3]] = {Fu, FuL, FuR};

dirac[[4]] = {Fv, FvL, 0};

dirac[[5]] = {Chi, L0, conj[L0]};

dirac[[6]] = {Cha, Lm, conj[Lp]};

dirac[[7]] = {Glu, fG, conj[fG]};

13



6.2. Parameter and particle files

6.2.1. Parameter file

Additional properties and information about the parameters and particles of a model are saved in the
files parameters.m and particles.m. An entry in the parameter file looks like

{Yu, { LaTeX -> "Y^u",

Real -> True,

Form -> Diagonal,

Dependence -> None,

Value -> None,

LesHouches -> Yu

}}

and contains information about the numerical value (Value → number), the position in a LesHouches
accord file (LesHouches → position) or the dependence on other parameters (Dependence → equation).
Also simplifying assumptions can be made: it can be defined that parameters contain only real entries (Real
→ True) or that the parameter is diagonal (Form → Diagonal). Also a LATEX name can be given (LaTeX→
name). Furthermore, the GUT normalization can be assigned (GUTnormalization → value) for the gauge
couplings of an U(1) gauge groups.

6.2.2. Particle file

The particles file contains entries like

{Su , { RParity -> -1,

PDG -> {1000002,2000002,1000004,2000004,1000006,2000006},

Width -> Automatic,

Mass -> Automatic,

FeynArtsNr -> 13,

LaTeX -> "\\tilde{u}",

OutputName -> "um" }},

and defines properties of all particles such as the R-parity (RParity → number) or the mass (Mass → value
or Automatic). Automatic means that for the output for FeynArts or CalcHep not a fixed numerical value
is used, but that the masses are calculated using tree-level relations. In addition, the PDG code is given
(PDG → number), the number for the particle class used in the FeynArts model file can be fixed (FeynArts
→ number) and the name in LATEX form is given (LaTeX → name). If a CalcHep or CompHep model file
should be written, it is also helpful to define an appropriate name in this context (OutputName → name).

6.2.3. Global definitions

It is also possible to define global properties for parameters or particles which are present in more than
one model file. These properties are afterwards used for all models. The global definitions are saved in the
files particles.m and parametes.m directly in the main model directory. For each parameter or particle,
an entry like

{{ Descriptions -> "Up Squark",

RParity -> -1,

PDG -> {1000002,2000002,1000004,2000004,1000006,2000006},

Width -> Automatic,

Mass -> Automatic,

FeynArtsNr -> 13,

LaTeX -> "\\tilde{u}",

OutputName -> "um" }},
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can be added. In particular, the entry Description is important. This should be an unique identifier for
each particle or parameter. This identifier can later on be used in the different files of the different models,
e.g.

{Su , { Descriptions -> "Up Squark"}},

Of course, it is also possible to overwrite some of the global definitions by defining them locally, too. For
instance, to use u instead of um as output name in a specific model, the entry should be changed to

{Su , { Descriptions -> "Up Squark",

OutputName -> "u" }},

in the corresponding particle file of the model.

7. Verification

Tree-level results. We have checked the model files generated with SARAH for the MSSM against the existing
files of FeynArts and CalcHep. The checks happened as well at vertex level as for complete processes.
We have compared the numerical value of each vertex for different sets of parameters and all possible
combinations of generations (more than 5000). In addition we have calculated several 1 → 2 and 2 → 2
processes with the old and new model files. Similar checks have been done for the vertices of the NMSSM
against the model file of CalcHep. More information about the verification of the tree-level results is given
[11].

One-loop self-energies and tadpole equations. We have compared the analytical expressions of the self-
energies calculated by SARAH for the MSSM with the results of [10]. In addition, we have compared the
numerical values for the one-loop corrected masses with the results of SPheno [20]. Furthermore, the results
for the NMSSM were numerically checked against the routines provided by the authors of [21]. Both results
were in complete agreement. A detailed discussion about the results for the NMSSM obtained by SARAH is
also given in [22].

Verification of the calculated RGEs. We have compared the analytical results for the one- and two-loop
RGEs calculated by SARAH for the MSSM with [9] and for the NMSSM with [23]. The only difference has
been in the NMSSM the two-loop RGE of Aλ. A second calculation by authors of [23] have confirmed the
first result of SARAH.
In addition, we have checked a model containing non-fundamental representations: the SU(5) inspired
Seesaw II model of [24] and [25]. It is known that there are discrepancies of the RGEs given in these two
papers. Our result fully agrees with [24].
Also numerically checks have been done by comparing the RGEs for the MSSM with the RGEs implemented
in SPheno [20]. Both sets of RGEs are in full agreement.
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Appendix A. Gauge anomalies

Before SARAH starts the calculation of the Lagrangian it checks the model for the different triangle
anomalies. These anomalies can involve diagrams with three external gauge bosons belonging to the same
U(1) or SU(N) gauge group. To be anomaly free, the sum over all internal fermions has to vanish

U(1)3i :
∑

n

Y i
n

3
= 0 , (A.1)

SU(N)3i :
∑

n

Tr(T i
nT

i
nT

i
n) = 0 . (A.2)

We label the different gauge groups with the indices i, j, k. Y i
n is the charge of particle n under the abelian

gauge group i while T i
n is the generator with respect to a non-abelian gauge group.

Combinations of two different gauge groups are possible, if one group is an U(1). Hence, another condition
for the absence of anomalies is

U(1)i × SU(N)2j :
∑

n

Y i
n Tr(T j

nT
j
n) = 0 . (A.3)

If more than one U(1) gauge group are present, anomalies can be generated by two or three different U(1)
gauge bosons as external fields, too. Therefore, it has to be checked, that

U(1)i × U(1)2j :
∑

n

Y i
nY

j
n

2
= 0 , (A.4)

U(1)i × U(1)j × U(1)k :
∑

n

Y i
nY

j
nY

k
n = 0 (A.5)

holds. In addition, it has to be checked that there is an even number of SU(2) doublets. This is necessary
for a model in order to be free of the Witten anomaly [26]. If one condition is not fulfilled, a warning is
given by SARAH but the model can be evaluated anyway.

Appendix B. Calculation of the Lagrangian of supersymmetric models

We describe in this section the calculation of the complete Lagrangian for a supersymmetric model based
on the superpotential and the gauge structure.

Interactions of chiral superfields. If we call the superpotential for a given theoryW and use φi for the scalar
and ψi for the fermionic component of a chiral supermultiplet, the matter interactions can by derived by

LY = −1

2
W ijψiψj + h.c. , LF = F ∗iFi + h.c. (B.1)

with

W ij =
δ2

δφiδφj
W and F i = −W ∗i =

δW

δφi
. (B.2)

The first term of eq. (B.1) describes the interaction of two fermions with one scalar, while the second term
forms the so called F-terms which describe four-scalar interactions.

Interactions of vector superfields. We name the spin- 12 component of a vector supermultiplet λ and the
spin-1 component Aµ. The most general Lagrangian only involving these fields is

L = −1

4
F a
µνF

µνa − iλ†aσ̄µDµλ
a (B.3)

with the field strength
F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (B.4)
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and the covariant derivative
Dµλ

a = ∂µλ
a + gfabcAb

µλ
c . (B.5)

Here, fabc is the structure constant of the gauge group. Plugging eq. (B.4) in the first term of eq. (B.3)
leads to self-interactions of three and four gauge bosons

LV = −1

4
(∂µA

a
ν − ∂νA

a
µ)gf

abcAµ,bAν,c − 1

4
g2(fabcA

b
µA

c
ν)(f

adeAµ,eAν,e) . (B.6)

The second term of eq. (B.3) describes the interactions between vector bosons and gauginos.

Supersymmetric gauge interactions. The parts of the Lagrangian with both chiral and vector superfields are
the kinetic terms for the fermions and scalars

Lkin = −Dµφ∗iDµφi − iψ†iσ̄µDµψi (B.7)

as well as the interaction between a gaugino and a matter fermion and scalar

LGFS = −
√
2g(φ∗T aψ)λa + h.c. . (B.8)

Here, T a are the fundamental generators of the gauge group. Furthermore, the covariant derivatives are

Dµφi = ∂µφi − igAa
µ(T

aφ)i , (B.9)

Dµφ
∗i = ∂µφ

∗i + igAa
µ(φ

∗T a)i , (B.10)

Dµψi = ∂µψi − igAa
µ(T

aψ)i , (B.11)

In addition, the D-terms are defined by

LD =
1

2
DaDa . (B.12)

The solution of the equations of motion for the auxiliary fields leads to

Da = −g(φ∗T aφ) . (B.13)

Soft-breaking terms. SUSY must be a broken. This can be parametrized by adding soft-breaking terms to
the Lagrangian. The possible terms are the mass terms for all scalar matter fields and gauginos

LSB = −m2
φi
φiφ

∗
i −

1

2
Mλi

λiλi (B.14)

as well as soft-breaking interaction corresponding to the superpotential terms

LSoft,W = Tφiφjφk +Bφiφj + Sφi . (B.15)

Gauge fixing terms and ghost interactions. The Lagrangian of a theory without further restrictions is in-
variant under a general gauge transformation. This invariance leads to severe problems in the quantization
of the theory as can be seen in the divergence of functional integrals. Therefore, it is in necessary to add
gauge fixing terms to break this gauge invariance.
The general form of the gauge fixing Lagrangian is

LGF = −1

2

∑

a

|f(x)a|2 . (B.16)

fa can be a function of partial derivatives of a gauge boson and a Goldstone boson. The corresponding
ghost terms of the ghost fields η̄ and η are

LGhost = −η̄a(δfa) . (B.17)
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Here, δ assigns the operator for a BRST transformation. For an unbroken gauge symmetry, the gauge fixing
terms in the often chosen Rξ-gauge are

LGF = − 1

2Rξ

∑

a

(

∂µV a
µ

)2
. (B.18)

Here, Vµ are the gauge boson of the unbroken gauge group. It is often common to choose a distinct value for
Rξ. The most popular gauges are the unitary gauge Rξ → ∞ and the Feynman-’t Hooft-gauge Rξ = 1. For
broken symmetries, the gauge fixings terms are chosen in a way that the mixing terms between vector bosons
and scalars disappear from the Lagrangian. Therefore, the common choice for the gauge fixing Lagrangian
for theories with the standard model gauge sector after EWSB is

LGF,Rξ
= − 1

2ξγ
(∂µγµ)

2 − 1

2ξZ

(

∂µZµ + ξZMZG
0
)2

+− 1

ξW+

(

∂µW+
µ + ξW+MWG+

)2
. (B.19)

Here, G0 and G+ are the Goldstone bosons, which build the longitudinal component of the massive vector
bosons.

Appendix C. Calculation of Group Factors

SARAH supports not only chiral superfields in the fundamental representation but in any irreducible
representation of SU(N). In most cases, it is possible to fix the transformation properties of the chiral
superfield by stating the corresponding dimension D. If the dimension is not unique, also the Dynkin labels
are needed. For calculating kinetic terms and D-terms, it is necessary to derive from the representation
the corresponding generators. Furthermore, the eigenvalues C2 of the quadratic Casimir for any irreducible
representation r

T aT aφ(r) = C2(r)φ(r) (C.1)

as well as the Dynkin index I
T r(T aT b)φ(r) = Iδabφ(r) (C.2)

are needed for the calculation of the RGEs. All of that is derived by SARAH due to the technique of Young
tableaux. The following steps are evolved:

1. The corresponding Young tableau fitting to the dimension D is calculated using the hook formula:

D = Πi

N + di
hi

, (C.3)

di is the distance of the i. box to the left upper corner and hi is the hook of that box.

2. The vector for the highest weight Λ in Dynkin basis is extracted from the tableau.

3. The fundamental weights for the given gauge group are calculated.

4. The value of C2(r) is calculated using the Weyl formula

C2(r) = (Λ,Λ + ρ) , (C.4)

ρ is the Weyl vector.

5. The Dynkin index I(r) is calculated from C2(r). For this step, the value for the fundamental repre-
sentation is normalized to 1

2 .

I(r) = C2(r)
D(r)

D(G)
, (C.5)

with D(G) as dimension of the adjoint representation.
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6. The number of co- and contra-variant indices is extracted from the Young tableau. With this infor-
mation, the generators are written as tensor product.

The user can calculate this information independently from the model using the new command

CheckIrrepSUN[Dim,N]

Dim is the dimension of the irreducible representation and N is the dimension of the SU(N) gauge group.
The result is a vector containing the following information: (i) repeating the dimension of the field, (ii)
number of covariant indices, (iii) number of contravariant indices, (iv) value of the quadratic Casimir C2(r),
(v) value of the Dynkin index I(r), (vi) Dynkin labels for the highest weight.

Examples.

1. Fundamental representation. The properties of a particle, transforming under the fundamental
representation of SU(3) are calculated via CheckIrrepSUN[3,3]. The output is the well known result

{3, 1, 0, 4/3, 1/2, {1, 0}}

2. Adjoint representation. The properties of a field transforming as 24 of SU(5) are calculated by
CheckIrrepSUN[24,5] . The output will be

{24, 1, 1, 5, 5, {1, 0, 0, 1}}

3. Different representations with the same dimension. The 70 under SU(5) is not unique. There-
fore, CheckIrrepSUN[{70, {0, 0, 0, 4}}, 5] returns

{70, 0, 4, 72/5, 42, {0, 0, 0, 4}}

while CheckIrrepSUN[{70, {2, 0, 0, 1}}, 5] leads to

{70, 2, 1, 42/5, 49/2, {2, 0, 0, 1}}

Appendix D. Conventions and generic expressions

Appendix D.1. Renormalization group equations

We summarize in this section the used equations for the calculation of the one- and two-loop RGEs in
SARAH. These equations are extensively discussed in literature, see e.g. [9, 17–19, 27–31].
For a general N = 1 supersymmetric gauge theory with superpotential

W (φ) = Liφi +
1

2
µijφiφj +

1

6
Y ijkφiφjφk , (D.1)

the soft SUSY-breaking scalar terms are given by

Vsoft =

(

Siφi +
1

2
bijφiφj +

1

6
hijkφiφjφk + c.c.

)

+ (m2)ijφiφ
∗
j +

1

2
Mλλaλa . (D.2)

The anomalous dimensions are given by

γ
(1)j
i =

1

2
YipqY

jpq − 2δji g
2C(i) , (D.3)

γ
(2)j
i =− 1

2
YimnY

npqYpqrY
mrj + g2YipqY

jpq [2C(p)− C(i)]

+ 2δji g
4[C(i)S(R) + 2C(i)2 − 3C(G)C(i)] , (D.4)

and the β-functions for the gauge couplings are given by

β(1)
g =g3 [S(R)− 3C(G)] , (D.5)

β(2)
g =g5

{

−6[C(G)]2 + 2C(G)S(R) + 4S(R)C(R)
}

− g3Y ijkYijkC(k)/D(G) . (D.6)
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Here, C(i) is the quadratic Casimir for a specific superfield and C(R), C(G) are the quadratic Casimirs for
the matter and adjoint representations, respectively. D(G) is the dimension of the adjoint representation.
The corresponding RGEs are defined as

d

dt
g =

1

16π2
β(1)
g +

1

(16π2)2
β(2)
g . (D.7)

Here, we used t = lnQ, where Q is the renormalization scale. The β-functions for the superpotential
parameters can be obtained by using superfield technique. The obtained expressions are

βijk
Y = Y ijp

[

1

16π2
γ(1)kp +

1

(16π2)2
γ(2)kp

]

+ (k ↔ i) + (k ↔ j) , (D.8)

βij
µ = µip

[

1

16π2
γ(1)jp +

1

(16π2)2
γ(2)jp

]

+ (j ↔ i) , (D.9)

βi
L = Lp

[

1

16π2
γ(1)ip +

1

(16π2)2
γ(2)ip

]

. (D.10)

The expressions for trilinear, soft-breaking terms are

d

dt
hijk =

1

16π2

[

β
(1)
h

]ijk

+
1

(16π2)2

[

β
(2)
h

]ijk

, (D.11)

with

[

β
(1)
h

]ijk

=
1

2
hijlYlmnY

mnk + Y ijlYlmnh
mnk − 2

(

hijk − 2MY ijk
)

g2C(k)

+ (k ↔ i) + (k ↔ j) , (D.12)
[

β
(2)
h

]ijk

=− 1

2
hijlYlmnY

npqYpqrY
mrk

− Y ijlYlmnY
npqYpqrh

mrk − Y ijlYlmnh
npqYpqrY

mrk

+
(

hijlYlpqY
pqk + 2Y ijlYlpqh

pqk − 2MY ijlYlpqY
pqk
)

g2 [2C(p)− C(k)]

+
(

2hijk − 8MY ijk
)

g4
[

C(k)S(R) + 2C(k)2 − 3C(G)C(k)
]

+ (k ↔ i) + (k ↔ j) . (D.13)

For the bilinear soft-breaking parameters, the expressions read

d

dt
bij =

1

16π2

[

β
(1)
b

]ij

+
1

(16π2)2

[

β
(2)
b

]ij

, (D.14)

with
[

β
(1)
b

]ij

=
1

2
bilYlmnY

mnj +
1

2
Y ijlYlmnb

mn + µilYlmnh
mnj − 2

(

bij − 2Mµij
)

g2C(i)

+ (i↔ j) , (D.15)
[

β
(2)
b

]ij

=− 1

2
bilYlmnY

pqnYpqrY
mrj − 1

2
Y ijlYlmnb

mrYpqrY
pqn

− 1

2
Y ijlYlmnµ

mrYpqrh
pqn − µilYlmnh

npqYpqrY
mrj

− µilYlmnY
npqYpqrh

mrj + 2Y ijlYlpq (b
pq − µpqM) g2C(p)

+
(

bilYlpqY
pqj + 2µilYlpqh

pqj − 2µilYlpqY
pqjM

)

g2 [2C(p)− C(i)]

+
(

2bij − 8µijM
)

g4
[

C(i)S(R) + 2C(i)2 − 3C(G)C(i)
]

+ (i↔ j) , (D.16)
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Finally, the RGEs for the linear soft-breaking parameters are

d

dt
Si =

1

16π2

[

β
(1)
S

]i

+
1

(16π2)2

[

β
(2)
S

]i

, (D.17)

with

[

β
(1)
S

]i

=
1

2
Y ilnYplnS

p + LpYplnh
iln + µikYklnB

ln + 2Y ikp(m2)lpµkl + hiklBkl , (D.18)

[

β
(2)
S

]i

=2g2C(l)Y iklYpklS
p − 1

2
Y ikqYqstY

lstYpklS
p − 4g2C(l)(Y iklM − hikl)YpklL

p

−
[

Y ikqYqsth
lstYpkl + hikqYqstY

lstYpkl
]

Lp − 4g2C(l)Yjnl(µ
nlM −Bnl)µij

−
[

Yjnqh
qstYlstµ

nl + YjnqY
qstYlstB

nl
]

µij + 4g2C(l)(2Y iklµkl|M |2 − Y iklBklM

− hiklµklM
∗ + hiklBkl + Y ipl(m2)kpµkl + Y ikp(m2)lpµkl)

−
[

Y ikqYqsth
lstBkl + hikqYqstY

lstBkl + Y ikqhqsth
lstµkl + hikqhqstY

lstµkl

+ Y ipq(m2)kpYqstY
lstµkl + Y ikqYqstY

pst(m2)lpµkl + Y ikp(m2)qpYqstY
lstµkl

+ 2Y ikqYqsp(m
2)ptY

lstµkl

]

. (D.19)

With these results, the list of the β-functions for all couplings is complete. Now, we turn to the RGEs for
the gaugino masses, squared masses of scalars and vacuum expectation values. The result for the gaugino
masses is

d

dt
M =

1

16π2
β
(1)
M +

1

(16π2)2
β
(2)
M , (D.20)

with

β
(1)
M =g2 [2S(R)− 6C(G)]M , (D.21)

β
(2)
M =g4

{

−24[C(G)]2 + 8C(G)S(R) + 16S(R)C(R)
}

M

+ 2g2
[

hijk −MY ijk
]

YijkC(k)/D(G) . (D.22)

The one- and two-loop RGEs for the scalar mass parameters read

d

dt
mij =

1

16π2

[

β
(1)
m2

]j

i
+

1

(16π2)2

[

β
(2)
m2

]j

i
, (D.23)

(D.24)
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with
[

β
(1)
m2

]j

i
=
1

2
YipqY

pqn(m2)
j

n +
1

2
Y jpqYpqn(m

2)
n

i + 2YipqY
jpr(m2)

q

r

+ hipqh
jpq − 8δjiMM †g2C(i) + 2g2tAj

i Tr[tAm2] , (D.25)
[

β
(2)
m2

]j

i
=− 1

2
(m2)

l

iYlmnY
mrjYpqrY

pqn − 1

2
(m2)

j

lY
lmnYmriY

pqrYpqn

− YilmY
jnm(m2)

l

rYnpqY
rpq − YilmY

jnm(m2)
r

nYrpqY
lpq

− YilmY
jnr(m2)

l

nYpqrY
pqm − 2YilmY

jlnYnpqY
mpr(m2)

q

r

− YilmY
jlnhnpqh

mpq − hilmh
jlnYnpqY

mpq

− hilmY
jlnYnpqh

mpq − Yilmh
jlnhnpqY

mpq

+

[

(m2)
l

iYlpqY
jpq + YipqY

lpq(m2)
j

l + 4YipqY
jpl(m2)

q

l + 2hipqh
jpq

− 2hipqY
jpqM − 2Yipqh

jpqM † + 4YipqY
jpqMM †

]

g2 [C(p) + C(q)− C(i)]

− 2g2tAj
i (tAm2)lrYlpqY

rpq + 8g4tAj
i Tr[tAC(r)m2]

+ δji g
4MM † [24C(i)S(R) + 48C(i)2 − 72C(G)C(i)

]

+ 8δji g
4C(i)(Tr[S(r)m2]− C(G)MM †) . (D.26)

The RGEs for a VEV vi are proportional to the anomalous dimension of the chiral superfield whose scalar
component receives the VEV

d

dt
vi = vp

[

1

16π2
γ(1)ip +

1

(16π2)2
γ(2)ip

]

(D.27)

Appendix D.2. One-loop amplitudes for one- and two-point functions

We used for the calculation of the one-loop self-energies and the one-loop corrections to the tadpoles in
DR-scheme the scalar functions defined in [10]. The basis integrals are

A0(m) = 16π2Q4−n

∫

dnq

i (2π)n
1

q2 −m2 + iε
, (D.28)

B0(p,m1,m2) = 16π2Q4−n

∫

dnq

i (2π)n
1

[

q2 −m2
1 + iε

][

(q − p)2 −m2
2 + iε

] , (D.29)

with the renormalization scale Q. The integrals are regularized by integrating in n = 4 − 2ǫ dimensions.
The result for A0 is

A0(m) = m2

(

1

ǫ̂
+ 1− ln

m2

Q2

)

, (D.30)

where 1/ǫ̂ = 1/ǫ− γE + ln 4π. The function B0 has the analytic expression

B0(p,m1,m2) =
1

ǫ̂
− ln

(

p2

Q2

)

− fB(x+)− fB(x−) , (D.31)

with

x± =
s±

√

s2 − 4p2(m2
1 − iε)

2p2
, fB(x) = ln(1− x)− x ln(1− x−1)− 1 , (D.32)

and s = p2 −m2
2 +m2

1. All the other, necessary functions can be expressed by A0 and B0. For instance,

B1(p,m1,m2) =
1

2p2

[

A0(m2)−A0(m1) + (p2 +m2
1 −m2

2)B0(p,m1,m2)

]

, (D.33)
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and

B22(p,m1,m2) =
1

6

{

1

2

(

A0(m1) +A0(m2)

)

+

(

m2
1 +m2

2 −
1

2
p2
)

B0(p,m1,m2)

+
m2

2 −m2
1

2p2

[

A0(m2)−A0(m1)− (m2
2 −m2

1)B0(p,m1,m2)

]

+m2
1 +m2

2 −
1

3
p2

}

. (D.34)

Furthermore, for the self-energies of vector bosons, it is useful to define

F0(p,m1,m2) =A0(m1)− 2A0(m2)− (2p2 + 2m2
1 −m2

2)B0(p,m1,m2) , (D.35)

G0(p,m1,m2) =(p2 −m2
1 −m2

2)B0(p,m1,m2)−A0(m1)−A0(m2) , (D.36)

H0(p,m1,m2) =4B22(p,m1,m2) +G(p,m1,m2) , (D.37)

B̃22(p,m1,m2) =B22(p,m1,m2)−
1

4
A0(m1)−

1

4
A0(m2) (D.38)

In addition, several coefficients are involved:

• cS is the symmetry factor: if the particles in the loop are indistinguishable, the weight of the contri-
bution is only half of the weight in the case of distinguishable particles. If two different charge flows
are possible in the loop, the weight of the diagram is doubled.

• cC is a charge factor: for corrections due to vector bosons in the adjoint representation this is the
Casimir of the corresponding group. For corrections due to matter fields this can be, for instance, a
color factor for quarks/squarks. For corrections of vector bosons in the adjoint representation this is
normally the Dynkin index of the gauge group.

• cR is 2 for real fields and Majorana fermions in the loop and 1 otherwise.

We use in the following Γ for non-chiral interactions and ΓL/ΓR for chiral interactions. If two vertices are
involved, the interaction of the incoming particle has an upper index 1 and for the outgoing field an upper
index 2 is used.

Appendix D.2.1. One-loop tadpoles

1. Fermion loop (generic name in SARAH: FFS):

T = 8cScCmFΓA0(m
2
F ) (D.39)

2. Scalar loop (generic name in SARAH: SSS):

T = −2cScCΓA0(m
2
S) (D.40)

3. Vector boson loop (generic name in SARAH: SVV):

T = 6cScCΓA0(m
2
V ) (D.41)

Appendix D.2.2. One-loop self-energies

Corrections to fermion.
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1. Fermion-scalar loop (generic name in SARAH: FFS):

ΣS(p2) = mF cScCcRΓ
1
RΓ

2,∗
L B0(p

2,m2
F ,m

2
S)

ΣR(p2) = −cScCcR
1

2
Γ1
RΓ

2,∗
R B1(p

2,m2
F ,m

2
S)

ΣL(p2) = −cScCcR
1

2
Γ1
LΓ

2,∗
L B1(p

2,m2
F ,m

2
S)

2. Fermion-vector boson loop (generic name in SARAH: FFV):

ΣS(p2) = −4cScCcRmFΓ
1
LΓ

2,∗
R B0(p

2,m2
F ,m

2
S)

ΣR(p2) = −cScCcRΓ1
LΓ

2,∗
L B1(p

2,m2
F ,m

2
S)

ΣL(p2) = −cScCcRΓ1
RΓ

2,∗
R B1(p

2,m2
F ,m

2
S)

Corrections to scalar.

1. Fermion loop (generic name in SARAH: FFS):

Π(p2) = cScCcR

(

(Γ1
LΓ

2,∗
L + Γ1

RΓ
2,∗
R )G0(p

2,m2
F ,m

2
S) + (Γ1

LΓ
2,∗
R + Γ1

RΓ
2,∗
L )B0(p

2,m2
F ,m

2
S)
)

(D.42)

2. Scalar loop (two 3-point interactions, generic name in SARAH: SSS):

Π(p2) = cScCcRΓ
1Γ2,∗B0(p

2,m2
F ,m

2
S) (D.43)

3. Scalar loop (4-point interaction, generic name in SARAH: SSSS):

Π(p2) = −cScCΓA0(m
2
S) (D.44)

4. Vector boson-scalar loop (generic name in SARAH: SSV):

Π(p2) = cScCcRΓ
1Γ2,∗F0(p

2,m2
F ,m

2
S) (D.45)

5. Vector boson loop (two 3-point interactions, generic name in SARAH: SVV):

Π(p2) = cScCcR
7

2
Γ1Γ2,∗B0(p

2,m2
F ,m

2
S) (D.46)

6. Vector boson loop (4-point interaction, generic name in SARAH: SSVV):

Π(p2) = cScCΓA0(m
2
V ) (D.47)

Corrections to vector boson.

1. Fermion loop (generic name in SARAH: FFV):

ΠT (p2) = cScCcR
(

(|Γ1
L|2 + |Γ1

R|2)H0(p
2,m2

V ,m
2
F ) + 4ℜ(Γ1

LΓ
2
R)B0(p

2,m2
V ,m

2
F )
)

(D.48)

2. Scalar loop (generic name in SARAH: SSV):

ΠT (p2) = −4cScCcR|Γ|2B22(p
2,m2

S1
,m2

S2
) (D.49)

3. Vector boson loop (generic name in SARAH: VVV):

ΠT (p2) = |Γ|2cScCcR
(

−(4p2 +m2
V1

+m2
V2
)B0(p

2,m2
V1
,m2

V1
)− 8B22(p

2,m2
S1
,m2

S2
)
)

(D.50)

4. Vector-scalar loop (generic name in SARAH: SVV):

ΠT (p2) = |Γ|2cScCcRB0(p
2,m2

V ,m
2
S) (D.51)

We need here only the diagrams involving three-point interactions because the four-point interactions are
related to them due to gauge invariance.
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Appendix D.2.3. One-loop corrections to masses

The one-loop self-energies can be used to calculate the one-loop masses and mass matrices. For the
one-loop corrections of scalars, the radiatively corrected mass matrix is

m2,S
1L (p2i ) = m2,S

T − ΠSS(p
2
i ), (D.52)

while the one-loop mass of a vector boson V is given by

m2,V
1L (Q) = m2,V

T +Re
{

ΠT
V V (m

2,V
T )

}

. (D.53)

According to the conventions of the counter terms of [10], the one-loop mass matrices M χ̃0

1L of Majorana

fermions are connected to the one-loop self-energies and tree-level mass matrix M χ̃0

T by

M χ̃0

1L(p
2
i ) = M χ̃0

T − 1

2

[

Σ0
S(p

2
i ) + Σ0,T

S (p2i ) +
(

Σ0,T
L (p2i ) + Σ0

R(p
2
i )
)

M χ̃0

T

+M χ̃0

T

(

Σ0,T
R (p2i ) + Σ0

L(p
2
i )
)

]

. (D.54)

In the case of Dirac fermions, the one-loop corrected mass matrix is

M χ̃+

1L (p2i ) =M χ̃+

T − Σ+
S (p

2
i )− Σ+

R(p
2
i )M

χ̃+

T −M χ̃+

T Σ+
L(p

2
i ). (D.55)

Appendix E. The minimal supersymmetric standard model

Appendix E.1. Vector superfields

SF Spin 1
2 Spin 1 SU(N) Coupling Name

B̂ λB̃ B U(1) g1 hypercharge

Ŵ λW̃ W SU(2) g2 left
ĝ λg̃ g SU(3) g3 color

Appendix E.2. Chiral superfields

SF Spin 0 Spin 1
2 Generations (U(1)⊗ SU(2)⊗ SU(3))

q̂ q̃ q 3 (16 ,2,3)

l̂ l̃ l 3 (− 1
2 ,2,1)

Ĥd Hd H̃d 1 (− 1
2 ,2,1)

Ĥu Hu H̃u 1 (12 ,2,1)

d̂ d̃∗R d∗R 3 (13 ,1,3)
û ũ∗R u∗R 3 (− 2

3 ,1,3)
ê ẽ∗R e∗R 3 (1,1,1)

Appendix E.3. Superpotential and Lagrangian

Superpotential.

W = Yu û q̂ Ĥu − Yd d̂ q̂ Ĥd − Ye ê l̂ Ĥd + µ Ĥu Ĥd (E.1)
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Soft-breaking terms.

−LSB,W = −H0
dH

0
uBµ +H−

d H
+
u Bµ +H0

d d̃
∗
R,iαδαβ d̃L,jβTd,ij −H−

d d̃
∗
R,iαδαβ ũL,jβTd,ij

+H0
d ẽ

∗
R,iẽL,jTe,ij −H−

d ẽ
∗
R,iν̃L,jTe,ij −H+

u ũ
∗
R,iαδαβ d̃L,jβTu,ij +H0

uũ
∗
R,iαδαβ ũL,jβTu,ij + h.c.

(E.2)

−LSB,φ = +m2
Hd

|H0
d |2 +m2

Hd
|H−

d |2 +m2
Hu

|H0
u|2 +m2

Hu
|H+

u |2 + d̃∗L,jβδαβm
2
q,ij d̃L,iα

+ d̃∗R,iαδαβm
2
d,ij d̃R,jβ + ẽ∗L,jm

2
l,ij ẽL,i + ẽ∗R,im

2
e,ij ẽR,j + ũ∗L,jβδαβm

2
q,ij ũL,iα

+ ũ∗R,iαδαβm
2
u,ij ũR,jβ + ν̃∗L,jm

2
l,ij ν̃L,i (E.3)

−LSB,λ =
1

2

(

λ2
B̃
M1 +M2λ

2
W̃ ,i

+M3λ
2
g̃,i + h.c.

)

(E.4)

Appendix E.3.1. Gauge fixing terms

Gauge fixing terms for gauge eigenstates .

LGF = − 1

2ξG
∂µgα − 1

2ξW
∂µW

i (E.5)

Gauge fixing terms for mass eigenstates after EWSB .

LGF = − 1

2ξP
∂µγ − 1

2ξG
∂µgα − 1

2ξZ

(

−A0
1mZξZ + ∂µZ

)

− 1

ξW

(

iH−
1 mW−ξW + ∂µW

−
)

(E.6)

Appendix E.4. Vacuum expectation values

H0
d =

1√
2
(φd + iσd + vd) , H0

u =
1√
2
(φu + iσu + vu) (E.7)

Appendix E.5. Rotations of vector bosons and gauginos after EWSB

W−
1ρ =

1√
2
W−

ρ +
1√
2
W+

ρ , W−
2ρ = −i 1√

2
W−

ρ + i
1√
2
W+

ρ (E.8)

W−
3ρ = cosΘWZρ + sinΘWγρ , Bρ = cosΘWγρ − sinΘWZρ (E.9)

λW̃ ,1 =
1√
2
W̃− +

1√
2
W̃+ , λW̃ ,2 = −i 1√

2
W̃− + i

1√
2
W̃+ , λW̃ ,3 = W̃ 0 (E.10)

Appendix E.6. Rotations in matter sector to mass eigenstates after EWSB

In the following, Greek letters αi, βi refer to color indices and oi, pi to generations indices.

1. Mass matrix for neutralinos, basis:
(

λB̃ , W̃
0, H̃0

d , H̃
0
u

)

mχ̃0 =









M1 0 − 1
2g1vd

1
2g1vu

0 M2
1
2g2vd − 1

2g2vu
− 1

2g1vd
1
2g2vd 0 −µ

1
2g1vu − 1

2g2vu −µ 0









(E.11)

This matrix is diagonalized by N :
Nmχ̃0N † = mdia

χ̃0 (E.12)

with

λB̃ =
∑

t2

N∗
j1λ

0
j , W̃ 0 =

∑

t2

N∗
j2λ

0
j , H̃0

d =
∑

t2

N∗
j3λ

0
j , H̃0

u =
∑

t2

N∗
j4λ

0
j (E.13)
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2. Mass matrix for charginos, basis:
(

W̃−, H̃−
d

)

/
(

W̃+, H̃+
u

)

mχ̃− =

(

M2
1√
2
g2vu

1√
2
g2vd µ

)

(E.14)

This matrix is diagonalized by U and V

U∗mχ̃−V † = mdia
χ̃−

(E.15)

with

W̃− =
∑

t2

U∗
j1λ

−
j , H̃−

d =
∑

t2

U∗
j2λ

−
j , W̃+ =

∑

t2

V ∗
1jλ

+
j , H̃+

u =
∑

t2

V ∗
2jλ

+
j (E.16)

3. Mass matrix for leptons, basis: (eL,o1) /
(

e∗R,p1

)

me =
(

1√
2
vdYe,p1o1

)

(E.17)

This matrix is diagonalized by Ue
L and Ue

R

Ue,∗
L meU

e,†
R = mdia

e (E.18)

with

eL,i =
∑

t2

Ue,∗
L,jiEL,j , eR,i =

∑

t2

Ue
R,ijE

∗
R,j (E.19)

4. Mass matrix for down-quarks, basis: (dL,o1α1
) /
(

d∗R,p1β1

)

md =
(

1√
2
vdδα1β1

Yd,p1o1

)

(E.20)

This matrix is diagonalized by Ud
L and Ud

R

Ud,∗
L mdU

d,†
R = mdia

d (E.21)

with

dL,iα =
∑

t2

Ud,∗
L,jiDL,jα , dR,iα =

∑

t2

Ud
R,ijD

∗
R,jα (E.22)

5. Mass matrix for up-quarks, basis: (uL,o1α1
) /
(

u∗R,p1β1

)

mu =
(

1√
2
vuδα1β1

Yu,p1o1

)

(E.23)

This matrix is diagonalized by Uu
L and Uu

R

Uu,∗
L muU

u,†
R = mdia

u (E.24)

with

uL,iα =
∑

t2

Uu,∗
L,jiUL,jα , uR,iα =

∑

t2

Uu
R,ijU

∗
R,jα (E.25)
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6. Mass matrix for down-squarks, basis:
(

d̃L,o1α1
/d̃R,o2α2

)

,
(

d̃∗L,p1β1
, d̃∗R,p2β2

)

m11 =
1

24
δα1β1

(

12
(

2m2
q,o1p1

+ v2d

3
∑

a=1

Y ∗
d,ap1

Yd,ao1

)

−
(

3g22 + g21

)(

− v2u + v2d

)

δo1p1

)

(E.26)

m12 =
1√
2
δα1β2

(

vdTd,p2o1 − vuµ
∗Yd,p2o1

)

(E.27)

m22 =
1

12
δα2β2

(

6
(

2m2
d,p2o2

+ v2d

3
∑

a=1

Y ∗
d,o2a

Yd,p2a

)

+ g21

(

− v2d + v2u

)

δo2p2

)

(E.28)

This matrix is diagonalized by ZD:
ZDm2

d̃
ZD,† = mdia

2,d̃
(E.29)

with

d̃L,iα =
∑

t2

ZD,∗
ji d̃jα , d̃R,iα =

∑

t2

ZD,∗
ji d̃jα (E.30)

7. Mass matrix for sneutrinos, basis: (ν̃L,o1) /
(

ν̃∗L,p1

)

m2
ν̃ =

(

1
8

(

8m2
l,o1p1

+
(

g21 + g22

)(

− v2u + v2d

)

δo1p1

) )

(E.31)

This matrix is diagonalized by ZV :
ZVm2

ν̃Z
V,† = mdia

2,ν̃ (E.32)

with

ν̃L,i =
∑

t2

ZV,∗
ji ν̃j (E.33)

8. Mass matrix for up-squarks, basis: (ũL,o1α1
, ũR,o2α2

) /
(

ũ∗L,p1β1
, ũ∗R,p2β2

)

m11 =
1

24
δα1β1

(

12
(

2m2
q,o1p1

+ v2u

3
∑

a=1

Y ∗
u,ap1

Yu,ao1

)

−
(

− 3g22 + g21

)(

− v2u + v2d

)

δo1p1

)

(E.34)

m12 =
1√
2
δα1β2

(

− vdµ
∗Yu,p2o1 + vuTu,p2o1

)

(E.35)

m22 =
1

6
δα2β2

(

3v2u

3
∑

a=1

Y ∗
u,o2a

Yu,p2a + 6m2
u,p2o2

+ g21

(

− v2u + v2d

)

δo2p2

)

(E.36)

This matrix is diagonalized by ZU :
ZUm2

ũZ
U,† = mdia

2,ũ (E.37)

with

ũL,iα =
∑

t2

ZU,∗
ji ũjα , ũR,iα =

∑

t2

ZU,∗
ji ũjα (E.38)

9. Mass matrix for sleptons, basis: (ẽL,o1 , ẽR,o2) /
(

ẽ∗L,p1
, ẽ∗R,p2

)

m11 =
1

8

(

4v2d

3
∑

a=1

Y ∗
e,ap1

Ye,ao1 + 8m2
l,o1p1

+
(

− g22 + g21

)(

− v2u + v2d

)

δo1p1

)

(E.39)

m12 =
1√
2

(

vdTe,p2o1 − vuµ
∗Ye,p2o1

)

(E.40)

m22 =
1

4

(

2v2d

3
∑

a=1

Y ∗
e,o2a

Ye,p2a + 4m2
e,p2o2

+ g21

(

− v2d + v2u

)

δo2p2

)

(E.41)
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This matrix is diagonalized by ZE:
ZEm2

ẽZ
E,† = mdia

2,ẽ (E.42)

with

ẽL,i =
∑

t2

ZE,∗
ji ẽj , ẽR,i =

∑

t2

ZE,∗
ji ẽj (E.43)

10. Mass matrix for scalar Higgs, basis: (φd, φu)

m2
h =





m2
Hd

+ |µ|2 + 1
8

(

g21 + g22

)(

3v2d − v2u

)

−ℜ
(

Bµ

)

− 1
4

(

g21 + g22

)

vdvu

−ℜ
(

Bµ

)

− 1
4

(

g21 + g22

)

vdvu m2
Hu

+ |µ|2 − 1
8

(

g21 + g22

)(

− 3v2u + v2d

)



 (E.44)

This matrix is diagonalized by ZH :
ZHm2

hZ
H,† = mdia

2,h (E.45)

with

φd =
∑

t2

ZH
j1hj , φu =

∑

t2

ZH
j2hj (E.46)

The mixing matrix can be parametrized by

ZH =

(

− sinα cosα
cosα sinα

)

(E.47)

11. Mass matrix for pseudo scalar Higgs, basis: (σd, σu)

m2
A0 =





m2
Hd

+ |µ|2 + 1
8

(

g21 + g22

)(

− v2u + v2d

)

ℜ
(

Bµ

)

ℜ
(

Bµ

)

m2
Hu

+ |µ|2 − 1
8

(

g21 + g22

)(

− v2u + v2d

)



 (E.48)

This matrix is diagonalized by ZA:
ZAm2

A0ZA,† = mdia
2,A0 (E.49)

with

σd =
∑

t2

ZA
j1A

0
j , σu =

∑

t2

ZA
j2A

0
j (E.50)

The mixing matrix can be parametrized by

ZA =

(

− cosβ sinβ
sinβ cosβ

)

(E.51)

12. Mass matrix for charged Higgs, basis:
(

H−
d , H

+,∗
u

)

m2
H−

=





m2
Hd

+ |µ|2 + 1
8

(

g21 + g22

)(

v2d − v2u

)

1
4g

2
2vdvu +Bµ

1
4g

2
2vdvu +B∗

µ m2
Hu

+ |µ|2 + 1
8

(

g22 − g21

)(

v2d − v2u

)



 (E.52)

This matrix is diagonalized by Z+:

Z+m2
H−

Z+,† = mdia
2,H−

(E.53)

with

H−
d =

∑

t2

Z+,∗
j1 H−

j , H+
u =

∑

t2

Z+
j2H

+
j (E.54)

The mixing matrix can be parametrized by

Z+ =

(

− cosβ sinβ
sinβ cosβ

)

(E.55)
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Appendix E.7. Tadpole equations

∂V

∂vd
=

1

8

(

8vd|µ|2 − 8vuℜ
(

Bµ

)

+ vd

(

8m2
Hd

+ g21v
2
d − g21v

2
u + g22v

2
d − g22v

2
u

))

(E.56)

∂V

∂vu
=

1

8

(

− 8vdℜ
(

Bµ

)

+ 8vu|µ|2 + vu

(

8m2
Hu

− g21v
2
d + g21v

2
u − g22v

2
d + g22v

2
u

))

(E.57)

Appendix F. Particles and parameters of the MSSM in SARAH

Particles

We show here only the eigenstates after EWSB

1. Fermions

χ̃−
i Cha[{generation}] χ̃0

i Chi[{generation}]

diα Fd[{generation, color}] ei Fe[{generation}]

uiα Fu[{generation, color}] νi Fv[{generation}]

g̃i Glu[{generation}]

2. Scalars

d̃iα Sd[{generation, color}] ν̃i Sv[{generation}]

ũiα Su[{generation, color}] ẽi Se[{generation}]

hi hh[{generation}] A0
i Ah[{generation}]

H−
i Hpm[{generation}]

3. Vector bosons

giρ VG[{generation, lorentz}] W−
ρ VWm[{lorentz}]

γρ VP[{lorentz}] Zρ VZ[{lorentz}]

4. Ghosts

ηGi gG[{generation}] η− gWm

η+ gWmC ηγ gP

ηZ gZ

Parameters
g1 g1 g2 g2 g3 g3

Yu Yu Tu T[Yu] Yd Yd

Td T[Yd] Ye Ye Te T[Ye]

µ \[Mu] Bµ B[\[Mu]] m2
q mq2

m2
l ml2 m2

Hd
mHd2 m2

Hu
mHu2

m2
d md2 m2

u mu2 m2
e me2

M1 MassB M2 MassWB M3 MassG

vd vd vu vu ΘW ThetaW

φg̃ PhaseGlu ZD ZD ZV ZV

ZU ZU ZE ZE ZH ZH

ZA ZA Z+ ZP N ZN

U UM V UP Ue
L ZEL

Ue
R ZER Ud

L ZDL Ud
R ZDR

Uu
L ZUL Uu

R ZUR α \[Alpha]

β \[Beta]

30



Appendix G. Changes in comparison to version 1 of SARAH

We want shortly give an overview to the user about the main changes in the new version of SARAH.

1. New physical output:

(a) One- and two-loop renormalization group equations.
(b) One-loop self-energies and one-loop corrected tadpoles.
(c) All irreducible representations of chiral superfields possible .
(d) Some representation theory with regard to SU(N) gauge groups.
(e) Implicit charge indices are no longer restricted to SU(2)L.
(f) Check for charge conservation of a model.

2. Changes in definition of models:

(a) DEFINITION statements to structure the model file.
(b) Definition of global properties of parameters and particles.
(c) Additional interactions added to the Lagrangian also rotated to new basis.
(d) Possibility to add phases to particles.
(e) Possibility to decompose one field with several generations in flavor eigenstates.
(f) Soft-breaking terms are named to SLHA 2 conventions.
(g) Improved routines to read LesHouches files.

3. Changes in output

(a) Speed of CalcHep/CompHep and LATEXoutput significantly improved.
(b) Adding of running coupling in CalcHep model file.
(c) Possible suppression of splitting of four-scalar interactions in CalcHep.
(d) Typesetting in LATEX output improved.
(e) Overview of superfields, important terms of the Lagrangian, mass matrices, tadpole equations,

RGEs and self-energies also added to the LATEXoutput.
(f) New commands MassMatrix and TadpoleEquation to have easier access to information.

4. New models

(a) MSSM with trilinear R-parity violation.
(b) Singlet Extended Minimal Supersymmetric Standard Model (MSSM).
(c) The U(1)-Extended Minimal Supersymmetric Standard Model (UMSSM).
(d) The Secluded U(1)-Extended Minimal Supersymmetric Standard Model (sMSSM).
(e) The near-to-Minimal Supersymmetric Standard Model (nMSSM).
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