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Abstract

Critical properties of lattice gases with nearest-neighbor exclusion are investigated via the

adaptive-window Wang-Landau algorithm on the square and simple cubic lattices, for which the

model is known to exhibit an Ising-like phase transition. We study the particle density, order

parameter, compressibility, Binder cumulant and susceptibility. Our results show that it is pos-

sible to estimate critical exponents using Wang-Landau sampling with adaptive windows. Finite-

size-scaling analysis leads to results in fair agreement with exact values (in two dimensions) and

numerical estimates (in three dimensions).
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I. INTRODUCTION

Recently efficient methods for estimating the number of configurations of classical sta-

tistical models have been developed. If the number Ω̆(E) of configurations with energy E

is determined to sufficient accuracy, many thermodynamic quantities can be obtained with

little further effort, for any desired temperature. Wang-Landau sampling (WLS) promises to

be a simple and reliable approach for estimating Ω̆(E) using Monte Carlo simulations [5, 6].

Critical exponents, the transition temperature (or chemical potential) and other quantities,

such a cumulants, may then be estimated via finite size scaling (FSS) analysis [1–4]. In this

paper we test the Wang-Landau algorithm with adaptive windows [7], applying it to the

lattice gas with nearest-neighbor exclusion.

Lattice gases have been used extensively as models of simple fluids, and along with the

Ising model have received much attention in equilibrium statistical physics as a prototype

for phase transitions. A particularly simple case is the lattice gas with nearest-neighbor

exclusion (NNE), corresponding to an interparticle potential that is infinite for distances

≤ 1 (in units of the lattice constant) and zero otherwise. In the absence of an energy scale,

temperature is not a relevant parameter, and the system is termed athermal. It is known that

on bipartite lattices, the lattice gas with NNE suffers a continuous phase transition between

a disordered phase and an ordered one at a critical value of the density or of the reduced

chemical potential µ ≡ βµ̂ [10–13]. (µ̂ denotes the chemical potential.) In the ordered phase

the occupation fractions of the two sublattices are unequal. The grand partition function is

Ξ(z, L) =
Nmax∑

N=0

zN Ω̆(N,L), (1)

where z = eµ is the fugacity, Nmax is the maximum possible number of particles, and Ω̆(N,L)

the number of distinct configurations with N particles satisfying the NNE condition, under

periodic boundaries. (On a hypercubic lattice of Ld sites in d dimensions, Nmax = Ld/2 for

L even.) The order parameter is the difference between the occupations of sublattices A

and B:

φ =
1

Nmax

〈∣∣∣∣∣
∑

x∈A

σ
x
−
∑

x∈B

σ
x

∣∣∣∣∣

〉
, (2)

where σ
x
is the indicator variable for occupation of site x.
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The NNE lattice gas has been studied on various structures: the square [11–13], triangular

[14], simple cubic [10], hexagonal [15], body-centered cubic [16], and face-centered cubic

lattices [17], and in higher dimensions [18]. Repulsive lattice gases with exclusion extending

to second or further neighbors have also been studied [13, 19]. Various techniques have

been applied to study the phase transition, including exact enumeration, series expansion

(high- and low-density expansions), the cluster-variation method, transfer matrix analysis,

and Monte Carlo simulation. The model exhibits Ising-like universality on the square and

honeycomb lattices, while on the triangular lattice (Baxter’s hard-hexagon model [20, 21])

it belongs to the three-state Potts model universality class.

In this paper we calculate the critical properties of the NNE lattice gas on the square

and simple cubic lattices using the adaptive-window Wang-Landau (AWWL) algorithm,

which has been shown to improve the performance of WLS [7, 26]. The critical density

and chemical potential, as well critical exponents and the reduced fourth-order cumulant,

are estimated using FSS analysis. The balance of this paper is organized as follows. In

Sec. II, the adaptive-window Wang-Landau algorithm is briefly reviewed. Sec. III contains

our results for the number of configurations (exact enumeration and simulation results),

thermodynamic quantities and critical exponents. A summary is provided in Sec. IV.

II. METHOD

Consider a statistical model with a discrete configuration space, and let ϑ denote a

variable (or set of variables) characterizing each configuration, such as energy or particle

number. For a given system size, knowledge of the number Ω̆(ϑ) of configurations (called the

“density of states”) for all allowed values of ϑ permits one to evaluate the partition function

and associated thermal averages for arbitrary values of the temperature. Wang-Landau

sampling (WLS) [5, 6] furnishes estimates of the configuration numbers, which we denote

by Ω(ϑ), reserving Ω̆(ϑ) to denote the exact values, which are in general unknown. This is

done by performing a random walk in configuration space, with an acceptance probability

proportional to 1/Ω(ϑ′), where ϑ′ denotes the values associated with the newly generated

(or trial) configuration. In WLS one aims for equal numbers of visits to each set of allowed

values of ϑ, as reflected in the histogram, H(ϑ).

Various strategies have been proposed to improve WLS and optimize its convergence
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[7, 22–25]. In this work we apply one such scheme, adaptive-windows WLS (AWWLS). This

method estimates the density of states by determining the range over which the histogram

has attained the desired degree of uniformity at various stages of the simulation.

The AWWLS procedure furnishes estimates, Ω(N ;L), of the number of N -particle con-

figurations on a lattice of Ld sites, to within an overall multiplicative factor which is in-

dependent of N . For each accepted N -particle configuration, we update the histogram:

H(N) → H(N) + 1. Since the density of states is not known a priori, we set Ω(N) = 1

for all N , at the beginning of each sampling level. In the simulation, if N and N + ∆N

are the particle numbers in the current and trial configurations, respectively, (in practice,

∆N = ±1), then the acceptance probability is

p(N → N +∆N) = min

[
Ω(N)

Ω(N +∆N)
, 1

]
. (3)

(To simplify the notation we suppress the dependence of Ω on system size L.)

Whenever a move to a configuration with N particles is accepted, the density of states

Ω(N) is updated, multiplying it by a modification factor f > 1, so: Ω(N) → f · Ω(N). If

the trial configuration is rejected we update Ω(N) (as well as the histogram) of the current

N value. As is usual in WLS, the modification factor is initially set to f0 = e = 2.71828....

After m = 104 Monte Carlo steps we check if the histogram satisfies the flatness criterion

on the minimal window, of width W = (Nmax − Nmin)/n, beginning with Nmin [27]. The

histogram is said to be flat if, for all levels in the window of interest, H(N) > 0.8H, where

the overline denotes an average over levels within the proposed window. If it is not flat, we

perform an additional mMonte Carlo steps and check again, repeating until the histogram is

flat on the minimal window. Once this condition is satisfied, we check whether the histogram

is flat on a larger interval. Thus we define one window and repeat the procedure on the rest

of the range of N values, forming windows for each stage of sampling. The window positions

depend on the portion of the histogram that is flat; we include an overlap of three levels

between adjacent windows. This process is repeated until all values of N have been included

in a window with a flat histogram. Then a new stage is initiated: the modification factor

is reduced, f →
√
f , and we reset H(N) = 0 for all N . This process is iterated and the

simulation halted when f−1 is approximately 10−7. As explained in [7], window boundaries

are not allowed to take the same positions on subsequent stages, to avoid distortions in Ω
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that arise when using fixed windows.

For simplicity, two kinds of trial moves are employed: insertion and removal of particles.

Including particle-displacement moves - for which N does not change - leads to the same

results to within uncertainty. We use the R1279 shift register random number generator [8].

III. RESULTS

We study the hard core lattice gas defined above using AWWLS. The estimates Ω(N)

are used to calculate 〈N〉 and var(N) directly; other thermal averages are given by

〈A〉µ =

∑
N 〈A〉N Ω(N)eµN

Ξ
. (4)

Here 〈A〉N is the microcanonical average of quantity A over all configurations having ex-

actly N particles, which must also be estimated during the simulation. The development of

reliable methods for estimating microcanonical averages is an important open problem [28].

In the WL procedure, all configurations having the same N should occur with the same

probability, so that, in principle, the microcanonical average 〈A〉N should be taken over all

accepted configurations having exactly N particles, with equal weights. We nevertheless

obtain better results if we restrict the microcanonical averages to the later stages of the

sampling. Specifically, the averages 〈φ〉N , 〈φ2〉N and 〈φ4〉N calculated using all N -particle

configurations accepted during the simulation yield estimates for critical exponents that de-

viate significantly from their expected Ising model values. Such deviations are not observed

for systems with L . 100, but do appear for larger sizes. Similar problems were found in

studies of spin models using WLS [42]. The results for microcanonical averages improve

when we restrict the sample to configurations accepted in the later stages of the simulation,

i.e., for f . 1 + 10−4.

A. Transfer-matrix analysis

As a preliminary test of our method, we compare our simulation estimates, Ω(N), with

the results of an exact enumeration of Ω̆(N), on a lattice of 8 × 8 sites. The latter are

obtained via a transfer matrix approach. One begins by enumerating the allowed con-

figurations {c1, ..., cM} on a ring of L sites, and storing the number n(cj) of particles in
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each configuration. An M ×M matrix T is then constructed, with T (cj , cj) = 1 if adja-

cent rings may assume configurations ci and cj without violating the NNE condition, and

T (ci, cj) = 0 if the condition is violated. Then the allowed configurations on an L×L lattice

with periodic boundaries are those sequences {c1, c2, ..., cL} of ring configurations satisfying

T (c1, c2)T (c2, c3) · · · T (cL−1, cL)T (cL, c1) = 1. The resulting numbers of configurations for

L = 8 are listed in Table I.

To compare our simulation estimates against the exact enumeration, the former must be

normalized, as simulation in fact provides Γ(N) ≡ αΩ(N), with α an unknown constant,

independent of N . To eliminate α we multiply the simulation estimates by a factor λ,

varying λ so as to minimize
∑

N [λΓ(N)− Ω̆(N)]2. This procedure is applied to each of the

fifteen independent simulation studies, leading to the estimates and uncertainties listed in

the Table. The relative error in estimating ln Ω̆ is very small except near the minimum and

maximum occupations. Even in the worst case, N = Nmax = 32, the relative error in ln Ω̆

is ≈ 0.6%. If sampling errors were restricted to these regimes for larger system sizes, the

effect on estimates for critical properties would be negligible.

B. Square lattice

In this work we study 18 system sizes in the range 16 ≤ L ≤ 256 using AWWLS.

Let N∗(L) be the value of N that maximizes Ω(N), and let Nc(L) be the value of N

that maximizes the probability distribution P (N) = Ω(N) exp[µcN ] at the critical point

µc. Preliminary studies on lattices with L ≤ 200 reveal that N∗ ≃ 0.227L2, whereas

Nc ≃ 0.369L2, so that Nc ≫ N∗. As a result, configurations with N < N∗ make a negligible

contribution to thermal averages in the neighborhood of the critical point. To economize

processor time we therefore restrict our high-statistics studies (which extend to L = 256),

to N values between N∗(L) and Nmax = L2/2. For L = 8, a study with sampling restricted

to N ≥ N∗ = 14 yielded results of equal accuracy as those obtained using unrestricted

sampling, when compared against exact enumeration.

The following observation suggests that a further economy of processor time could be

realized in studies of the critical region. Let Pc(N,L) = zNc Ω(N,L) be the contribution

to the grand canonical partition function due to the set of all N -particle configurations

at the critical point, and let P ∗(L) = maxN [Pc(N,L)] = P (Nc). For N values such that
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N Ω̆(N) ln Ω̆(N) lnΩ(N) 103ε(N)

0 1 0.0 0.010(14) −
1 64 4.15888 4.163(11) 0.9989

2 1888 7.54327 7.543(10) −0.0481

3 34112 10.43740 10.436(11) −0.1701

4 423152 12.95549 12.954(11) −0.1295

5 3830016 15.15838 15.158(9) −0.0301

6 26249184 17.08315 17.086(9) 0.1501

7 139580160 18.75415 18.754(8) −0.0003

8 585632520 20.18820 20.187(7) −0.0515

9 1962132800 21.39730 21.396(7) −0.0643

10 5296005568 22.39022 22.392(8) 0.0576

11 11591943552 23.17358 23.175(7) 0.0447

12 20681906352 23.75253 23.755(8) 0.1189

13 30206108416 24.13131 24.135(8) 0.1510

14 36251041536 24.31373 24.316(8) 0.0881

15 35886874048 24.30364 24.306(7) 0.0815

16 29436488660 24.10550 24.109(6) 0.1273

17 20127048512 23.72533 23.728(6) 0.1330

18 11573937440 23.17202 23.174(7) 0.0997

19 5674532608 22.45925 22.462(6) 0.1247

20 2420605568 21.60728 21.612(5) 0.2128

21 922331136 20.64241 20.646(6) 0.1918

22 322239232 19.59080 19.586(7) −0.2539

23 104747904 18.46707 18.459(8) −0.4439

24 31534744 17.26660 17.253(11) −0.7674

25 8617024 15.96925 15.956(12) −0.7995

26 2080576 14.54816 14.539(12) −0.6443

27 430848 12.97351 12.973(12) −0.0571

28 73840 11.20966 11.215(13) 0.4370

29 9984 9.20874 9.214(15) 0.5301

30 992 6.89972 6.900(15) 0.0983

31 64 4.15888 4.160(17) 0.2085

32 2 0.69315 0.689(19) −6.359

TABLE I: Comparison with numerical results (L=8) for the density of states. The relative error

is ε(N) = (lnΩ(N)− ln Ω̆(N))/ ln Ω̆(N).

Pc(N,L)/P ∗(L) < 10−50, say, the contribution to Ξ and thermal averages is negligible.

It therefore seems reasonable to restrict the sampling to the interval [N1, N2] of N values

such that Pc(N,L)/P ∗(L) ≥ 10−50. In practice we use N1 = [0.315L2 − 131] and N2 =
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[0.423L2 + 129], where the brackets denote the largest integer. For L ≤ 300, the largest

size considered, the resulting interval is small enough to be studied using WLS without

windows. Surprisingly, restricting the sampling in this manner yields estimates for critical

exponents that deviate significantly from their expected Ising model values (for example, we

find γ/ν = 2.02(5) on the square lattice). We conclude that restricted sampling distorts the

estimates for the numbers of configurations, and adversely affects microcanonical averages.

We turn now to the results obtained using the sampling interval [N∗(L), Nmax(L)]. Figure

1 shows the number of configurations versus density ρ; the very good data collapse confirms

the expected scaling

Ω(N,L) ≃ exp
[
Ldg(ρ)

]
(5)

The inset shows N∗ as a function of system size. Here and below all averages and uncer-

tainties are obtained using fifteen independent runs.
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FIG. 1: (Color online) Square lattice: lnΩ/L2 versus density, system sizes as indicated. Inset:

N∗(L) versus system size.

Two thermodynamic properties used to characterize the transition in lattice gases are the
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particle density ρ(µ) and the compressibility,

κ(µ) =
L2(〈ρ2〉µ − 〈ρ〉2µ)

〈ρ〉2µ
. (6)

Figure 2 shows simulation results for the density ρ and compressibility κ as functions of the

chemical potential; Fig. 3 shows the order parameter, Eq. (2) and the susceptibility,

χ(µ) = L2(
〈
φ2
〉
µ
− 〈φ〉2µ). (7)

The insets in Fig. 3 show the data collapse obtained using the exact critical exponents,

γ/ν = 7/4 and β/ν = 1/8, and the high-precision result for the critical chemical potential

obtained by Guo and Blöte [11], µc = 1.33401510027774(1).
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FIG. 2: (Color online) Square lattice: density versus chemical potential on the square lattice.

Error bars are smaller than the symbols. The inflection close to the transition point is weak, being

imperceptible for the smaller systems. Inset: Compressibility versus chemical potential.

We analyzed the dimensionless ratioQ4 = 〈φ2〉2 / 〈φ4〉 (Fig. 4), related to Binder’s reduced

cumulant [29], which is expected to take a universal value at the critical point. Let µc,Li

denote the chemical potential at which Q4(Li) = Q4(Li+1) ≡ Qc,Li
, i.e., the crossing between

cumulants associated with a pair of successive systems sizes Li and Li+1, and let L ≡
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FIG. 3: (Color online) Square lattice, upper panel: order parameter versus chemical potential.

Lower panel: susceptibility versus chemical potential. The insets are data-collapse plots.

√
LiLi+1 denote the geometric mean of two successive sizes. It is common to plot µc,L and

Qc,L versus 1/L
1/ν

to estimate the critical chemical potential and cumulant, via extrapolation

to L → ∞. In the present case, however, we observe no tendency; all values of Qc,L and

µc,L agree to within uncertainty. Averaging over all values we obtain µc = 1.335(3) and
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Qc = 0.852(6). Though of low precision, these results are consistent with the literature

values quoted in Table II.
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FIG. 4: (Color online) Square lattice: fourth-order cumulant for system sizes as indicated.

Estimates for the critical chemical potential µc are obtained via analysis of the chemical

potential values associated with the maxima of the susceptibility and compressibility for

each system size. The extrapolated values, µc = 1.330(1) using the susceptibility and µc =

1.337(2) using the compressibility, are obtained using the susceptibility data for L = 20 - 196

and the compressibility data for L = 26 - 196. Pooling our results, we obtain µc = 1.332(2).

Linear extrapolation of the density ρ(µc, L) versus 1/L yields ρc = 0.3675(5) (see Fig. 5),

inset), consistent with the critical density reported in [11], ρc = 0.3677429990410(3). (Using

the precise estimate for µc quoted above [11], we obtain ρc = 0.36800(5).)

Applying FSS analysis to the results for susceptibility for L = 22 - 256 yields γ/ν =

1.764(7) (see the inset of Fig. 9). To estimate β/ν we analyze φc(L) using the above cited

value of µc [11]; our data for L ≤ 256 yield β/ν = 0.123(2); (see Fig. 10 inset). (Using

our own less accurate estimate, µc = 1.332(2), we obtain β/ν = 0.130(9).) Figure 5 shows

the maximum of the compressibility versus system size; the results are consistent with

κm,L ∼ lnL, as expected for a model in the 2d-Ising universality class. Table II summarizes

our main results. It is interesting to note that we obtain essentially the same results,
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FIG. 5: (Color online) Square lattice: maximum of the compressibility versus lnL. The inset shows

the density as a function of 1/L1/ν .

γ/ν = 1.764(8), and β/ν = 0.122(3), if we exclude the data for the two largest system sizes

from the analysis.

Present work Literature values

µc 1.332(2) 1.33401510027774(1)a

Qc 0.852(6) 0.856b; 0.855(1)c; 0.85625(5)d

ρc 0.3675(5) 0.3677429990410(3)a

γ/ν 1.762(8) 7/4 (exact)

β/ν 0.123(2) 1/8 (exact)
aGuo and Blöte[11]
bBurkhardt and Derrida[30]
cNicolaides and Bruce[31]
dKamieniarz and Blöte[32]

TABLE II: Critical values for the square lattice obtained via WLS with adaptive windows. The

results from [31] were obtained using Monte Carlo simulations while Refs. [11, 30, 32] use a

transfer-matrix technique.
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C. Cubic lattice

We apply AWWLS to the NNE lattice gas on the simple cubic lattice, in system sizes

L = 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 40 and 48. In this case we sample the full range of

N values, using adaptive windows as described above; for L = 48, we use approximately fifty

windows. Figure 6 shows Ω(N), again verifying Eq. (5). The density and compressibility

are plotted versus chemical potential in Fig. 7, while Fig. 8 shows the order parameter and

susceptibility, and the inset of Fig. 6 the fourth-order cumulant.
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FIG. 6: (Color online) Simple cubic lattice: Ω(N) versus density, system sizes as indicated. Inset:

Fourth-order cumulant.

Using the critical exponent ν = 0.6301(4) [36] we plot the values µc(L) (corresponding to

the maxima of the susceptibility and the compressibility) versus 1/L1/ν . Extrapolation of

the data for L > 14 yields µc = 0.05516(9) using the susceptibility, while the compressibility

data (for L > 24) yield µc = 0.0567(2). (It is not surprising that the critical value obtained

using the compressibility is less precise than that found using the susceptibility, as the former

exhibits a weaker singularity than the latter.) Using our best estimate µc = 0.05516(9) we

calculate ρ(µc, L); linear extrapolation (for L > 24) versus 1/L1/ν yields ρc = 0.21082(5) (If

we instead use the estimate µc = 0.05443(7) [10], we find ρc = 0.21058(5)).

Proceeding as in the case of the square lattice, we estimate the critical chemical potential
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FIG. 7: (Color online) Simple cubic lattice: density versus chemical potential. Inset: Compress-

ibility versus chemical potential.
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FIG. 8: (Color online) Simple cubic lattice: Order parameter versus chemical potential. Inset:

Susceptibility versus chemical potential.

µc and the critical moment ratio Qc. Plotting µc,L against 1/L
1/ν

we obtain µc = 0.0552(7)
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via linear extrapolation. This is consistent with previous results [10] which found µc =

0.05443(7). Extrapolation of Qc,L as a function of 1/L
1/ν

yields Qc = 0.652(5), somewhat

higher than the literature value (see Table III). If we use µc = 0.05443(7) [10] to calculate

QL(µc), we observe no significant dependence on L; averaging over all values for L > 18

yields Qc = 0.636(3).

FSS analysis of the susceptibility furnishes γ/ν = 2.056(6) (Fig. 9). Using µc =

0.05443(7) [10], FSS analysis of the order parameter at µc yields β/ν = 0.504(8) (Fig.

10). (Using our own best estimate, µc = 0.05516(9), we find β/ν = 0.477(7)). Table III

summarizes our principal results for the simple cubic lattice. As in the case of the square

lattice, our results do not change significantly if we exclude the data for the two largest

system sizes from the analysis.
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FIG. 9: (Color online) Maximum of susceptibility versus system size on the square (inset) and

simple cubic lattices. The solid lines are linear fits used to estimate γ/ν.

D. Critical behavior of g(ρ)

As is known [10], the compressibility of the NNE lattice gas diverges as κ ∼ |µ̃|−α in the

vicinity of the critical point. (Here µ̃ = (µ− µc)/µc is the reduced chemical potential.) On

15



-2.2

-2

-1.8

-1.6

-1.4

 2.7  3  3.3  3.6  3.9  4.2

ln
 φ

c

ln L

L=16

L=24

L=48

-0.8

-0.6

 3  4  5
ln

 φ
c

ln L

-0.8

-0.6

 3  4  5
ln

 φ
c

ln L

FIG. 10: (Color online) Critical order parameter versus system size on square (inset) and simple

cubic lattice. The solid lines are linear fits used to obtain β/ν.

Present work Literature values

µc 0.05516(9) 0.05443(7)a − −
Qc 0.636(3) 0.626(4)a − 0.6233(4)c

ρc 0.21082(5) − − −
γ/ν 2.056(6) 1.94(2)a 2.005(6) b 1.963(3)c

β/ν 0.504(8) 0.53(1)a 0.5002(6) b 0.519(2)c

α/ν 0.25(1) 0.20(4)a − 0.174(4)c

aHeringa and Blöte [10]
bGarćıa and Gonzalo [33]
cBlöte et al [34]

TABLE III: Critical values for the simple cubic lattice obtained via adaptive-window WLS. The

results from [10] were obtained using a cluster algorithm of the NNE lattice gas. Refs. [33] and

[34] are from high resolution cluster simulations of the Ising model.

the other hand it is easy to show that κ ∝ 1/|g′′(ρ)|, where g′′ denotes the second derivative

of g (defined in Eq. (5) with respect to ρ. Thus the singularity in the compressibility is

reflected in a singularity in g. While plots of g versus ρ appear quite smooth (see Figs. 1 and

6), the second derivative does indeed exhibit a singularity near ρc. To obtain g′′ we perform

quadratic fits to g(N) on windows of b successive N values. We choose b large enough
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to eliminate small-scale fluctuations, but small enough that the singular behavior remains

evident [40]. Despite the rounding incurred by such averaging (in addition, of course, to

finite-size rounding), the data shown in Fig. 11 provide a clear indication of a developing

singularity. The figure also shows that the minimum of |g′′| appears to approach zero as

L → ∞. Our data, however, are not sufficiently precise to verify the expected scaling,

|g′′min| ∼ L−α/ν .
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FIG. 11: Second derivative of g(ρ) on the simple cubic lattice, system sizes L = 12, 16, 24, 32 and

48. The inset is a similar plot for the square lattice for system sizes L = 24, 48, 128 and 196.

IV. CONCLUSIONS

We perform adaptive-window Wang-Landau simulations of the lattice gas with nearest-

neighbor exclusion on the square and simple cubic lattices. On the square lattice, comparison

with an exact enumeration of configurations for L = 8 yields excellent agreement. Using

finite-size scaling analysis of data for systems of up 2562 sites on the square lattice and 483

sites on the cubic lattice, we estimate the critical exponent ratios γ/ν and β/ν, and the

critical values of the chemical potential, the density, and the fourth cumulant. In general,

fair agreement is observed with literature values. In three dimensions, the critical point is
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obtained with an error of about 1.3% compared with previous studies, and exponent ratios

and Qc with an error of about 3.5%. The precision of our results is considerably less than

that obtained using transfer-matrix or high-resolution Monte Carlo simulations. Although

this is somewhat disappointing, we note that despite the widespread interest in Wang-

Landau sampling, few studies have been published in which critical exponents are obtained

via this technique [41–45]. Our results confirm that it is possible to obtain reasonably

accurate values for critical exponents and related quantities using Wang-Landau sampling

with adaptive windows. It thus appears worthwhile to seek further improvements in the

method, in efforts to develop a simple and versatile approach for studying phase transitions

via Monte Carlo simulation.

In this regard two observations seem pertinent. The first is that restricting sampling to

a subset of densities may worsen the results, even though densities outside this subset make

a negligible contribution to thermal averages. It appears that the imposition of reflecting

barriers on the random walk in configuration space somehow distorts the sampling. The

second point is that the quality of the results furnished by the WLS procedure appears to

decay with increasing system size, even while maintaining the same flatness criterion and

schedule of updates of the factor f . Thus, including larger systems sizes in the analysis may

not improve results; more extensive sampling of small and intermediate system sizes may

represent a more effective allocation of computing resources. We hope to explore the reasons

for, and implications of these observations in future work.
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