
ar
X

iv
:1

00
3.

18
98

v1
 [

he
p-

la
t]

 9
 M

ar
 2

01
0

Pseudo-random number generators for Monte

Carlo simulations on Graphics Processing Units

Vadim Demchik∗

Dnepropetrovsk National University, Dnepropetrovsk, Ukraine

August 13, 2018

Abstract

Basic uniform pseudo-random number generators are implemented on ATI
Graphics Processing Units (GPU). The performance results of the realized
generators (multiplicative linear congruential (GGL), XOR-shift (XOR128),
RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU
and GPU are discussed. The obtained speed-up factor is hundreds of times in
comparison with CPU. RANLUX generator is found to be the most appropriate
for using on GPU in Monte Carlo simulations. The brief review of the pseudo-
random number generators used in modern software packages for Monte Carlo
simulations in high-energy physics is present.

Keywords: Monte Carlo simulations, GPGPU, pseudo-random number genera-
tors, performance

1 Introduction

The development of the General Purpose computing on Graphics Processing Unit
(GPGPU) technology has opened recently a new cheap alternative to supercomput-
ers and cluster systems for researchers. The primary role of the GPGPU technol-
ogy promotion justly belongs to nVidia company which is the one of the two main
GPU hardware developers. nVidia motto is “One Researcher, One Supercomputer”.
It fully reflects the tendencies of the computational systems present-day market.
Moreover, the systems which providing the GPGPU technology become the inte-
gral parts of the contemporary supercomputers. In particular, while assembling
new supercomputer TH-1 with peak productivity 1.206 petaflops which is equipped
with the ATI GPUs HD 4870X2 on every node, China became the third country to
build a petaflop supercomputer (after USA and Germany) [1].

Pseudo-random numbers generation algorithms are key components in most
modern packages for researches and result depends on their characteristics. The
package should provide the actual investigation of the physics or the other simu-
lated problems, but not to explore the behavior of the generator itself. Thus, while
choosing generator, one should consider not only its performance productivity but
also its statistical properties. Checking the key results with generator of a differ-
ent class than used one is also very important [2]. “Pseudo-random” term actually
means that for such values always exist an algorithm which may reproduce the whole
sequence. The values, produced by some physical process, cannot be considered as
random in a general sense, because even if we cannot predict the sequence of such
numbers, it does not mean that there is no algorithm to produce them [3].

∗E-mail: vadimdi@yahoo.com

1

http://arxiv.org/abs/1003.1898v1

The main aim of the present paper is to show the possibility to adapt for GPU
the most commonly used pseudo-random number generators (PRNG) as the main
components of the software packages for Monte Carlo (MC) simulations. An essen-
tial distinction of the GPU architecture from the Central Processing Unit (CPU)
architecture causes new difficulties as well as new optimization capabilities. The
question about the performances of the different PRNGs on GPU platform is arisen
in this connection. The performance results and the difference between PRNGs
performances on CPU and GPU will be shown in the paper.

We will restrict our investigation only to uniform PRNGs. In particular some
generators were already investigated for nVidia GPUs in [4, 5]. But studied gener-
ators are not the most frequently used ones in MC simulations.

In the present paper we will not refer the question of the random-number gener-
ator testing (see for example [6] and references therein) and will content only with
implementation of existing generators on GPU.

The paper is organized as follows. Section 2 contains the brief list of the software
packages for MC simulations in high-energy physics with showing PRNGs which are
used in the corresponding package. The details of the GPU implementation and the
code listings of the realized PRNGs are described in section 3. The performance
results and discussion are collected in section 4. In section 5 we draw our con-
clusions. Finally, appendix includes some theoretical background for the realized
PRNG algorithms.

2 PRNGs in Monte Carlo simulations

In this section we present the list of PRNGs which are employed in nowadays MC
simulations.

To choose a generator which will be used in MC simulations, it is not enough to
consider only its period and algorithm output. The generator R250 was widely used
due to its simplicity and long period, but it was found that this generator has the
essential statistical defects which make impossible to use it in modern simulations
(see [9] and reference therein). Apart from general statistical tests like DIEHARD
Battery of Tests of Randomness and Crush, a generator has to pass empirical test
in real conditions. That is why, while developing MC application, usually only gen-
erators with minimal statistical influence for the present MC simulations are used.
For example, European Organization for Nuclear Research (CERN) recommends
using three PRNGs: RANMAR (V113), RANECU (V114) and RANLUX (V115).

Below is the incomplete list of the software packages for MC simulations in
high-energy physics and the PRNG which is used in corresponding package.

• FermiQCD: is an open C++ library for development of parallel Lattice
Quantum Field Theory computations [32, 33]. It uses floating-point version
of RANMAR generator as default PRNG.

• UKQCD: By indirect information UKQCD Collaboration also uses RANMAR
PRNG [34] in its software.

• MILC: is an open code of high performance research software written in C
for doing SU(3) lattice gauge theory simulations on several different (MIMD)
parallel computers [35]. MILC uses own XOR of a 127-bit feedback shift
register and a 32 bit integer congruential generator. Each node or site uses a
different multiplier in the congruential generator and different initial state in
the shift register. So, all nodes are generating different sequences of numbers.

t = (((Xn−5 ≫ 7) OR (Xn−6 ≪ 17)) XOR (1)

2

((Xn−4 ≫ 1) OR (Xn−5 ≪ 23))) AND (224 − 1),

Xn−6 = Xn−5, Xn−5 = Xn−4, Xn−4 = Xn−3, Xn−2 = Xn−1,

Xn−1 = Xn, Xn = t, Yn = ajYn−1 + c,

zn = (t XOR ((Yn ≫ 8) AND (224 − 1)))/224

• CPS: The Columbia Physics System is a large set of codes for lattice QCD
simulations [36]. RAN3 is used.

• SZIN: is the open-source software system supports data-parallel programming
constructs for lattice field theory and in particular lattice QCD [37]. RANLUX
is used in SZIN packet.

• ISAJet: is a Monte Carlo event generator for pp, pp̄, e+e− interactions [38,
39]. RANLUX is incorporated into ISAJet.

• GEANT4: is a toolkit for the simulation of the passage of particles through
matter [40]. GEANT4 uses the HEPRandom module [41] to generate
pseudo-random numbers which includes 12 different random engines (RAN-
MAR, RANECU, DRAND48, RANLUX, etc) now.

• PYTHIA: is a program for the generation of high-energy physics events
[42, 43]. RANMAR is used in PYTHIA as an internal PRNG.

• HERWIG: is a Monte Carlo package for simulating hadron emission reactions
with interfering gluons [44, 45]. RANECU is used.

• CompHEP: a package for evaluation of Feynman diagrams, integration over
multi-particle phase space and event generation [46, 47]. DRAND48 is used in
CompHEP.

• MC@NLO: is a Fortran package to implement the scheme for combining a
Monte Carlo event generator with Next-to-Leading-Order calculations of rates
for QCD processes [48, 49]. GGL is used.

• SHERPA: is a Monte Carlo event generator for the simulation of high-
energy reactions of particles in lepton-lepton, lepton-photon, photon-photon
and hadron-hadron collisions [50, 51]. RANMAR is used.

• Chroma: is a software system for lattice QCD calculations [52, 53]. In
Chroma slightly modified linear congruential generator RANNYU is imple-
mented – LCG(a = 31167285,m= 248).

• GENIE: is a neutrino event generator for experimental physics community
[54, 55]. MT19937 is used.

• ALPGEN: is an event generator for hard multiparton processes in hadronic
collisions [56, 57]. RANECU is used.

So, the most commonly used generators are RANMAR, RANLUX, RANECU
and several variations of a linear congruential generator (DRAND48, RAN3, GGL,
RANYU). Also, most new packages began to include the generator MT19937 as in-
ternal PRNG. Hence, it is reasonable to implement the generators on GPU which
are used in real MC simulations.

3

Table 1: General information about some ATI’s video cards [60].

Model Stream Core Memory Bandwidth Bus width Tflops
cores (MHz) (MHz) (GB/s) (bit) (peak)

HD 4850 800 625 993
∗ 64 256 1.0

HD 4870 800 750 900 115.2 256 1.2

HD 4870X2 2× 800 2× 750 900 2× 115.2 2× 256 2.4

HD 5850 1440 725 1000 128 256 2.1

HD 5870 1600 850 1200 153.6 256 2.7

HD 5970 2× 1600 2× 725 1000 2× 128 2× 256 4.6

3 GPU implementation

In this section we give the base ideas for PRNG implementation on GPU and
describe the source codes of the following PRNGs realizations on ATI GPUs: GGL,
XOR128, RANECU, RANMAR, RANLUX and MT19937.

We use ATI Stream SDK [61] for the realization of the PRNGs on ATI GPU
as software environment. ATI CAL allows using ATI GPU hardware in the most
effective way [58]. That is why all PRNGs realizations presented below are made on
ATI Intermediate Language (IL) [59], and not on higher level, for example OpenCL
or Brook+.

Three different ATI video cards are used to check the algorithm efficiency – ATI
Radeon HD 5850, HD 4870 and HD 4850. The essential for GPGPU-applications
parameters about some ATI’s video cards are presented in Table 1. All cards are
equipped with the GDDR5 memory except HD 4850 which contains GDDR3 mem-
ory (this fact was marked with the asterisk). GDDR5 memory possesses a quadruple
effective data transfer rate relative to its physical clock rate, instead of double as
with GDDR3 memory. It is necessary to note that HD 4870X2 and HD 5970 are
two-core cards. For our purposes at program level they are equivalent to two devices
installed in the system.

3.1 General implementation scheme

To design the GPU-applications it must be accounted the following main features
of hardware architecture:

• each general-purpose register and memory cell has the four 32-bit components
that are designated as .x, .y, .z and .w;

• floating point operations are more productive on GPU than integer operations
(in compare with CPUs);

• double precision floating point operations are the slowest on GPU;

• ATI GPU can perform up to five operations on each VLIW processor simul-
taneously.

Computing programs working for GPU are known as kernels. All kernels are run
by the host program. Each kernel must perform a complete operation, because of
ATI Stream SDK does not support the execution of a kernel from another kernel
(except OpenCL applications).

We offer to use PRNGs directly in MC procedures as the separate subroutines.
Undoubtedly such scheme allows the possibility to keep generated random numbers

4

PRNG
bootstrap

initialization

generation

finalization

PRNG

Lag table,
indices,
carry,
etc.

Figure 1: PRNG structure scheme

in GPU-memory, for example, for further usage by other procedures, as it is usually
made in CPU-simulations. However, it seems to be more effective to “virtualize”
produced by PRNG pseudo-random numbers as it allows to eliminate unnecessary
additional read-write operations to the GPU-memory for the random numbers as
well as to decrease the GPU-memory consumption of the application.

In order to accelerate GPU-applications work, we recommend to keep all data
needed for kernel operations directly in GPU-memory, because memory operations
are a bottleneck of GPU.

For MC simulations on GPU it is convenient to produce four random numbers
through one PRNG pass which is closely related to GPU memory architecture.
Under such conditions one can use GPU performance in the most efficient way. As
a rule more than one random number are used in MC simulations for updating (for
example, one for update proposition and one for probability). So, it seems to be
natural to generate the corresponding number of the pseudo-random numbers for
further purposes.

The common structure scheme of PRNGs is shown in Figure 1. All implemented
PRNGs are divided into 3 phases:

• initialization: loading and preparing the previous state of PRNG and all
preparing operations for PRNG;

• random number generation: actually all PRNG operations which generate
pseudo-random numbers;

• finalization: storing the final state of PRNG for the next run.

It allows to make the best use of PRNG, as it is needed a few more random numbers.
For example, at multihit updating method the several pseudo-random numbers are
required per one pass of the updating procedure. The initialization subroutine of
the PRNG is called on the start of the updating procedure. During the work the
updating procedure may call the PRNG generation subroutine many times. And
finally, at the end it must call the finalization subroutine of the PRNG.

All PRNG lag tables are stored directly in GPU-memory and it avoids needless
transfer the data between CPU and GPU memory. Each instance of the PRNG uses
its own lag table to parallelize the process. The universal method of the paralleling
is used in all realized PRNGs – using the independent sequences. To be exact, every

5

il_cs_2_0
...
call 10
...
call 11

...

call 12
...

endmain

func 10
dcl_literal l200, 0, 0, %-PM_r%, %PM_m_FP%
dcl_literal l201, %PMSEED_MASK%, %PM_a%, %PM_m%, %PM_q%
and r201.x,vaTid.x,l201.x
mov r203,g[r201.x+%iIPMSEED_START%]
ret_dyn

endfunc

func 11
udiv r202,r203,l201.wwww
umod r204,r203,l201.wwww
umul r205,r202,l200.zzzz
imad r206,r204,l201.yyyy,r205
ilt r207,l200.xxxx,r206
cmov_logical r208,r207,l200.xxxx,l201.zzzz
iadd r203,r206,r208
utof r200,r203
div r200,r200,l200.wwww
ret_dyn

endfunc

func 12
mov g[r201.x+%iIPMSEED_START%],r203
ret_dyn

endfunc
end

// random number in r200

// PRNG initialization

// PRNG generation

// PRNG finalization

Figure 2: Source code of GGL PRNG

running instance of PRNG obtains its own index J = 0, 1, . . . , Jmax. The lowest
bits of J serve to identify the lag table for PRNG. Another possible scheme which
may be used is the selection of the lag table through the modulo operation.

We use a little bigger number of actual PRNG instances than the number of
the stream cores in particular GPU to avoid possible collisions among threads. For
example, top one-unit ATI GPU card HD 5870 has 1600 stream cores (see Table 1),
while 13 lowest bits were used to identify the lag table for PRNG. It corresponds
to the 8192 parallel instances of the PRNG.

Almost all generators require the initialization procedure to bootstrap the lag
table (three of presented here generators, RANMAR, RANLUX and MT19937). This
procedure is realized directly on the GPU unit, not with the help of the CPU
with further transfer the lag table into GPU-memory. We do not show lag table
initialization procedure here to save the space in the article.

For convenience and performance purposes all the kernels have been precompiled
to replace all constants %VariableName% with the corresponding values. It allows
to avoid the constant buffer using and put the runtime constant parameters directly
in assembler code. Under %VariableName% the value of the respecting variable will
be implied in source codes below. Sometimes before the VariableName it will stay
the prefix i (like %iVariableName%) which will show the decimal format instead of
the default hexadecimal format. Decimal format is needed to specify the relative
offsets in global memory operations.

Note that each of the presented generators can be easily modified for the genera-
tion of the pseudo-random numbers with double precision. All presented generators
are either 24-bit, or 32-bit, while for number representation with double precision 64
bits are required. Thus, for correct generation pseudo-random numbers with double
precision one should use several numbers with single precision, but not only covert
a number with the single precision into the double precision number by the regular
conversion command (it considerably decreases the quantity of possible realization).

3.2 GGL

GGL is one of the simplest and computational “light” portable PRNG which could
be implemented on GPU. GGL has been studied by Langdon on nVidia Tesla
T10P with CUDA SDK [5]. The obtained peak performance of the PRNG is
about 2× 109 pseudo-random numbers per second. It is obvious that while period
PGGL ≤ 2147483646 and its run in 1024-threads and output 109 pseudo-random
numbers per second the GGL period could be exhausted in about 0.002 second. So,
GGL are realized here just to check the performance of the pseudo-random number
production on ATI GPUs on a very simple generator which requires to store only
one seed value per PRNG instance.

6

Park and Miller have published the four Pascal implementations of the GGL [12],
for integer and real arithmetic (one direct scheme and one avoiding the overflow).
For implementation we chose the “Integer version 2” of the GGL [12]. The ATI IL
source code of GGL PRNG is presented in Figure 2. There are three subroutines
10, 11 and 12 after the main module. Subroutines 10 and 12 are called only once
and perform the initialization and the finalization of the PRNG, correspondingly.
Subroutine 11 produces four-component pseudo-random numbers in register R200
per one pass. This program scheme fully corresponds to the basic scheme, described
in subsection 3.1, and hereinafter will be used for the rest of generators presented
in this work.

The used variables are:

PM_m = 2147483647, PM_m_FP = 2147483647.0,

−PM_r = −2836, PM_a = 16807,

PM_q = 127773,

PMSEED_MASK specifies the PRNG instance and iIPMSEED_START is the offset
of the lag table in the global buffer which is prepared by the host program.

The parallelization scheme with separate sequences is implemented here – every
GPU thread produces four separate pseudo-random sequences (by every slot of gen-
eral purpose register R200). So, the whole number of the pseudo-random sequences
is the quadruple number of the threads to be run. The threads must be initialized
carefully to reach the maximal period length of the PRNG and avoid the sequences
overlapping.

Generator requires to keep only one seed-value per thread for work which is
equal to choosing only one four-component cell per thread in global memory which
is read and kept only once per PRNG cycle. Thus, for 4096-thread run (or 16384
subthreads) the size of the lag table will be 64kB. Initial seeds are filled with the
host program and transferred to GPU memory before the first run of the GGL. Seed
values must be exactly chosen to rich the maximal period of PRNG. But in our
case the performance of the generator is the main aim, so all the seeds are selected
randomly, because the generator exhausted whole the period for very short time
and it is not so important when and where the overlapping of the sequences will
began.

The other LCGs could be easily realized on the given example of the PRNG
by substituting the corresponding LCG parameters. GGL generator possesses very
good performance, as it will be shown in the next section. Nevertheless, in spite
of the PRNG performance, it would not be used for practical purposes due to very
short period.

3.3 XOR128

Next PRNG implemented on ATI GPU is XOR128, a very fast generator with
much better statistical properties and considerably longer period than GGL. The
distinctive feature of this PRNG is the usage of the four-component 32-bit values to
produce the sequence which exactly corresponds to bit-capacity of GPU memory.

The ATI IL source code of XOR128 is shown in Figure 3. The following variables
are used

XR_L1 = 11, XR_R1 = 19,

XR_R2 = 8, XR_m = 4294967295.0,

XRSEED_MASK specifies the PRNG instance, iIXRMSEED_START is the offset of
the lag table in global buffer which is prepared by host program.

7

il_cs_2_0
...
call 10
...
call 11

...

call 12
...

endmain

func 10
dcl_literal l200, %XRSEED_MASK%,%XR_L1%,%XR_R1%,%XR_R2%
dcl_literal l201, %XR_m%, 0, 0, 0
and r204.x,vaTid.x,l200.x
mov r201,g[r204.x+%iIXRSEED_START%]
ret_dyn

endfunc

func 11
ishl r202,r201,l200.yyyy
ixor r202,r202,r201
ushr r203,r202,l200.wwww
ixor r203,r202,r203
ushr r201.x,r201.w,l200.z
ixor r201.x,r201.x,r201.w
ixor r201.x,r201.x,r203.x
ushr r201._y,r201.x,l200.z
ixor r201._y,r201.y,r201.x
ixor r201._y,r201.y,r203.y
ushr r201.__z,r201.y,l200.z
ixor r201.__z,r201.z,r201.y
ixor r201.__z,r201.z,r203.z
ushr r201.___w,r201.z,l200.z
ixor r201.___w,r201.w,r201.z
ixor r201.___w,r201.w,r203.w
utof r200,r201
div r200,r200,l201.xxxx
ret_dyn

endfunc

func 12
mov g[r204.x+%iIXRSEED_START%],r201
ret_dyn

endfunc
end

// random number in r200

// XOR128 initialization

// XOR128 generation

// XOR128 finalization

Figure 3: Source code of XOR128 PRNG

The number of sequences produced by XOR128 corresponds to the number of
threads. One thread generates four successive pseudo-random numbers from one
sequence in every components of the general purpose register R200. Marsaglia’s
algorithm [25] is slightly modified to parallelize sequence production into four sub-
threads – four items of the lag table are composed in one four-component memory
cell and are produced in one pass. Unfortunately, it is impossible to avoid re-
cursion without making the algorithm more complicated. Therefore among the
four-component operations in the source code there are single-slot operations which
are partially parallelized further by the IL compiler.

Except the final integer-to-float conversion operations in the algorithm, there are
only bit shift and exclusive-OR operations which are “computationally light” GPU
operations in compare with integer operations. Along with few memory operations
(one read and one written operations per run), it also increases the performance of
PRNG on GPU.

The XOR128 generator has a period large enough to be used on GPU. For 2048-
threads run and average performance about 1010 samples per second it could be
exhausted in about 1017 years only. And only strong criticism of L’Ecuyer [26] does
not to allow use XOR128 as standard PRNG on GPU.

Generator requires keeping four 32-bit integers per thread. In the present real-
ization PRNG produces four sequential pseudo-random numbers per thread which
allows reserving only one 4-component cell per thread in global memory. This 4-
component seed is read and written only once per PRNG cycle. The size of the
XOR128 lag table is the same to GGL, i.e. for 4096-thread run it takes the 64kB of
the GPU memory.

3.4 RANECU

Another high-performed PRNG realized on ATI GPU is RANECU. This generator is
recommended by CERN and used in some software packages, listed in the previous
section. Relatively long period and quite good statistical properties make RANECU
reasonably attractive generator for small tasks.

The scheme like in the case of GGL generator is implemented here: each thread
produces the four independent sequences which are composed into the four compo-
nents of the general purpose register R200. For RANECU run in 1024-threads and
output 5 × 109 pseudo-random numbers per second the RANECU period could be
exhausted in about 31 hours. Despite this fact the generator is still acceptable for

8

il_cs_2_0
...
call 10
...
call 11

...

call 12
...

endmain

func 10
dcl_literal l200, %RESEED_MASK%, %RESEEDP11%,

%-RESEEDP11%, %-RESEEDP12%
dcl_literal l201, %RESEEDP13%, 0, %REICONS%, %RESEEDP21%
dcl_literal l202, %-RESEEDP21%, %-RESEEDP22%,

%RESEEDP23%, %REICONS2%
dcl_literal l203, 1, %REICONS3%, %RETWOM31%, 0
and r201.x,vaTid.x,l200.x
mov r202,g[r201.x+%iIRESEED_START%]
mov r203,g[r201.x+%iIRESEED_START2%]
ret_dyn

endfunc

func 11
udiv r204,r202,l200.yyyy
imad r205,r204,l200.zzzz,r202
imul r206,r204,l200.wwww
imad r205,r205,l201.xxxx,r206
ilt r207,r205,l201.yyyy
cmov_logical r207,r207,l201.zzzz,l201.yyyy
iadd r202,r205,r207
udiv r204,r203,l201.wwww
imad r205,r204,l202.xxxx,r203
imul r206,r204,l202.yyyy
imad r205,r205,l202.zzzz,r206
ilt r207,r205,l201.yyyy
cmov_logical r207,r207,l202.wwww,l201.yyyy
iadd r203,r205,r207
inegate r204,r203
iadd r205,r202,r204
ilt r207,r205,l203.xxxx
cmov_logical r207,r207,l203.yyyy,l201.yyyy
iadd r200,r205,r207
utof r200,r200
mul r200,r200,l203.zzzz
ret_dyn

endfunc

func 12
mov g[r201.x+%iIRESEED_START%],r202
mov g[r201.x+%iIRESEED_START2%],r203
ret_dyn

endfunc
end

// random number in r200

// RanEcu initialization

// RanEcu generation

// RanEcu finalization

Figure 4: Source code of RANECU PRNG

wide range of MC simulation tasks.
The ATI IL source code of the RANECU PRNG is presented in Figure 4. The

following variables are used

RESEEDP11 = 53668, −RESEEDP11 = −53668,

−RESEEDP12 = −12211, RESEEDP13 = 40014,

RESEEDP21 = 52774, −RESEEDP21 = −52774,

−RESEEDP22 = −3791, RESEEDP23 = 40692,

REICONS = 2147483563, REICONS2 = 2147483399,

REICONS3 = 2147483562, RETWOM31 = 1.0/2147483648.0,

iIRESEED_START and iIRESEED_START2 are the offsets of two tables of seeds in
global buffer, RESEED_MASK specifies the PRNG instance. In fact, the RANECU
lag table is divided into two tables for convenience here. These tables are prepared
by the host program.

The generator requires keeping two integer seed-values per thread which are
grouped into two lag subtables. So for 4096-thread run the size of the lag table is
128kB.

The generator kernel is made on integer arithmetic base which slightly brings
down the generator performance while using GPUs. However, simplicity of the
algorithm and small amount of the lag table elements completely compensate this
“drawback”. On the base of the present code, one can easily construct another MRG
by substitution of the corresponding parameters.

3.5 RANMAR

The next generator realized on ATI GPU is the 24-bit Marsaglia PRNG RANMAR.
It was previously implemented on ATI GPU in [58] for Ising model and SU(2)
gluodynamics simulations.

In contrast to previously presented PRNGs, RANMAR has a larger lag table
which contains 97 elements. All these lag table items must be prepared before
the first working pass of the generator. Of course, the lag table may be directly
initialized by the user, but it is not convenient in practice. So, the RANMAR lag
table is initialized by stand-alone procedure RMARIN, proposed by James [23]. In

9

il_cs_2_0
...
call 10
...
call 11

...

call 12
...

endmain

func 10
dcl_literal l200, %RMSEED_MASK%, %RMSEED_START%, -1, 0
dcl_literal l201, 0.0, 1.0, 0.0, 0.0
dcl_literal l202, %RM_CD%, %RM_CM%, 0, 0
dcl_literal l203, %RMSEED_ALL%, %RMSEED_ALL%,

%RMSEED_97%, %RMSEED_97-1%
iand r201.x,vaTid.x,l200.x
umad r202.xy,r201.xx,l203.xy,l200.yy
iadd r203.xy,r202.xy,l203.zw
mov r204.xy,g[r203.x].xy
mov r205,g[r203.x+1]
iadd r206.xy,r202.xy,r204.xy
ret_dyn

endfunc

func 11
sub r207,g[r206.x],g[r206.y]
lt r208,r207,l201.xxxx
cmov_logical r210,r208,l201.yyyy,l201.xxxx
add r207,r207,r210
mov g[r206.x],r207
iadd r206.xy,r206.xy,l200.zz
ilt r211.xy,r206.xy,r202.xy
cmov r206.xy,r211.xy,r203.yy
sub r205,r205,l202.xxxx
lt r212,r205,l201.xxxx
cmov_logical r209,r212,l202.yyyy,l200.wwww
add r205,r205,r209
sub r207,r207,r205
lt r209,r207,l201.xxxx
cmov_logical r209,r209,l201.yyyy,l200.wwww
add r207,r207,r209
mov r200,r207
ret_dyn

endfunc

func 12
iadd g[r203.x].xy,r206.xy,r202.xy_neg(xy)
mov g[r203.x+1],r205
ret_dyn

endfunc
end

// random number in r200

// RanMar initialization

// RanMar generation

// RanMar finalization

Figure 5: Source code of RANMAR PRNG

this procedure, the whole lag table is initialized on the base of only two given 5-
digit integers, each set of which causes an independent sequence of the sufficient
length for an entire calculation. The seed variables can have values between 0 and
31328 for the first variable and 0 and 30081 for the second variable, respectively.
RANMAR can create, therefore, 900 million independent subsequences for different
initial seeds with each subsequence having a length of about 1030 pseudo-random
numbers. This approach considerably reduces the number of the possible generator
states. Still it brings an important element of the generator features – easy division
of sequences produced by generator among PRNG instances without overlapping.
Possible sequences quantity (900 millions) at existing or developing hardware is
considered to be sufficient even in medium-term perspective.

The generator consists of two parts:

• kernel which produces the seed numbers on initial seed values; in fact this
kernel is a replica of the RMARIN subroutine of the James’ version [23];

• subroutines which directly produce the random numbers.

First part is executing only for initialization.
The floating-point version of the RANMAR generator is realized here which pro-

duces the pseudo-random directly in the interval [0; 1). So, it is not needed to use
slowest integer-to-floating point converting operation.

Apart from 97 elements in the lag table each RANMAR instance must store
previous value of arithmetic sequence and two indices which are connected to each
other. As in the case of GGL PRNG, every GPU thread produces four indepen-
dent sequences in the presented implementation of RANMAR. Obviously at such
approach, it is necessary to keep only one pair of indices for all four subthreads,
because these subthreads are executed out synchronously. So, it requires 2.5 mem-
ory cells be read and written for one PRNG pass. The size of RANMAR lag table
for 4096-thread run is about 6MB. Initially lag table is prepared by stand-alone
procedure RMARIN which is not shown here.

The ATI IL source code of RANMAR PRNG is presented in Figure 5. The
following variables are used

RM_CD = 7654321.0/16777216.0, RM_CM = 16777213.0/16777216.0,

RMSEED_97 = 97, RMSEED_97− 1 = 96,

RMSEED_ALL = 99,

10

RMSEED_START is the offset of the lag table in global buffer, RMSEED_MASK
specifies the PRNG instance.

3.6 RANLUX

Nowadays RANLUX PRNG is one of the standard high-performed generators for
Monte-Carlo simulations. The statistical properties of the generator are well-known.
From the realization point of view, distinctive feature of the generator is the neces-
sity to discard out groups of generated pseudo-random numbers after one generation
cycle. Omitted values quantity is determined by the “luxury” parameter. While im-
plementation of the algorithm on the central processing unit such discarding is
“virtual”, because lag table fits in processor cache very well, as a rule. Still this
algorithm phase is very resource-intensive on GPU, because global buffer is not a
generally cached object. Thus it is obvious, that the PRNG performance is strongly
depend on this phase of algorithm realization.

To implement the RANLUX generator, we use three quite different approaches.
First of all, the direct translation of algorithm is performed. In this scheme all the
seed values are updated directly in GPU global memory. Every thread in point
of fact generates simultaneously the four independent sequences of the pseudo-
random numbers. Luxury is performed for all four subthreads at the same time.
This approach makes the algorithm considerably simpler, but does not allow getting
the best performance.

Next evident approach is to use the indexed temporary array for luxury opera-
tion. It allows to make process execution much faster: at luxury level=3 3.5 times
faster and 5 times faster at luxury level=4, keeping the complexity of the algorithm
meanwhile.

Third approach which really allows to make algorithm faster and in practice
minimize the dependence of the execution time on luxury level, is the “planar”
scheme. The geometry of the lag table is taken into account as much as possible in
this scheme. For RANLUX it consists of the 24 elements which naturally could be
grouped into six 4-component 32-bit registers. The new difficulty to vectorize the
RANLUX algorithm is arisen due to the necessity of the recursive calculation of the
carry bit cn which depends on the preceding states of the generator. Therefore, some
serial operations are appeared in planar RANLUX code as well as in presented here
XOR128 implementation. Planar RANLUX procedure produces four pseudo-random
numbers from one sequence for one pass of the generator.

Base algorithm RANLUX requires discarding 24, 73, 199 and 365 values after
one RANLUX cycle for luxury level 1, 2, 3 and 4, respectively. However to perform
luxury in the planar implementation of the RANLUX, it is convenient to discard
some larger number than ones, proposed by Lüscher [30]. Strictly speaking, it
is convenient to discard the number of the values which are multiply by 24. In
CPU implementation such approach seems to be redundant (see [30]), but on GPU
it shows better performance. Thus, in planar scheme the following numbers are
discarded: 24, 96, 216 and 384 (for luxury levels 1, 2, 3 and 4, respectively).

The ATI IL source code of planar RANLUX PRNG is presented in Figure 6. The
following variables are used

RLSEED_ALL_4 = 7, RLTWOM24 = 2−24,

RLSEED_24_4 = 24/4 = 6, RLSEED_24_4− 1 = 5,

RLSEED_START is the offset of the lag table in global buffer, RLNSKIP is the num-
ber of generated values to be discarded (is defined by the luxury level), RLSEED_-
MASK specifies the PRNG instance.

Due to relatively large lag table, RANLUX as well as RANMAR generator requires
the stand-alone initializing procedure. This procedure is running only once and does

11

il_cs_2_0
...
call 10
...
call 11

...

call 12
...

endmain

func 10
dcl_literal l200, %RLSEED_MASK%, %RLSEED_ALL_4%,

%RLSEED_START%, -24
dcl_literal l201, %RLNSKIP%, %RLTWOM24%, %RLSEED_24_4%,

%RLSEED_24_4-1%
dcl_literal l202, 19, 5, 20, 2
dcl_literal l203, 3, 1, -1, -4
dcl_literal l204, 0.0, 1.0, 0, 0
and r201.x,vaTid.x,l200.x
umad r201.x,r201.x,l200.y,l200.z
iadd r202.xy,r201.xx,l201.zw
fence_memory
mov r203,g[r202.x]
ushr r204.xyz,r203.xyz,l202.ww0
iadd r205.xyz,r201.xx0,r204.xyz
mov r206,g[r205.y]
ret_dyn

endfunc

func 11
if_logicalz r205.z
mov r207.x,l201.x
if_logicalnz r207.x

mov r208,g[r201.x]
mov r209,g[r201.x+1]
mov r210,r206
mov r211,g[r201.x+3]
mov r212,g[r201.x+4]
mov r213,g[r201.x+5]
whileloop

ilt r207._y,l204.z,r207.x
break_logicalz r207.y
mov r214,r213
mov r215,r209
call 13
mov r213.xyzw,r216.wzyx
mov r214,r212
mov r215,r208
call 13
mov r212.xyzw,r216.wzyx
mov r214,r211
mov r215,r213
call 13
mov r211.xyzw,r216.wzyx
mov r214,r210
mov r215,r212
call 13
mov r210.xyzw,r216.wzyx
mov r214,r209
mov r215,r211
call 13
mov r209.xyzw,r216.wzyx
mov r214,r208
mov r215,r210
call 13
mov r208.xyzw,r216.wzyx
iadd r207.x,r207.x,l200.w

endloop
mov r206,r210
mov r214,r213
mov r215,r209
call 13

mov r213.xyzw,r216.wzyx
mov r200,r216
mov r203.xyz,l202.xyz
ushr r204.xyz,r203.xyz,l202.ww0
iadd r205.xyz,r201.xx0,r204.xyz
mov g[r201.x],r208
mov g[r201.x+1],r209
mov g[r201.x+2],r210
mov g[r201.x+3],r211
mov g[r201.x+4],r212
mov g[r201.x+5],r213

else
mov r214,g[r205.x]
iadd r217.xyz,r205.xyz,l203.zzw
ige r218.xy,r217.xy,r201.xx
cmov_logical r217.xy,r218.xy,r217.xy,r202.yy
mov r215,g[r217.y]
call 13
mov g[r205.x].xyzw,r216.wzyx
mov r205,r217

endif
else
mov r214,g[r205.x]
iadd r217.xyz,r205.xyz,l203.zzw
ige r218.xy,r217.xy,r201.xx
cmov_logical r217.xy,r218.xy,r217.xy,r202.yy
mov r215,g[r217.y]
call 13
mov g[r205.x].xyzw,r216.wzyx
mov r205,r217

endif
mov r200,r216
ret_dyn

endfunc

func 12
fence_memory
iadd r203.xyz,r205.xyz,r201.xx0_neg(xy)
ishl r203.xyz,r203.xyz,l202.ww0
iadd r203.xy,r203.xy,l203.xy
mov g[r201.x+6],r203
ret_dyn

endfunc

func 13
sub r216.xy,r206.yx,r214.wz
sub r216.x,r216.x,r203.w
lt r219.x,r216.x,l204.x
cmov_logical r220.x,r219.x,l204.y,l204.x
add r216.x,r216.x,r220.x
cmov_logical r203.___w,r219.x,l201.y,l204.x
sub r216._y,r216.y,r203.w
lt r219.x,r216.y,l204.x
cmov_logical r220.x,r219.x,l204.y,l204.x
add r216._y,r216.y,r220.x
cmov_logical r203.___w,r219.x,l201.y,l204.x
sub r221.xy,r215.wz,r214.yx
sub r221.x,r221.x,r203.w
lt r219.x,r221.x,l204.x
cmov_logical r220.x,r219.x,l204.y,l204.x
add r221.x,r221.x,r220.x
cmov_logical r203.___w,r219.x,l201.y,l204.x
sub r221._y,r221.y,r203.w
lt r219.x,r221.y,l204.x
cmov_logical r220.x,r219.x,l204.y,l204.x
add r221._y,r221.y,r220.x
cmov_logical r203.___w,r219.x,l201.y,l204.x
mov r216.__z,r221.x
mov r216.___w,r221.y
mov r206,r215
ret_dyn

endfunc
end

// random number in r200

// RanLux initialization

// RanLux generation

// RanLux finalization

// RanLux update

Figure 6: Source code of RANLUX PRNG

12

not take much resources, so its listing is not presented here. Also, it may be realized
in the host program with further copying the result to the GPU global buffer.

Generator RANLUX, as well as RANMAR PRNG, possesses the important feature
in the context of the GPU realization – the generator kernel is build on floating-
point arithmetic. Each instance of the planar version of the RANLUX requires
storing seven 4-component cells only (three indices which are connected to each
other, 24 items of lag table and carry bit). So for 4096-thread run the size of the lag
table is 448kB (or 1664kB for the case of the global buffer and temporary indexed
array RANLUX versions).

3.7 Mersenne Twister

The last PRNG which is implemented in this work is MT19937, one of the Mersenne
Twister generators family. This generator seems to be very attractive nowadays due
to its extremely long period and relatively easy algorithm.

Mersenne Twister is incorporated in nVidia SDK as sample. The realized in
nVidia SDK version of the Mersenne Twister contains 19 element lag table and
period about 2607. It is easy to implement the MT19937 generator on the basis of
this example by substituting the relevant parameters.

In the presented realization of MT19937 we use the same scheme as in the
planar implementation of RANLUX. Whole 624-element lag table is located into 156
four-component cells. So, for the one pass of the PRNG it is easy to obtain four
sequential pseudo-random numbers. But unfortunately, it is impossible to store
whole lag table in the general-purpose registers to perform the lag table updating
procedure, because the total number of the general-purpose registers allocated for
one thread is 128. Thus, all operations with the lag table are realized with the slow
direct access to the global buffer, what greatly reduces the total performance of
the generator. Nevertheless, the using of the four-component elements somewhat
compensates this disadvantage.

The ATI IL source code of MT19937 PRNG is presented in Figure 7. The
following variables are used

MTSEED_624_4 = 156, MTSEED_ALL = 157,

MTSEEDP2 = 9D2C568016, MTSEEDP3 = EFC6000016,

MTSEEDP4 = 0.5, MTSEEDP5 = 4294967296.0,

MT_UPPER_MASK = 8000000016, MT_LOWER_MASK = 7FFFFFFF16,

MT_MATRIX_A = 9908B0DF16,

MTSEED_START is the offset of the lag table in global buffer, MTSEED_MASK
specifies the PRNG instance.

The lag table of the MT19937 is the biggest one among the lag tables of the
presented generators. For 4096-thread run its size is about 10MB. MT19937 also
requires the initialization procedure which prepares the lag table for the first run.

4 Performance results and discussion

For all PRNGs implemented here we use the MS Visual Studio 2008 Express edition
(C++ compiler) [63]. Original codes are presented in corresponding literature (see
Section A) and in several cases they are translated into C++.

The CPU implementation of the PRNGs is constructed on the following common
scheme: each PRNG is implemented as subroutine which produces only one pseudo-
random number per call. Then the main program sums up all produced values
and checks the elapsed time. The 108 pseudo-random numbers are used for this

13

il_cs_2_0
...
call 10
...
call 11

...

call 12
...

endmain

func 10
dcl_literal l200, %MTSEED_MASK%, 1, %MTSEED_624_4%, 0
dcl_literal l201, %MTSEED_ALL%, %MTSEED_START%, 155, 56
dcl_literal l202, 11, 7, 15, 18
dcl_literal l203, %MTSEEDP2%, %MTSEEDP3%, %MTSEEDP4%,

%MTSEEDP5%
dcl_literal l204, 0, 1, 99, 100
dcl_literal l205, 56, 57, -1, 0
dcl_literal l206, 0, 155, 98, 99
dcl_literal l207, 0, %MT_UPPER_MASK%, %MT_LOWER_MASK%,

%MT_MATRIX_A%
and r201.x,vaTid.x,l200.x
umad r201.xy,r201.xx,l201.xx,l201.yy
mov r202.x,g[r201.x+%iMTSEED_624_4%].x
ret_dyn

endfunc

func 11
ult r202.y,r202.x,l200.z
call_logicalz r202.y, 13
call 14
ret_dyn

endfunc

func 12
iadd g[r201.x+%iMTSEED_624_4%].x,r202.x,l200.y
ret_dyn

endfunc

func 13
fence_memory
iadd r203,r201.xxxx,l204
iadd r204.xy,r201.xx,l201.zw
mov r206,g[r203.x]
mov r208,g[r203.z]
whileloop

mov r205,r206
mov r206,g[r203.y]
mov r207,r208
mov r208,g[r203.w]
mov r210.xyz,r207.yzw
mov r210.___w,r208.x
iand r211,r205,l207.yyyy
iand r212.xyz,r205.yzw,l207.zzz
iand r212.___w,r206.x,l207.z
ior r213,r211,r212
iand r214,r213,l200.yyyy
ushr r209,r213,l200.yyyy
cmov_logical r214,r214,l207.wwww,l200.wwww
ixor r209,r210,r209
ixor r209,r209,r214
mov g[r203.x],r209
iadd r203,r203,l200.yyyy
uge r211.y,r203.x,r204.y
break_logicalnz r211.y

endloop

fence_memory
iadd r203,r201.xxxx,l205
whileloop

mov r205,r206
mov r206,g[r203.y]
mov r207,r208
mov r208,g[r203.w]
mov r210.xyz,r207.yzw
mov r210.___w,r208.x
iand r211,r205,l207.yyyy
iand r212.xyz,r205.yzw,l207.zzz
iand r212.___w,r206.x,l207.z
ior r213,r211,r212
iand r214,r213,l200.yyyy
ushr r209,r213,l200.yyyy
cmov_logical r214,r214,l207.wwww,l200.wwww
ixor r209,r210,r209
ixor r209,r209,r214
mov g[r203.x],r209
iadd r203,r203,l200.yyyy
uge r211.y,r203.x,r204.x
break_logicalnz r211.y

endloop
fence_memory
iadd r203,r201.xxxx,l206

mov r205,r206
mov r206,g[r201.x]
mov r207,r208
mov r210.xyz,r207.yzw
mov r210.___w,g[r203.w].x
iand r211,r205,l207.yyyy
iand r212.xyz,r205.yzw,l207.zzz
iand r212.___w,r206.x,l207.z
ior r213,r211,r212
iand r214,r213,l200.yyyy
ushr r209,r213,l200.yyyy
cmov_logical r214,r214,l207.wwww,l200.wwww
ixor r209,r210,r209
ixor r209,r209,r214
mov g[r203.y],r209

mov r202.x,l200.w
ret_dyn

endfunc

func 14
iadd r201.y,r201.x,r202.x
fence_memory
mov r200,g[r201.y]
ushr r215,r200,l202.xxxx
ixor r200,r200,r215
ishl r215,r200,l202.yyyy
iand r215,r215,l203.xxxx
ixor r200,r200,r215
ishl r215,r200,l202.zzzz
iand r215,r215,l203.yyyy
ixor r200,r200,r215
ushr r215,r200,l202.wwww
ixor r200,r200,r215
utof r200,r200
add r200,r200,l203.zzzz
div r200,r200,l203.wwww
ret_dyn

endfunc
end

// random number in r200

// MT19937 initialization

// MT19937 generation

// MT19937 finalization

// MT19937 update seeds

// MT19937 generate rnd()

Figure 7: Source code of MT19937 PRNG

14

X
O

R
1
2
8

R
a
n
M

a
r

G
G

L

R
a
n
E

c
u

M
T
1
9
9
3
7

R
a
n
L
u
x
3
P

R
a
n
L
u
x
0
P

R
a
n
L
u
x
1
P

R
a
n
L
u
x
2
P

R
a
n
L
u
x
4
P

0.0

5.0E+06

1.0E+07

1.5E+07

2.0E+07

Intel Core 2 Quad CPU Q6600 @ 2.40GHz, 4GB RAM (DDR2 5-5-5-16)

Intel Celeron CPU 420 @ 1.60GHz, 1.5GB RAM (DDR2 5-5-5-15)

Samples
per

second

Figure 8: Performance results for some PRNGs on two PCs

procedure. Elapsed time is averaged over several single thread executions and the
mean CPU performance is found. For the reference PCs we use two machines:

• Intel Core 2 Quad CPU Q6600 @ 2.40GHz (L1 cache 4×32KB, L2 cache 2×4MB),
4GB RAM DDR2 400MHz Dual Symmetric (5-5-5-16) Command rate 2T;

• Intel Celeron CPU 420 @ 1.60GHz (L1 cache 32KB, L2 cache 512KB),
1.5GB RAM DDR2 333MHz Dual (5-5-5-15) Command rate 1T,

which correspond to the middle-level and entry-level computers, respectively.
The CPU performance results are presented in Figure 8 and Table 2. It could

be seen that the differences among the performances of the generators are about
5-6 times. XOR128 and RANMAR show the best performance results. Under CPU
performance here and after we mean the performance of the one-thread instance of
the algorithm. Of course, one-thread run does not provide maximal system utiliza-
tion, however it allows comparing the potential performances of the systems. To
show impartial assessment we can just multiply CPU performance by the quantity
of the threads, supported up by peculiar processor, because it is always possible
to run several PRNG instances to produce different independent pseudo-random
sequences.

All the PRNGs implementations on GPU are carried out in ATI Intermediate
Language [59] (ATI Catalyst 10.1 display driver is used [62]). The host environment
is also realized in MS Visual Studio 2008 C++ [63]. All used here GPUs are the
main GPU devices installed in the system (i.e. they also provide visualization for the
operational system) which lowers down the maximal performance of the system, but
reflects more precisely the usual configuration of the GPU computational system.
To obtain the performance of each PRNG, we run them up to 1000 times each to
produce 4 × 107 pseudo-random samples on every pass. Each produced pseudo-
random number is stored in global buffer. Elapsed time is averaged over several

15

Table 2: The performance results of the presented here PRNG implementations on
different ATI GPUs (here CPU is Intel Core 2 Quad CPU Q6600 at 2.40GHz and
CPU2 is Intel Celeron CPU 420 at 1.60GHz)

×10
9 per second ×10

7 per second Speed-up

PRNG 5850 4870 4850 CPU CPU2 factor

GGL 8.37 5.05 4.21 1.23 0.80 681

XOR128 8.45 6.29 4.52 1.86 1.20 455

RANECU 4.98 3.32 2.66 1.21 0.79 411

RANLUX3P 1.08 1.02 0.63 0.50 0.33 216

RANLUX4P 1.02 0.86 0.58 0.32 0.21 322

MT19937 0.50 0.62 0.36 1.07 0.69 47

RANMAR 0.18 0.23 0.14 1.69 1.10 11

executions. The time spending to copy the initial input seeds to GPU memory and
final mapping the GPU memory into host memory is not taken into account.

The performance results are collected in Figure 9 and Table 2. The first column
of the Table 2 contains the name of the implemented generator. The number pseudo-
random numbers which could be produced by corresponding PRNG per one second
on corresponding GPU are show in the columns 2-4. Here HD5850, HD4870 and
HD4850 are the ATI Radeon video cards. The next two columns contain the same
information obtained on two mentioned CPUs. The last column shows the speed-up
factor of the using the ATI Radeon HD5850 in compare with the using of the Intel
Core 2 Quad CPU Q6600 at 2.40GHz.

Memory access is a bottleneck of the GPU-applications. It is confirmed once
again by different PRNG performance results on different ATI GPU hardware. The
PRNGs with the greater number of the memory operations demonstrate the worst
performance results.

In the present realizations GGL and XOR128 generators require to keep only
one 4-component seed-value per thread. This directly influences their work – both
generators showed the best productivity. Despite the generator XOR128 in the
present code has sequential part which slightly lowers the speed of the generator
operation its performance turned out to be the highest. It may be explained by
the fact that only bit operations are used in the arithmetic kernel of the XOR128
generator which along with floating-point operations are the fastest implemented on
ATI hardware. Generator GGL is realized on the base of the integer scheme of Park
and Miller [12] which slightly brings down its output in compare with XOR128, in
spite of less quantity of the intermediate operations.

The RANECU generator already requires keeping two seed-values for its opera-
tion. Along with using integer arithmetical operations in RANECU kernel it some-
what lowers its performance in compare with GGL and XOR128 generators. The
algorithm simplicity, the performance up to 5 × 109 samples per second and the
considerably better statistical properties allow extensively using RANECU genera-
tor on GPU. In order to increase the RANECU period it is reasonable to employ the
MRG based on the combinations not two but three MLCGs. However this extension
requires the additional study of the new generator statistical properties. It may be
a subject of the further research in this field.

The RANLUX generator shows considerably high performance on GPU. To a
significant degree it may be explained by fortunate matching of GPU architecture
and the generator parameters. It is managed to minimize generator dependence

16

X
O

R
1
2
8

R
a
n
M

a
r

G
G

L

R
a
n
E

c
u

M
T
1
9
9
3
7

R
a
n
L
u
x
3
P

R
a
n
L
u
x
4
P

0.0

1.0E+09

Samples
per

second

2.0E+09

3.0E+09

4.0E+09

5.0E+09

6.0E+09

7.0E+09

8.0E+09

ATI Radeon HD 5850 (RV870PRO, Core: 725MHz, Memory: 1000MHz, GDDR5)

ATI Radeon HD 4870 (RV770XT, Core: 750MHz, Memory: 900MHz, GDDR5)

ATI Radeon HD 4850 (RV770PRO, Core: 625MHz, Memory: 993MHz, GDDR3)

Figure 9: Performance results for some PRNGs on different GPUs

on decorrelating luxury procedure by the actual organization of the virtual cache.
Thereby it is possible to use maximal luxury level with the minimal performance
penalty in practical applications. In the opposition to CPU realization where the
difference between the performances at luxury level=0 and luxury level=4 reaches
6 and more times, on GPU this parameter is only 10-23% (for different hardware).

It is obviously that performance advantage also depends on the way of algorithm
realization. In order to demonstrate this fact, we showed in Table 3 the performance
values of different realization of the same algorithm for RANLUX generator for a
number of GPUs. RANLUX implementation through the global buffer is the slowest
one. In fact the present realization of algorithm entirely reproduces the dependence
of the GPU realization on luxury level. Acceleration in compare with CPU is
achieved only because of such GPU parameters as number of stream cores and
engine clock rate. An unexpected result was the fact that realization of for global
buffer realization of RANLUX HD4870 GPU shows better performance than HD5850.
It is closely related to the fact that memory data access in the kernel is organized not
in the best way and a lot of time is spent to synchronize memory access operations.
Obtaining better performance is possible by lowering the instructions density which
refer to the global buffer.

Second RANLUX realization, through the indexed temporary array, is a bit faster
than the first one. But the same situation with HD4870 and HD5850 GPUs per-
formances can be observed here as well. The present realization has sense only
for luxury levels 2-4, when time share, which is spent on indexed temporary ar-
ray preparation, is compensated by luxury operation saving time itself. The main
strong feature of this implementation is the complete correspondence to the classic
algorithm, published in [31].

The last presented implementation of RANLUX (which is called planar here)
possesses the best performance due to maximal reduction of memory access opera-

17

Table 3: Performance results of the different implementations of RANLUX generator
on some ATI GPUs (ATI Radeon HD5850, HD4870, HD4850), ×108 pseudo random
numbers per second

luxury Planar Temporary array Global buffer

level 5850 4870 4850 5850 4870 4850 5850 4870 4850

0 11,35 10,64 6,54 4,07 5,56 3,35 5,02 6,92 4,32

1 11,00 10,14 6,19 4,05 5,39 3,33 3,50 4,66 2,71

2 11,01 10,17 6,20 4,02 5,00 3,23 2,18 2,61 1,55

3 10,85 10,17 6,27 3,85 4,18 2,83 1,11 1,20 0,72

4 10,24 8,62 5,77 3,51 3,44 2,42 0,68 0,71 0,43

tions quantity. General advantage of performance on GPU in compare with CPU
is up to 322 times (highest luxury level = 4). The modified algorithm is used here
(see section 3.6) at which a bit higher quantity of pseudo-random numbers after
one PRNG cycle are discarded away for decorrelation of lag table elements, than it
is set up in the classic algorithm.

In the first two RANLUX realizations of the algorithm, it requires to read four
memory cells (not accounting for the luxury procedure operations) and write three
cells (two lag table items, carry bit and indices) to obtain one pseudo-random
number (updated lag table item, new carry bit and new indices). In planar scheme
the carry bit occupies one of the four-component cells with the indices, so it needs
less quantity of reading and writing operations (four read and two writes).

The performance of the shown code of the MT19937 generator is turned out to
be rather low. The main factor is the size of the lag table, the update of which is
required after each PRNG cycle. Planar scheme applied here allows increasing the
generator performance roughly in four times in compare with the direct four-threads
realization, but the quantity of the memory access operations remains rather high
which does not allow to achieve acceptable results. It is possible to reduce the lag ta-
ble size by choosing another generator from the Mersenne Twister family. But from
one hand, MT19937 generator parameters allow to realize the planar scheme (proved
to be a good here), and from another hand there is a task to build the analogue
of the actually used generators on GPU while algorithms realization. Although to
generate one pseudo-random number it is needed only two read operations and one
write only, the lag table update procedure drastically decelerates the generator.

The worst performance is shown by RANMAR generator which differs by the
large enough lag table and high memory access operation density (four reads and
three writes).

All presented generators realizations allow to produce at slight changes pseudo-
random numbers with double precision either by using the pairs of the generated
numbers or directly through the double precision conversion. The last method is not
fully correct, because it considerable lowers the quantity of the possible realization
of the obtained double precision number.

Paying attention to the XOR128 performance one can asserts that LЎEcuyer
generator Seven-XORShift [26] is seemed to be very promising for realization on
GPU due to the similarity to the XOR128 structure except for the eight-element lag
table.

The periods of the XOR128, RANLUX, RANMAR and MT19937 generators are
considered to be unachievable in medium-term perspective even for GPU clusters.
Meanwhile the period of the GGL generator can be exhausted in a split second
even on one relatively old GPU. So, it is necessary to pay special attention to the

18

generator applicability borders while developing applications on GPU.
Undoubtedly the presented algorithms realization on the platform independent

level such as OpenCL will be very important, but it goes beyond the present work
frame and is a task for future research. The obtained results of the generators per-
formances make it interesting to use the GPU for the investigation of the generators
statistical properties.

5 Conclusions

In the present paper the most popular uniform pseudo-number generators which
are used in Monte Carlo simulations in high-energy physics are realized on GPU.
The list of the modern software packages with the indication of the generators used
is represented. A theoretical background for pseudo-random number generation
is described. The source codes of the implemented generators (multiplicative lin-
ear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and
Mersenne Twister (MT19937)) are shown1.

The comparative analysis of the PRNG performances on CPU and ATI GPU is
presented. The obtained speed-up factor is hundreds of times higher as compare to
CPU. Performance analysis of the mentioned generators with taking into account
their statistical properties allows to conclude that the most appropriative generator
for Monte Carlo simulations on GPU is planar RANLUX with luxury level 4. Offered
planar scheme makes it possible to increase significantly the performance of the most
generators by the reducing memory access operations.

Offered PRNG program model (generator division into separate subroutines)
also allows to obtain additional considerable gain of performance at the multiple
calls of the PRNG generating subprogram. This is achieved by means of a substan-
tial reduction in the number of the memory access operations per PRNG cycle.

In the present paper the generator performances in different realizations are
analyzed by way of RANLUX PRNG example. It is shown once again that the
memory access operations are the bottleneck of GPUs. It is possible to conclude
that for GPU implementations of PRNGs it is better to choose algorithms with the
minimal lag table size (which to be advisable multiply by 4) perhaps in spite of
some complication of algorithms.

Potential of GPU implementation in Monte Carlo simulations is not fully realized
nowadays. This is despite of large amount of works dedicated to this problem. GPU
sector development dynamics makes it possible to predicate that this trend is one
of the most promising nowadays.

Acknowledgments

Author thanks to Alexander Lukashenko for the inspiration of GPGPU-technology,
Michael Bordag and Wolfhard Janke for the organization of the mini-workshop
“Simulations on GPU”, where the subject of pseudo-random numbers generation
on GPUs was discussed. We would also like to thank Vladimir Skalozub and Eugen
Setov for essential help with the paper preparation.

1 When the present paper was prepared for publication, a new version of ATI Stream SDK

v.2.01 has been released which includes the Park-Miller generator with Bays-Durham shuffle and

the Mersenne Twister generator

19

A Basic classes of PRNGs

In this section we briefly provide the theoretical background for the main classes
of the pseudo-random number generators. There are numerous books and reviews
about the subject, so the details could be found in the references.

While pseudo-random numbers generation, there are only two internal sources
of the randomness which could be used in the algorithm. They are the sequence
itself (previous values in a sequence precisely) and the starting parameters (PRNG
parameters and seed values). Actually, the algorithms of the PRNGs are distin-
guished by the way of the using these sources. So, particular PRNG is a certain
function f which produces the next value Xn,

XPRNG

n = f(Xn−1, Xn−2, · · · , Xn−r). (2)

Here and below we will use upper index PRNG to identify the sequence produced by
particular generator PRNG. The maximum period of the generator is the length of
the cyclic sequences produced by PRNG and is limited by the number of the states
that can be represented by PRNG.

First simple PRNGs uses only one previous value Xn−1 (r = 1) for generation,
but in such scheme the PRNG period is limited by the bit capacity of the machine.
If one uses the longer tables of the sequence of the previous values, from one hand
it makes the generator period longer and its statistics properties better, as well
as allows to simplify transformation function f for getting better output of the
generator. From the other hand, longer tables require more complicated generator
initialization and reduce its portability (the strict control of the architecture is
needed, for example, the size of the cache memory), and it is obviously necessary to
have much more memory to store such tables. A good generator is always a golden
middle between algorithm complexity, the statistical properties of the generator and
the size of the seed table.

According to the basic requirement for PRNG – repeatability, any starting state
of the generator may cause only one specified sequence. The initialization of the
seed table is often made by simpler generator which has lower requirements. Most
of all linear congruential generators or their combination is used for initialization.
So, it allows to set starting generator states by the limited set of the input seed
values (often 1-2 numbers). But Marsaglia [3] drew our attention to the fact that
the quantity of the starting states decreases drastically. For example, Mersenne
Twister generator MT19937 uses 624-element seed table (which may contain about
(232)624 ≃ 106011 different values) whenever 32-bit number is usually used for its
initialization, for which only (232) ≃ 4 × 109 possible values are given. Certainly,
algorithm contains the possibility of the vector initialization. Nevertheless, only one
seed is used to simplify the initialization.

The period of PRNG nearly always depends on its parameters and seed values.
Thus, we always show only the upper bound for the value of the generator period.

A.1 Linear congruential generators

Linear congruential generators (LCG) is one of the oldest and most popular class
of the PRNGs, which is widely used in computations in particular due to the en-
cyclopedic work of Knuth [11]. It is based on so-called linear congruential integer
recursion,

XLCG

n = (aXn−1 + c) mod m, (3)

where increment c and modulus m are desired to be positive coprime integers (c <
m) to provide a maximum period, multiplier a is an integer in the range [2; (m−1)].

20

If increment c = 0 the LCG is often called the multiplicative linear congruential
generator (MLCG),

XMLCG

n = aXn−1 mod m. (4)

The maximum period of LCG PLCG strongly depends on LCG parameters and

PLCG ≤ (m− 1). (5)

Demonstrative situation with poor choice of LCG parameters happened with infa-
mous generator RANDU - MLCG(a = 216 + 3, m = 231),

XRANDU

n = 65539Xn−1 mod 2147483648, (6)

which suffers from three-point correlations among the sequential elements:

XRANDU

n = 6Xn−1 − 9Xn−2. (7)

Another well-known LCG is the standard 48-bit generator DRAND48, which is
a LCG(a = 25214903917, c = 11, m = 248)

XDRAND48

n = (25214903917Xn−1+ 11) mod 248. (8)

Park and Miller propose [12] a portable minimal standard Lehmer generator2 [13]
known as prime modulus multiplicative linear congruential generator (PMMLCG).
Sometimes it is also denoted by the acronyms RAN0, CONG, SURAND or GGL. Park
and Miller choose the Mersenne prime number 231−1 as the modulus m, multiplier
a = 75 and increment c = 0,

XGGL

n = 16807Xn−1 mod 2147483647. (9)

The total period of the GGL is relatively short, PGGL = (231 − 1)− 1 = 2147483646.
One of the main well-known problems of the LCG is that every LCG produces

n-tuples of uniform variates which lie in at most parallel hyperplanes [14, 15]. The
other defects of the LCG are:

• the dependence of the generator period on initial seed;

• the influence of the chosen modulus on statistical properties of the pseudo-
random sequence;

• lowest bits are not random.

And finally, the minimal integer value produced by MLCG is 1, not 0.

A.2 Feedback shift register generators

In 1965 Tausworthe [18] introduced a new generator based on bit sequence

XLFSR

n =

(

r
∑

i=1

aiXn−i

)

mod 2, (10)

where ai = {0, 1}, Xi = {0, 1}, r ≤ n, is called linear feedback shift register
algorithm (LFSR).

The period of the LFSR is the smallest positive integer P for which

(Xr−1, · · · , X0) = (XP+r−1, · · · , XP) . (11)

2The original parameters of Lehmer generator are a = 23, m = 108 + 1

21

The next state could be obtained with the following transformation










Xn

Xn−1

...
Xn−r+1











=











a1 · · · ar−1 ar
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0





















Xn−1

Xn−2

...
Xn−r











(12)

or equivalently for initial state it is










Xn

Xn−1

...
Xn−r+1











=











a1 · · · ar−1 ar
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0











n−r+1









Xr−1

Xr−2

...
X0











. (13)

The characteristic polynomial of r × r transformation matrix A

A =











a1 · · · ar−1 ar
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0











(14)

is

a(x) = det (A− xI) = xr −

r
∑

i=1

aix
r−i, ar = 1, (15)

where I is an identity matrix.
According to the theory of the finite fields [19] the maximal period PFSRG =

2r − 1 is achieved if and only if the characteristic polynomial a(x) is an irreducible
polynomial over Galois field GF (2). In other words, if and only if the smallest
positive integer p: (xp mod a(x)) mod 2 = 1 is p = 2r − 1 [7].

For computational efficiency, most of the ai in (10) should be zero. In GF (2)
there is only one irreducible binomial, x + 1, which would yield an unacceptable
period [8]. Consequently, the trinomials are usually used to express the recurrence
sequence (10),

Xn = (Xn−r +Xn−s) mod 2, s < r < n. (16)

Addition modulo 2 for one-bit variables is ordinary binary exclusive-or operation
XOR, so (16) may be rewritten as

Xn = Xn−r XOR Xn−s. (17)

LFSR recursion (10) produces pseudo-random bit sequence. To obtain k-bit
pseudo-random integers Yn from such recursion, one can group up k sequential bits,

Yn =

k
∑

j=1

2k−jXkn+j−1. (18)

Such method is called the digital multistep method of Tausworthe [20].
Another method proposed by Lewis and Payne [21] is the generalized feedback

shift register (GFSR). In GFSR scheme bits in the positions j of the pseudo-random
integer are filled with the copy of initial one-bit recursion (17) which has a period
2r − 1 with some nonnegative offsets dj ,

Yn =
k
∑

j=1

2k−jXn+dj
. (19)

22

Clearly, LFSR is the particular case of GFSR.
For example of GFSR it could be mentioned the R250 generator [22]. It is

another infamous PRNG which causes the severe problems in the Monte-Carlo
simulations of the two-dimensional Ising model using the single-cluster Wolff update
algorithm (see [9] and references therein). For R250 the GFSR parameters are
r = 250 and s = 103,

XR250

n = Xn−250 XOR Xn−103. (20)

The R250 period is PR250 = 2250 − 1 ≈ 1.81× 1075.

A.3 Lagged Fibonacci generators

Lagged Fibonacci generators (LFG) is another class of the PRNGs. It is based on
the well-known Fibonacci recurrence sequence

Xn = Xn−1 +Xn−2. (21)

Because the simple Fibonacci generator is not very good [23] one always uses the
generalized relation (21) with respect to any given binary arithmetic operation ⊙
and prehistory

XLFG

n = (Xn−r ⊙Xn−s) mod m, (22)

where r and s are called “lags”, r ≤ n and 1 < s < r.
The LFG period PLFG for different operations ⊙ is

PLFG ≤

{

(2r − 1)m/2 for + or −
(2r − 1)m/8 for ×
(2r − 1) for XOR

. (23)

The main attractive features of the LFGs are long period, potential absence
of conversion integer into float operations and simple recursive scheme which not
requires the heavy mathematical operations. However, for generation LFGs it is
needed to store r previous pseudo-random values.

There are numerous possible pairs of the LFG lags [11]. The larger lags lead to
the decreasing of the correlations between the numbers in the sequence. But even
for relatively short lag table r & 20 it passes many statistical tests.

RAN3 generator [11] could be mentioned as an example of the LFG. It was
proposed by Mitchell and Moore (unpublished), with lags r = 55 and s = 24,
m = 109 and operation subtraction,

XRAN3

n = (Xn−55 −Xn−24) mod 109. (24)

The RAN3 period is PRAN3 = (255 − 1)109/2 ≈ 1.8× 1025.

A.4 Combined generators

Combined generators are a special class of the PRNGs, which contains the features
of the different PRNG classes. There are two main motivations to use combined
generators:

• the period increasing of the generator,

• the improving of the generator statistical properties.

23

A.4.1 Multiple recursive generators

The obvious extensions of the LCG is the multiple recursive generator (MRG) [16,
17] which is determined as the combination of the MLCGs

XMRG

n = (a1Xn−1 + a2Xn−2 + . . .+ akXn−k + c) mod m. (25)

When k > 1, MRG is usually called MRG of the k order. The maximal period
of the MRG is PMRG ≤ mk − 1. In fact LFG is the special case of the MRG (for
multipliers ai = 1 and c = 0).

By decomposition of the modulus of the MLCG into two terms m = aq+ r and
eqn.(4) may be written as following [16]

Xn = aXn−1 mod m = (a (Xn−1 mod q)− ⌊Xn−1/q⌋r) mod m, (26)

Xn = Xn +m for Xn < 0,

where ⌊a/b⌋ denotes the integer part of the (a/b) and

q = ⌊m/a⌋, r = m mod a. (27)

To provide the uniform distribution the combinations of l generators (26) may
be combined as [16]

Xn =





l
∑

j=1

(−1)j−1Xj,n



 mod (m1 − 1), (28)

Xn = Xn + (m1 − 1) for Xn ≤ 0.

Here the new index j in Xj,n means the n-th value (26) of j-th generator.
One of the possible MRGs is the RANECU generator [16]. It is the combination

of two MLCGs (l = 2) with a1 = 40014, m1 = 2147483563 and a2 = 40692, m2 =
2147483399. The RANECU period is PRANECU = (m1−1)(m2−1)/2 ≈ 2.30584×1018.
MRGs have good statistics and pass most the tests.

A.4.2 XORShift

XORShift PRNG, proposed by Marsaglia [25], is another member of the GFSR
generators class. Let X0 be a some initial k-bit row-state of XORShift and T is
k× k nonsingular binary matrix which sets linear transformation. The n-th PRNG
state may be derived through the following equation

XXORShift

n = X0T
n. (29)

To ensure the performance requirements Marsaglia proposed the special form of
matrix T ,

T = (I + La)
(

I +Rb
)

(I + Lc) , (30)

where matrices L and R are k×k binary matrices which effect shift of one to the left
and right, correspondingly. So, if Xm is a k-bit state then La causes the new state
LaXm ≡ (Xm ≪ a) as well as (I +La) – the state (I +La)Xm ≡ Xm XOR (Xm ≪
a). In [25] Marsaglia lists all possible full-period triplets (a, b, c) for 32-bit (648
combinations) and 64-bit (2200 combinations) XORShift PRNG.

The maximal period of XORShift is

PXORShift ≤ 2k − 1. (31)

24

In spite of XORShift PRNG passes the DIEHARD Battery of Tests of Random-
ness [25] L’Ecuyer appoints that it “spectacular failed” the SmallCrush and Crush
tests [26]. L’Ecuyer does not recommend to use this class of the generators, but
proposes the own version of the XORShift implementation – Seven-XORShift.

Marsaglia gives an example of the XORShift generator for 128-bit vector with
four 32-bit components – XOR128 PRNG [25],

(Xn−3, Xn−2, Xn−1, Xn)
XOR128

= (Xn−4, Xn−3, Xn−2, Xn−1) · (32)

·









0 0 0 (I + L11)(I +R8)
I 0 0 0
0 I 0 0
0 0 I (I +R19)









,

or in the terms of the 32-bit components

t = (Xn−4 XOR (Xn−4 ≪ 11)), (33)

Xn−3 = Xn−2, Xn−2 = Xn−1, Xn−1 = Xn,

Xn = (Xn−1 XOR (Xn−1 ≫ 19)) XOR (t XOR (t ≫ 8)).

The XOR128 period is PXOR128 ≤ 2128 − 1.

A.4.3 Mersenne twister

One of the most “fashionable” modern PRNGs is the Twisted GFSR generator
(TGFSR) or Mersenne twister generator [27, 28]. TGFSR is the modernization of
the GFSR and its algorithm is based on the following recurrence for w-bit vectors
Xn

XTGFSR

n+r = Xn+s XOR
(

Xupper
n OR X lower

n+1

)

A, (34)

where superscript indices “upper” and “lower” denote the w−u highest and u lowest
bits of a corresponding binary vector Xi, respectively,

Xupper
i = Xi AND (2w − 2u), (35)

X lower
i = Xi AND (2u − 1),

and matrix A is a “twisting” binary w ×w matrix, which form is chosen by perfor-
mance reason

A =















0 1 0 0
0 0 1 0

. . .
0 0 0 1

aw−1 aw−2 aw−3 · · · a0















. (36)

So, only one w-bit vector a = (aw−1, aw−2, · · · , a0) defines the product XiA,

XiA =

{

(Xi ≫ 1) if (Xi AND 1) = 0
(Xi ≫ 1) XOR a if (Xi AND 1) = 1

. (37)

For improving the statistical properties of the sequence so-called tempering proce-
dure is applied for the output sequence Xn. This procedure is defined with the

t = Xn XOR (Xn ≫ m), (38)

t = t XOR ((t ≪ d) AND b),

t = t XOR ((t ≪ e) AND c),

Y TGFSR

n = t XOR (t ≫ l).

25

By appropriate choosing of r, u parameters and binary vector a, it might reach the
maximal period of the TGFSR,

PTGFSR ≤ (2rw−u − 1). (39)

The most famous implementation of the TGFSR PRNG is MT19937 [28]. The
TGFSR parameters of the MT19937 are the following:

w = 32, r = 624, s = 397, u = 31, (40)

a = 9908B0DF16 = 100110010000100010110000110111112

and tempering parameters are

m = 11, l = 18, (41)

d = 7, b = 9D2C568016,

e = 15, c = EFC6000016.

The maximal period of the MT19937 is

PMT19937 ≤ 2624×32−31 − 1 = 219937 − 1 ≈ 4.3× 106001. (42)

A.4.4 RANMAR

RANMAR [23, 24] is a combination of two generators, 24-bit lagged Fibonacci gen-
erator LFG(97, 33,−) Yn with m = 224 = 16777216 and simple arithmetic sequence
Cn for the prime modulus M = 224 − 3 = 16777213,

XRANMAR

n = (Yn − Cn) mod m. (43)

Or equivalently the producing recurrence is,

XRANMAR

n = Yn − Cn, (44)

Xn = Xn +m for Xn < 0.

Here Yn and Cn are

Yn = (Yn−97 − Yn−33) mod m, (45)

Cn = (Cn−1 −D) mod M,

where D = 7654321.
The LFG(97, 33,−) period is PLFG(97,33,−) ≤ (297−1)224/2 ≃ 2120 (see eqn.(23))

and the period of the arithmetic sequence Cn is PLCG(1,224) ≤ (224− 1) (see eqn.(5)).
Therefore, the total period of the RANMAR is

PRANMAR . 2144 ≃ 2.23× 1043. (46)

A.4.5 Add-With-Carry and Subtract-With-Borrow generators

In 1991 Marsaglia and Zaman introduced a new class of PRNGs: add-with-carry
(AWC) and subtract-with-borrow (SWB) [29], which are small modifications of the
LFG with respect to supplementing an extra carry or borrow bit. Due to the
branching it became the first class of nonlinear PRNGs [8]. The AWC generator is
described by the sequence

XAWC

n = (Xn−r +Xn−s + cn−1) mod m, (47)

cn =

{

1 if (Xn−r +Xn−s + cn−1) ≥ m
0 if (Xn−r +Xn−s + cn−1) < m

.

26

In addition to r seed values (X1, . . . , Xr) generator must be initialized with the
carry bit cr. The maximal period of the AWC generator is

PAWC ≤ mr +ms − 2. (48)

In the SWB case the subsequent values of the sequence are obtained by

XSWB

n = (Xn−r −Xn−s − cn−1) mod m, (49)

cn =

{

1 if (Xn−r −Xn−s − cn−1) < 0
0 if (Xn−r −Xn−s − cn−1) ≥ 0

.

L’Ecuyer noted [10] that SWB has a second variant, in which indices r and s in
(49) are swapped. The maximal period of the SWB generator is

PSWB ≤ mr −ms − 2. (50)

The well-known example of the SWB is RCARRY [23] which underlies the RAN-
LUX PRNG. The RCARRY parameters in (49) are m = 224, r = 24 and s = 10,

XRCARRY

n = (Xn−24 −Xn−10 − cn−1) mod 224, (51)

cn =

{

1 if (Xn−24 −Xn−10 − cn−1) < 0
0 if (Xn−24 −Xn−10 − cn−1) ≥ 0

.

The RCARRY period is about [29]

PRCARRY ≤
(

(224)24 − (224)10 − 2
)

/48 ≃ 1/3× 2572 ≃ 5.15× 10171. (52)

It is less than the maximal period of the SWB (50) because modulus m = 224 is
not a prime number.

A.4.6 RANLUX

Despite all advantages (extremely long period, portability and good productivity)
AWC and SWB generators suffer from some statistical defects (a bad lattice struc-
ture), showed by Lüscher [30]. To eliminate these lacks James [31] implements the
Lüscher’s [30] idea to modify the SWB generator RCARRY. In the new generator
which was called RANLUX (for LUXury RANdom numbers [31]) after producing
r = 24 pseudo-random values the p − r following sequential values are discarded.
It might be used any values of p, but there are five generally accepted levels of the
luxury every of which has its own value p [30, 31],

• level 0 (p = 24): complete equivalent to original RCARRY generator, there
are no discarding values

• level 1 (p = 48): throws out 24 values after one generation cycle; consider-
able improvement in quality over RCARRY, passes the gap test, but still fails
spectral test

• level 2 (p = 97): passes all known tests, but theoretically still defective

• level 3 (p = 223): default level, any theoretically possible correlations have
a very small chance of being observed

• level 4 (p = 389): highest possible luxury, all 24 bits of the mantissa are
chaotic.

Lüscher recommends [30] to use a default value p = 223 and notes that employment
of values p > 389 is pointless.

27

References

[1] “Top 500 list of supercomputers”, http://top500.org/

[2] P. Coggington, “Random Number Generators for Parallel Computers”, The
NHSE Review (1996).

[3] G. Marsaglia, “Random Number Generators”, J. Mod. Appl. Stat. Methods 2

No.1 (2003) 2.

[4] D. Thomas and W. Luk, “Uniform Generators for GPUs”,
http://www.doc.ic.ac.uk/ dt10/research/rngs-gpu-uniform.html

[5] W. Langdon, “A fast high quality pseudo random number generator for nVidia
CUDA”, GECCO ’09 Proceedings (2009) 2511.

[6] I. Vattulainen, “New tests of random numbers for simulations in physi-
cal systems”, Licentiate Thesis, Tampere University of Technology (1994);
arXiv:9411062 [cond-mat].

[7] P. L’Ecuyer, “Random Number Generation”, chapter 2 of the “Handbook of
Computational Statistics: Concepts and Methods”, J. Gentle, W. Härdle and
Y. Mori (eds), Springer-Verlag (2004) 1070.

[8] J. Gentle, “Random Number Generation and Monte Carlo Methods”, 2nd ed.,
New York: Springer (2003) 381.

[9] W. Janke, “Pseudo Random Numbers: Generation and Quality Checks”,
Quantum Simulations of Complex Many-Body Systems: From Theory to Al-
gorithms, Lecture Notes, J. Grotendorst, D. Marx, A. Muramatsu (Eds.),
John von Neumann Institute for Computing, Jülich, NIC Series, Vol. 10 (2002)
447.

[10] P. L’Ecuyer, “Uniform Random Number Generation”, Annals of Operations
Research 53 (1994) 77.

[11] D. Knuth, “The art of computer programming”, Vol. 2, “Seminumerical algo-
rithms”, 3rd ed. (1997) 762.

[12] S. Park and K. Miller, “Randoms Number Generators: Good Ones are Hard
to Find”, Commun. of the ACM 31 Number 10 (1988) 1192.

[13] D. Lehmer, “Mathematical methods in large-scale computing units”, Annu.
Comput. Lab. Harvard Univ. 26 (1951) 141.

[14] G. Marsaglia, “Random Numbers Fall Mainly in the Planes”, PNAS Vol.61,
No. 1 (1968) 25.

[15] G. Marsaglia, “The structure of linear congruential sequences”, In “Applica-
tions of Number Theory to Numerical Analysis”, ed. S. Zaremba, Academic
Press, New York (1972) 248.

[16] P. L’Ecuyer, “Efficient and Portable Combined Random Number Generators”,
Commun. of the ACM 31 Number 6 (1988) 742.

[17] P. L’Ecuyer, “Random Numbers for Simulation”, Commun. of the ACM 33

Number 10 (1990) 85.

[18] R. Tausworthe, “Random Numbers Generated by linear Recurrence Modulo
Two”, Math. Comp. 19 (1965) 201.

28

[19] R. Lidl and H. Niederreiter, “Introduction to Finite Fields and Their Appli-
cations”, Cambridge University Press (1986) 407.

[20] H. Niederreiter, “Random number generation and quasi-Monte Carlo meth-
ods”, SIAM (1992) 241.

[21] T. Lewis and W. Payne, “Generalized Feedback Shift Register Pseudorandom
Number Algorithm”, J. of ACM 20 (1973) 456.

[22] S. Kirkpatrick and E. Stoll, “A Very Fast Shift-Register Sequence Random
Number Generator”, J. of Comput. Phys. 40 (1981) 517.

[23] F. James, “A Review of Pseudorandom Number Generators”, Comput. Phys.
Commun. 60 (1990) 329.

[24] G. Marsaglia and A. Zaman, “Toward a Universal Random Number Genera-
tor”, Florida State University Report FSU-SCRI-87-50 (1987).

[25] G. Marsaglia, “Xorshift RNGs”, J. of Stat. Soft. 8 (2003) 1.

[26] F. Panneton and P. L’Ecuyer, “On the xorshift random number generators”,
ACM TOMACS 15 issue 4 (2005) 346.

[27] M. Matsumoto and Y. Kurita, “Twisted GFSR generators”, ACM TOMACS
2 (1992) 179.

[28] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator”, ACM TOMACS
8 (1998) 3.

[29] G. Marsaglia and A. Zaman, “A New Class of Random Number Generators”,
Ann. Appl. Prob. 1 (1991) 462.

[30] M. Luscher, “A Portable high quality random number generator for lat-
tice field theory simulations”, Comput. Phys. Commun. 79 (1994) 100
[arXiv:hep-lat/9309020].

[31] F. James, “RANLUX: A FORTRAN implementation of the high quality pseu-
dorandom number generator of Luscher”, Comput. Phys. Commun. 79 (1994)
111 [Erratum-ibid. 97 (1996) 357].

[32] M. Di Pierro and J. M. Flynn, “Lattice QFT with FermiQCD”, PoS LAT2005,
104 (2006) [arXiv:hep-lat/0509058].

[33] FermiQCD, http://web2py.com/fermiqcd/

[34] M. Di Pierro, “From Monte Carlo integration to lattice quantum chromody-
namics: An introduction”, arXiv:hep-lat/0009001.

[35] MILC Collaboration, http://www.physics.utah.edu/∼detar/milc/

[36] Columbia Physics System, http://qcdoc.phys.columbia.edu/cps.html

[37] SZIN Software System, http://www.jlab.org/∼edwards/szin/

[38] F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata, “ISAJET 7.69:
A Monte Carlo event generator for p p, anti-p p, and e+ e- reactions”,
arXiv:hep-ph/0312045.

[39] ISAJet Monte Carlo Event Generator, http://www.hep.fsu.edu/∼isajet/

29

http://arxiv.org/abs/hep-lat/9309020
http://arxiv.org/abs/hep-lat/0509058
http://arxiv.org/abs/hep-lat/0009001
http://arxiv.org/abs/hep-ph/0312045

[40] Geant4 toolkit, http://geant4.web.cern.ch/geant4/

[41] HEPRandom module,
http://proj-clhep.web.cern.ch/proj-clhep/manual/UserGuide/Random/Random.html

[42] T. Sjostrand, S. Mrenna and P. Z. Skands, “PYTHIA 6.4 Physics and Man-
ual”, JHEP 0605, 026 (2006) [arXiv:hep-ph/0603175].

[43] PYTHIA event generator, http://home.thep.lu.se/∼torbjorn/Pythia.html

[44] G. Corcella et al., “HERWIG 6.5: an event generator for Hadron Emission Re-
actions With Interfering Gluons (including supersymmetric processes)”, JHEP
0101, 010 (2001) [arXiv:hep-ph/0011363].

[45] HERWIG package, http://hepwww.rl.ac.uk/theory/seymour/herwig/

[46] A. Pukhov et al., “CompHEP: A package for evaluation of Feynman diagrams
and integration over multi-particle phase space. User’s manual for version
33”, arXiv:hep-ph/9908288.

[47] CompHEP package, http://comphep.sinp.msu.ru/

[48] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton
shower simulations”, JHEP 0206, 029 (2002) [arXiv:hep-ph/0204244].

[49] MCQNLO package, http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/

[50] T. Gleisberg, S. Hoche, F. Krauss, A. Schalicke, S. Schumann and J. C. Win-
ter, “SHERPA 1.alpha, a proof-of-concept version”, JHEP 0402, 056 (2004)
[arXiv:hep-ph/0311263].

[51] SHERPA package, http://projects.hepforge.org/sherpa/dokuwiki/doku.php

[52] R. G. Edwards and B. Joo [SciDAC Collaboration and LHPC Collaboration
and UKQCD Collaboration], “The Chroma software system for lattice QCD”,
Nucl. Phys. Proc. Suppl. 140 (2005) 832 [arXiv:hep-lat/0409003].

[53] http://usqcd.jlab.org/usqcd-docs/chroma/

[54] C. Andreopoulos et al., “The GENIE Neutrino Monte Carlo Generator”,
arXiv:0905.2517 [hep-ph].

[55] GENIE neutrino MC generator, http://www.genie-mc.org/

[56] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa,
“ALPGEN, a generator for hard multiparton processes in hadronic collisions”,
JHEP 0307, 001 (2003) [arXiv:hep-ph/0206293].

[57] ALPGEN package, http://mlm.home.cern.ch/mlm/alpgen/

[58] V. Demchik and A. Strelchenko, “Monte Carlo simulations on Graphics Pro-
cessing Units”, arXiv:0903.3053 [hep-lat].

[59] AMD Intermediate Language (IL) Specification (v2),
http://developer.amd.com/gpu/ATIStreamSDK/assets/

ATI_Intermediate_Language_(IL)_Specification_v2.pdf

[60] Comparison of ATI GPUs,
http://en.wikipedia.org/wiki/Comparison_of_ATI_graphics_processing_units

[61] ATI Stream SDK,
http://developer.amd.com/gpu/ATIStreamSDK/

30

http://arxiv.org/abs/hep-ph/0603175
http://arxiv.org/abs/hep-ph/0011363
http://arxiv.org/abs/hep-ph/9908288
http://arxiv.org/abs/hep-ph/0204244
http://arxiv.org/abs/hep-ph/0311263
http://arxiv.org/abs/hep-lat/0409003
http://arxiv.org/abs/0905.2517
http://arxiv.org/abs/hep-ph/0206293
http://arxiv.org/abs/0903.3053
http://developer.amd.com/gpu/ATIStreamSDK/assets/
http://en.wikipedia.org/wiki/Comparison_of_ATI_graphics_processing_units

[62] ATI Catalyst Display Driver,
http://ati.amd.com/support/driver.html

[63] Microsoft Visual C++ 2008 Express Edition,
http://www.microsoft.com/express/download/

31

http://ati.amd.com/support/driver.html
http://www.microsoft.com/express/download/

	1 Introduction
	2 PRNGs in Monte Carlo simulations
	3 GPU implementation
	3.1 General implementation scheme
	3.2 GGL
	3.3 XOR128
	3.4 RANECU
	3.5 RANMAR
	3.6 RANLUX
	3.7 Mersenne Twister

	4 Performance results and discussion
	5 Conclusions
	A Basic classes of PRNGs
	A.1 Linear congruential generators
	A.2 Feedback shift register generators
	A.3 Lagged Fibonacci generators
	A.4 Combined generators
	A.4.1 Multiple recursive generators
	A.4.2 XORShift
	A.4.3 Mersenne twister
	A.4.4 RANMAR
	A.4.5 Add-With-Carry and Subtract-With-Borrow generators
	A.4.6 RANLUX

