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Abstract

We present a program to calculate the total cross section fortop-quark pair production
in hadronic collisions. The program takes into account recent theoretical developments
such as approximate next-to-next-to-leading order perturbative QCD corrections and it
allows for studies of the theoretical uncertainty by separate variations of the factoriza-
tion and renormalization scales. In addition it offers the possibility to obtain the cross
section as a function of the running top-quark mass. The program can also be applied
to a hypothetical fourth quark family provided the QCD couplings are standard.



Program summary

Title of program: Hathor

Version: 1.0

Catalogue number:

Program summary URL: http://www.physik.hu-berlin.de/pep/tools

http://www-zeuthen.desy.de/˜moch/hathor

E-mail: sven-olaf.moch@desy.de, peter.uwer@physik.hu-berlin.de

License: GNU Public License

Computers: Standard PCs (x86, x86_64 processors)

Operating system: Linux

Program language: C++, fortran, Java

Memory required to execute: 256 MB
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External files needed: Interface to LHAPDF for the user’s choice of parton distribution
functions, seehttp://projects.hepforge.org/lhapdf/.

Keywords: Top-quarks, total cross section, QCD, radiative corrections, run-
ning mass.

Nature of the physical problem: Computation of total cross section in perturbative QCD.

Method of solution: Numerical integration of hard parton cross section convoluted
with parton distribution functions.

Restrictions on complexity of the
problem:

None

Typical running time: A few seconds to a few minutes on standard desktop PCs or note-
books, depending on the chosen options.
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1 Introduction

The top-quark is the heaviest elementary particle in naturediscovered so far. As a consequence of
its large mass close to the scale of the electroweak symmetrybreaking it has remarkable properties
making it a distinct research object. For example the short lifetime does not allow the formation
of hadronic bound-states. Rather, the top-quark decays before it hadronizes, a fact often referred
to colloquially as the top-quark behaving like a quasi-freequark. Non-perturbative effects are thus
essentially cut-off by the short lifetime and, as an important consequence, the polarization of top-
quarks can be studied through the parity violating decay into aW-boson and a bottom quark. The
top-quark also provides an interesting environment for precision tests of the Standard Model (SM)
and possible extensions, e.g., by constraining the allowedrange for the Higgs mass.
A mandatory ingredient for top-quark physics at hadron colliders are precise theoretical predictions
to compare with. Current Tevatron measurements and the perspectives at LHC, i.e., a measurement
of the top-quark pair cross section with an uncertainty of the order of 5% only set the target for the-
oretical predictions of the production process. Clearly such an accuracy needs to include quantum
corrections.
Within Quantum Chromodynamics (QCD) radiative corrections were calculated some time ago
to next-to-leading order (NLO) first considering unpolarized top-quark production [1, 2] and later
including spin information [3]. In the former case, also completely analytical results have recently
been provided [4]. Beyond the NLO accuracy in QCD various sources of possible improvements
have been identified. Large logarithmic corrections due to soft gluon emission were investigated
and resummed at the next-to-leading-logarithmic (NLL) accuracy [5, 6] and recently improved
to include also the next-to-next-to-leading-logarithmic(NNLL) corrections [7–9]. Alternatively,
resummation has also provided the means to construct parts of the full next-to-next-to-leading
(NNLO) fixed order results [7, 10, 11], which can be supplemented by including all Coulomb
type corrections [11] and also the full scale dependence at NNLO accuracy [7, 12]. With a target
precision for the total cross section at the few per cent level also bound state effects from the
resummation of Coulomb type corrections [13,14] as well as electro-weak radiative corrections at
NLO [15–17] need to be considered.
The compilation of all these results is in principle straight forward given the extensive literature
on the subject. However, no publicly available program exists so far which contains the latest
theoretical developments. The “modus operandi” of the pastwas that predictions were updated by
theorists from time to time taking into account new theoretical improvements and/or new sets of
parton distribution functions (PDFs). The aim of the present paper is to provide a program for the
computation of the top-quark pair cross section including state of the art theory. As such it can
serve as a reference for future cross section calculations.The program Hathor includes perturbative
QCD corrections at higher orders in the different approximations along with options allowing also
a detailed study of the theoretical uncertainties. Moreover, it provides the possibility to compute
the total cross section not only in the commonly adapted polemass scheme but also in terms of
theMS mass a choice recently employed for top-quark pair production in hadronic collisions for
the first time [12, 18]. Finally, the aim of this publication is not only to provide a tool for cross
section calculations but also to facilitate experimental analyses. To that end the package contains
in addition to the stand alone program also a small library that can be easily integrated into existing
code.
The outline of the article is a follows. In the next Section webriefly discuss the theoretical foun-
dations as well as the procedure to convert to theMS mass. Sections 3 and 4 contain installation
details and the program description while usage and examples are given in Section 5. We end with
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conclusions in Section 6. All formulae as implemented in Hathor are collected in the Appendices A
and B.

2 Methods

The hadronic cross section for top-quark pair production isobtained from the convolution of the
factorized partonic cross section ˆσi j with the parton luminositiesLi j :

σh1h2→tt̄X(S,mt) =
∑

i, j

S
∫

4m2
t

dsLi j (s,S,µ f ) σ̂i j (s,mt,αs(µr ),µ f ) , (1)

Li j (s,S,µ f ) =
1
S

S
∫

s

dŝ
ŝ

fi/h1

(

ŝ
S
,µ f

)

f j/h2

( s
ŝ
,µ f

)

. (2)

HereS denotes the hadronic center-of-mass energy squared,µr , (µ f ) denotes the renormalization
(factorization) scale and the functionsfi/h1,2(x,µ f ) are the PDFs describing the probability to find
a parton of typei with a momentum fraction betweenx and x+ dx in the hadronhk. The QCD
coupling constantαs(µr ) is evaluated at the scaleµr . In the following we useαs in the scheme
with nf light flavors. For top-quark production, the running is thusdetermined by the five light
flavorsu,d,c, s,b which we treat as massless. The top-quark massmt appearing in Eq. (1) is the
mass renormalized in the on-shell (pole-mass) scheme.
In perturbative QCD the partonic cross section ˆσi j (s,mt,αs,µ f ) is expanded in the QCD coupling
constant up to NNLO:

σ̂i j = a2
s σ̂

(0)
i j (s,mt)+a3

s σ̂
(1)
i j (s,mt,µr ,µ f )+a4

s σ̂
(2)
i j (s,mt,µr ,µ f ) + O(a5

s) , (3)

with as= αs/π.
In leading-order (LO) only the parton channelsqq̄ andggcontribute and the respective Born cross
sections are given by:

σ̂
(0)
qq =

4π3

27
1
s
β(3−β2), (4)

σ̂
(0)
gg =

π3

48
1
s

{

(33−18β2+β4) ln

(

1+β
1−β

)

−59β+31β3
}

, (5)

with β =
√

1−ρ andρ = 4m2
t /s. Starting from NLO also thegq andgq̄ channels contribute. In

Ref. [1] (and in many subsequent publications) an alternative decomposition was used in terms of
so-called scaling functionsfi j :

σ̂i j =
αs

2

m2
t

{

f (0)
i j (ρ)+4παs f (1)

i j (ρ,µ f /mt,µr/µ f )+ (4παs)
2 f (2)

i j (ρ,µ f /mt,µr/µ f ) + O(αs
3)
}

. (6)

Since the scaling functions are dimensionless they depend only on ρ and the ratiosµ f /mt and
µr/µ f . The full renormalization and factorization scheme dependence can be constructed using
the renormalization group equation, the standard evolution equations of the PDFs and information
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about lower orders, i.e., up to NNLO knowledge off (0)
i j (ρ) and f (1)

i j (ρ,1,1) is sufficient. The general
structure can be written in the following form

f (1)
i j (ρ,µ f /mt,µr/mt) = f (10)

i j +LM f (11)
i j +2β0LR f (0)

i j , (7)

f (2)
i j (ρ,µ f /mt,µr/mt) = f (20)

i j +LM f (21)
i j +L2

M f (22)
i j +3β0LR f (10)

i j +3β0LRLM f (11)
i j

+2β1LR f (0)
i j +3β2

0L2
R f (0)

i j , (8)

with i j = {qq̄,gg} and we abbreviateLM = ln(µ2
f /m

2
t ) andLR = ln(µ2

r /µ
2
f ). The scale dependence

in thegq (gq̄) channel can be easily derived from the above realizing thatf (0)
gq = 0 so some terms

in Eqs. (7) and (8) are simplify absent. In the conventions used here the coefficients of the beta-
functionβ0,β1 are given by

β0 =
1

(4π)2

(

11−
2
3

nf

)

, β1 =
1

(4π)4

(

102−
38
3

nf

)

. (9)

The Born contributions have been presented in Eqs. (4), (5) and at present also the complete NLO
corrections are known, i.e., the functionsf (10)

i j and f (11)
i j in Eq. (7). A complete NNLO calculation

for the total cross section is not yet available, sincef (2)
i j (ρ,µ f /mt,µr/mt) in Eq. (8) is missing the

contribution f (20)
i j while f (21)

i j and f (22)
i j have been obtained from renormalization group arguments

as mentioned above. However, exact expressions forf (20)
i j in the limit ρ→ 1 based on soft-gluon

resummation have been derived and provide the foundation for approximate NNLO results of
σh1h2→tt̄X.
The central physics questions to be addressed can be phrasedas follows:

• How large is the total cross sectionσh1h2→tt̄X at a given order in perturbation theory ?

• Given a computation of the total cross section according to Eq. (1) what is the associated
theoretical uncertainty ?

In order to address these issues the package Hathor has different production models implemented
which are accessible to the user as options. In the followingwe briefly describe these options as far
as the underlying physics is concerned. To be self-consistent and for easier reference all necessary
theory input, e.g., the scaling functions has been collected in Appendix B. For details of how to
access these options when running Hathor we refer to the nextSections 4 and 5.

Option LO

The optionLO provides a rough estimate although with large theoretical uncertainties which will
receive sizable corrections at higher orders. This option uses the Born cross sections of Eqs. (4), (5)
(see also Eqs. (B.1)–(B.3)).

Option NLO

The optionNLO is the first instance where a meaningful theoretical uncertainty can be quoted in
perturbation theory. This option employs the complete NLO QCD corrections [1, 2]. All scaling
functions f (10)

i j are given as accurate fits [12] based on the recently published analytic results [4],
(see also Eqs. (B.4)–(B.6)).
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Option NNLO

The optionNNLO is required whenever predictions with an uncertainty of better thanO(10)% are
needed. This option is based on the known threshold enhancement due to soft gluon emission,
i.e., complete tower of Sudakov logarithms at NNLO accuracy, supplemented by all Coulomb type
corrections [11] and also the full scale dependence [7, 12] (see Eqs. (B.12)–(B.17)). This ansatz
provides a good approximation for the total cross section [7, 10], a fact which is supported by the
observation that the QCD corrections to top-quark pair production in association with an additional
jet are small [19–21].
Thus, using the results of Refs. [11,12], we have for the functions f (20)

i j :

f (20)
qq̄ =

f (0)
qq̄

(16π2)2

{8192
9

ln4β+ (−1505.1589+37.925926nf ) ln3β (10)

+

(

1046.4831−90.838135nf −140.36771
1
β

)

ln2β

+

(

249.67547+55.776275nf + (54.038454−4.3864908nf )
1
β

)

lnβ

+3.6077441
1

β2
+ (−5.2728242+1.8447758nf )

1
β
+C(2)

qq̄

}

,

f (20)
gq =

β3

(16π2)2

65π
54

ln3(8β2) , (11)

f (20)
gg =

f (0)
gg

(16π2)2

{

4608ln4β+ (−2321.5810+85.333333nf ) ln3β (12)

+

(

−315.57218−119.35529nf +496.30011
1
β

)

ln2β

+

(

2346.8889+21.969529nf + (286.67132+6.8930570nf )
1
β

)

lnβ

+68.547138
1

β2
+ (−3.7910584−0.96631115nf )

1
β
+C(2)

gg

}

,

where the unknown functionsC(2)
qq̄ andC(2)

gg in Eqs. (10) and (12) parametrize the contributions

which are not enhanced in the threshold region, i.e.,O(β0). Thegq-channel, that isf (20)
gq in Eq. (11),

is additionally suppressed near threshold with corrections of orderO(β3 ln2(β)).
In summary, the optionNNLO (which has been used e.g., for the phenomenological studiesof
Ref. [12]) uses all presently available information at NNLO. In this way, it attempts to construct
the relevant parts of the complete NNLO corrections. Necessarily, the small associated theoretical
uncertainty [7,10] due to scale variation (µr andµ f ) estimates effects beyond NNLO. An additional
systematical uncertainty on the quality of the approximateNNLO result can be quantified by vary-
ing the constantsC(2)

qq̄ andC(2)
gg in a reasonable range comparable to the size of the other coefficients

in Eqs. (10) and (12). Based on the observed small effect of hard radiation (not accounted for by
threshold resummation) on the total cross section oftt̄+jet production [19–21], we believe that the
C(2)

i j should be small. We therefore recommend a variation in the rangeC(2)
i j = ±O(100). Larger

variations, e.g. up toC(2)
i j = ±O(1000), necessarily correspond to more conservative uncertainty

estimates. The default value isC(2)
i j = 0.
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Option LOG_ONLY

The optionLOG_ONLY is also motivated by the idea of soft gluon enhancement near threshold.
It emerged as a conservative definition of the theoretical uncertainty in a comparison of differ-
ent approaches to incorporate dominant terms beyond NLO to acertain logarithmic accuracy. In
particular threshold resummation at NLL accuracy, performed as in Refs. [6, 22] which typically
proceeds in Mellin-space, see Eq. (13), has been tested against an expansion in powers of lnk(β) in
momentum space as advocated in Ref. [7,10]. This comparisonhas yielded satisfactory agreement,
because resummation beyond NLL, i.e., at NNLL accuracy has only a minor effect [7].
The optionLOG_ONLY as discussed below is based on work with CCMMMNU [23]. It is a genuine
NLO approach with logarithmic improvement near threshold and scale variations inµr andµ f (with
a constraint on the ratio ofµr/µ f ) estimate effects beyond NLO. Being a conservative approach the
resulting theoretical uncertainty is necessarily larger than in the optionNNLO.
Let us briefly mention the essential technical points. In Refs. [6, 22] the logarithmic enhancement
is constructed from the ln(N) terms in Mellin space where the resummation is usually performed.
The transformation from momentum (ρ−) space to Mellin (N-) space is given by

σ(N) =
∫ 1

0
dρρN−1σ(ρ) , (13)

whereρ = 4m2
t /s. The important feature of Eq. (13) to realize is that beyond logarithmic accuracy

the momentum space and the Mellin-space expressions do differ by terms which are not enhanced
in β or, respectively power-suppressed in 1/N. Any difference could be included in a choice ofC(2)

i j
in Eqs. (10), (12).
OptionLOG_ONLY has to be used with the OptionNNLO and it is implemented in the following way
(see [23] for further details): Beyond NLO the functionsf (0)

i j are truncated everywhere to their
leading term inβ (cf. Eqs. (4), (5)) and, This applies in particular to Eqs. (10) and (12) where
f (0)
i j appear as overall factors, but we still keep the complete curly brackets in Eqs. (10) and (12),

i.e. we include also all Coulomb corrections∼ 1/β2 and∼ 1/β. For consistency, though, thegq-
channel beyond NLO is neglected (f (20)

gq and Eqs. (B.14) and (B.15)). Also for the scale dependent
part, the optionLOG_ONLY keeps only terms which are logarithmically enhanced in the threshold
region. In this case the functionsf (21)

i j and f (22)
i j in Eqs. (B.12)–(B.17)) are truncated to logarithmic

accuracy. Again, one could also vary the constantsC(2)
qq̄ andC(2)

gg in a rangeC(2)
i j = ±O(100) to test

for additional systematical uncertainties. The default value isC(2)
i j = 0.

Option MS_MASS

The optionMS_MASS allows for the computation of the total cross sections as a functions of the
running mass in theMS scheme. In a nut-shell this is based on the replacementmt →m(m) (see
Eq. (A.1)) in the expression forσh1h2→tt̄X in Eq. (1). The optionMS_MASS can be applied together
with optionsLO, NLO andNNLO.
Let us briefly discuss the main motivation for this option. Sofar the mass used in all formulae is
given as the so-called on-shell or pole-mass which is definedas the location of pole of the quark
propagator calculated order-by-order in perturbation theory. It is well known that the pole-mass is
not a well defined concept in QCD since quarks do not appear as asymptotic states in the quantum
field theoretical description of the strong interaction owing to confinement. In other words, the

6



quark propagator does not have a pole in full QCD. A more quantitative analysis leads to the
conclusion that the pole-mass is intrinsically uncertain of the order ofΛQCD (see e.g. [24, 25]).
Since in perturbation theory the pole-mass can be expressedin terms of a short distance mass like
for example the running mass which is free from non-perturbative effects it is advantageous to
translate the cross section predictions from the on-shell scheme to theMS mass scheme. As a
benefit, the convergence of the perturbative series is significantly improved when the running mass
is used and the extracted numerical value of the top-quark mass is very stable under higher order
corrections. These observations were first pointed out in Ref. [12].
In the Hathor program the conversionσh1h2→tt̄X(S,mt) → σh1h2→tt̄X(S,m(m)) has been realized
now in an easy way allowing a direct evaluation of the cross section using the running mass (see
also [18]). All details are deferred to Appendix A.

Option PDF_SCAN

The optionPDF_SCAN allows for the automated computation of PDF uncertainties.In the default
setting of the Hathor package the PDFs can be accessed with the LHAPDF library [26, 27]. A
prerequisite for this option is, of course, that the respective PDF provides a set of error PDFs.
There are, however, different conventions with respect to PDF uncertainties.
For instance, there exists the convention of asymmetric uncertainties, a choice adopted by e.g.
MSTW [28] and CTEQ [29]. Here the error PDFs come innPDF pairs (σk,+,σk,−), where the first
element of the pair describes the error of the correspondingparameter in the ’+’-direction, the
second the one in the ’−’-direction. Then, for a given PDF set with a central fit resulting in a cross
sectionσ0 the systematic uncertainty∆σ± is estimated by (see e.g. [30]),

∆σ± =
1
2

√

∑

k=1,nPDF

(max(0,±σk,+∓σ0,±σk,−∓σ0))2 . (14)

Eq. (14) is the default of the Hathor package when using the optionPDF_SCAN. Following standard
conventions the PDF uncertainty should be linearly added tothe theoretical uncertainty from scale
variations (parameterizing uncalculated higher orders).
Other PDF sets, e.g. ABKM [31], employ the convention of symmetric uncertainties, where the
nPDF elements each describe the (symmetric) ’±’-variation. In this case, the quadratic uncertainty
∆σ± is obtained by adding the individual errors quadratically in the standard manner,

∆σ± =

√

∑

k=1,nPDF

(σk−σ0)2 , (15)

and the optionPDF_SCAN has to be combined with the additional optionPDF_SYM_ERR.
Finally, there exist PDF sets, e.g. [32, 33] which simply return a numbernPDF of best fits, where
typically nPDF ≃ O(100). Then, the PDF uncertainty of the cross sectionσ is estimated by com-
puting it with each of the best fits and taking the standard statistical average. In such cases, the
optionPDF_SCAN cannot be used for an automated computation of the PDF uncertainty. Within
Hathor, it of course, always possible for the user to provideown code for the evaluation of the PDF
uncertainty.
If, however, a PDF set provides different values of the strong couplingαs for different error PDFs,
this is automatically taken into account.
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Before continuing with the description of the Hathor program, let us mention that the package
offers the possibility for several extensions in the future. With an experimental precision of 5%
as envisaged at LHC the electro-weak radiative correctionsat NLO [15–17] have to be taken into
account. While for the Tevatron they turn out to be small (less than 1%) they are of the order of
2% at LHC with a slight dependence on the Higgs mass. Electro-weak NLO corrections can be
included in a similar manner as the higher order QCD corrections, i.e., with the help of accurate
fits.
Also the treatment of QCD radiative corrections leaves roomfor improvement, e.g. by incorpo-
rating bound state effects from the resummation of Coulomb type corrections [13, 14]. Finally,
the design of the Hathor package can in principle also accommodate related approaches for the
computation of the total top-quark pair cross section beyond NLO, for instance those based on soft
gluon enhancement in differential kinematics [34,35] (see Ref. [36] for earlier work). Such extrap-
olations of large logarithms from soft gluon emission in a differential variable (e.g. the top-quark
pair-invariant mass) to the full partonic phase space introduce systematic uncertainties and require
a detailed comparison to an inclusive approach such as in Eqs. (10)–(12).

3 Installation

In the default setting the Hathor package is based on the LHAPDF library [26] to access the PDFs.
The Hathor package has been tested with the most recent version lhapdf-5.8.3 which can be ob-
tained fromhttp://projects.hepforge.org/lhapdf. Please follow the instructions in the
LHAPDF package to install the LHAPDF library. To build and use Hathor first unpack the pack-
age usingtar xvfz Hathor.tar.gz at the location where one wants to install the package. This
will create a directory Hathor-1.0. Please create a symbolic link lhapdf inside this directory to
the location of ones LHAPDF installation. The contents oflhapdf should contain the LHAPDF
installation with the directories:bin include lib lib64 share. Then use make to build the
Hathor package. Make will build the Hathor (static) librarylibHathor.a which can be used in
other applications. In addition an example programmain.exe is built. For details concerning the
example program we refer to Section 5. Note that the compilation is done using the GNU com-
pilers gcc, gfortran and g++. The package is known to work also with the Intel compiler. Infact
we recommend the usage of the Intel compiler since this results in a much better performance.
However, given that it is not everywhere available Hathor uses the GNU compiler by default.1

To run the example one has to tell the system where the dynamiclibraries for LHAPDF can be
found. This is conveniently done using the environment variableLD_LIBRARY_PATH. Using the
C-shell the statement would be:
setenv LD_LIBRARY_PATH <path_to_lhapdf_installation>/lib/

In addition, one probably needs to specify the location where the grid files for the LHAPDF library
are stored. Again using the C-shell, the statement would be of the form:
setenv LHAPATH <path_to_lhapdf_installation>/lhapdf/share/lhapdf/PDFsets

For a detailed description concerning the paths required bythe LHAPDF library, we refer to the
LHAPDF manual. As concluding remarks with respect to the PDFlibraries we would like to point
out that Hathor does not try to handle errors from the LHAPDF library. This is not possible since
LHAPDF does not provide a detailed error handling. Also notethat since LHAPDF is not thread
safe the same is true for Hathor.

1For the Intel compiler the user has to adapt themakefile.
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Hathor is also equipped with a graphical user interface (GUI) written in Java. The GUI makes
use of dynamic libraries to access the Hathor library withinJava.2 The dynamic library is built
with the commandCreateJavaGui.csh which is included in the Hathor package. The command
CreateJavaGui.csh creates the dynamic librarylibHathor4Java.so and writes the executable
file xhathor which is used to start the GUI. Please note thatxhathor sets up various paths: i.e.
the environment variableLHAPATH is set to./lhapdf/share/lhapdf if it has not been set yet. In
addition the dynamic librarieslibLHAPDF.so andlibgfortran.so on which the Hathor library
relies are preloaded. This step is platform dependent and not alway easy to achieve in a universal
way. If the graphical interface does not start withxhathor the correct setting of the paths is a
likely source of potential errors. In that case we recommendto set the necessary paths directly in
xhathor or to consult the authors for support.

4 Description

The entire cross section is calculated inside the class Hathor. This is done in order to avoid any
possible problem with names used in already existing codes.Inside this class, a two dimensional
numerical integration is performed in which the PDFs are convoluted with the hard scattering cross
section. As a numerical integration procedure we use the Vegas algorithm [37].3 Since Vegas is
a Monte Carlo integration we need to provide random numbers.Those are obtained by using the
Ranlux algorithm [38] and we use the implementation available from Ref. [39].
The Hathor class takes as constructor argument a reference to the PDF which should be used in
the current cross section calculation. In the following we list the publically available function calls
and option choices together with a short description.

• Hathor(Pdf & pdf)

Constructor to build one instance of the Hathor class. The argument is an instance of the
PDF. In case that LHAPDF is used the corresponding definitionwould be:
Lhapdf pdf("MSTW2008nnlo68cl");

to use theMSTW2008nnlo68cl set.
At first sight it might appear strange that we use an additional “wrapper class” as interface
to LHAPDF. The idea behind this is to give the user the possibility to become independent
from LHAPDF. This is achieved by inheriting the classLhapdf from the base classPdf. By
inhering its own class from the base class the user can thus easily implement its own wrapper
to whatever PDF set he wants to use. As an example theclass MSTW has been supplied,
which gives direct access to the MSTW set [28]. (Note that in the MSTW case theαs value
is set to 1 since the library does not provide a function to evaluate it. The user has thus
provide its ownαs.) We have observed that in some cases the original code provided with
the PDF sets is faster than what is provided by LHAPDF. Since the evaluation of the PDFs
represents a significant part of the calculation the usage ofthe original PDFs may speed up
the entire calculation significantly.

• void printOptions()

Use this function to print the options currently selected via the routinesetScheme();

2The same technology can be used to access the Hathor library from Mathematica or Maple. The authors may
provide the respective interfaces in a future update on demand.

3Hathor uses Vegas code which is a C port of the original fortran version [37].
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• void setScheme(unsigned int newscheme)

Sets the specific scheme in particular perturbative order and renormalization schemes. Pos-
sible options are:

– Hathor::LO to switch on the leading-order contribution.

– Hathor::NLO to switch on the individual NLO contribution.

– Hathor::NNLO to switch on the individual NNLO contribution (see Section 2).

Please also note that for the computation of the total cross section up to e.g. NNLO accuracy,
it is necessary to combine the options as in
setScheme(Hathor::LO | Hathor::NLO | Hathor::NNLO);

Other possible options are:

– Hathor::MS_MASS to use the mass renormalized in theMS scheme (see Section 2).

– Hathor::LOG_ONLY to keep only the logarithmically enhanced terms (see Section 2).
Please note that this option requires alsoHathor::NNLO to be set.

– Hathor::PDF_SCAN to switch on the evaluation of the PDF uncertainties. That isto
say, the error PDFs are also integrated along with the central value. To save comput-
ing time one may set the accuracy withXS.setPrecision(Hathor::LOW) to LOW
in this case. Care has to be taken, though, by the user to ensure that the default PDF
uncertainty estimate as implemented in Hathor (asymmetricerror) complies with the
conventions of the respective PDF set, as e.g. some PDF sets provide only a symmetric
error. In this case, the additional optionHathor::PDF_SYM_ERR needs to be set. See
also the discussion in Section 2.

– Hathor::PDF_SYM_ERR invokes symmetric PDF error, if foreseen by the convention
of the PDF set.

Please note, that these options can again be combined, e.g. as in
setScheme(Hathor::LO | Hathor::NLO | Hathor::MS_MASS);

• void setColliderType( COLLIDERTYPE type)

Sets the hadronic initial state. UseHathor::PP to select proton–proton collisions and
Hathor::PPBAR for proton–anti-proton collisions. The collider energiesare set to the de-
fault values: 7 TeV in case of proton–proton collisions and 1960 GeV in case of proton–
anti-proton collisions. If this is inappropriate the values can be changed using the command
void setSqrtShad(double ecms), where the center of mass energy is provided in GeV.

• void setSqrtShad(double ecms)

Sets the center-of-mass energy in GeV.

• void setNf(int nf)

Sets the number of massless flavors tonf. For top-quark physics the default setting isnf =

5 and should not be changed. This function may be used when thecross section for a
hypothetical heavy quark of a fourth family is computed, as Hathor includes the fullnf

dependence of the hard scattering cross section, i.e. it features the formulae for generalnf .
However, please note that the PDFs usually provideαs in thenf = 5 flavor scheme. So the
user should be careful with this option (and the interpretation of the results).
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• void setCqq(double tmp)

Can be used to set the constant defined in Eq. (10) to a specific value (see Section 2). The
default isCqq = 0.

• void setCgg(double tmp)

Can be used to set the constant defined in Eq. (12) to a specific value (see Section 2). The
default isCgg = 0

• void setPrecision(int n)

Can be used to define the accuracy of the numerical integration performed by the Hathor
package. It sets the number of function evaluations used in the Monte Carlo integration. In
principle, the user can provide any reasonable integer value.

Pre-defined values are:Hathor::LOW, Hathor::MEDIUM, Hathor::HIGH. We recommend
LOW for the PDF scan andMEDIUM for the central value. This should be sufficient for most
applications. Please note thatHathor::LOW should give already an accuracy at the percent
level. For detailed comparisons of theoretical resultsHIGH may be used.

• double getAlphas(double mur)

Returns the QCD coupling constant at the renormalization scale mur as provided by the
(central) PDF.

• double getXsection(double m, double mur, double muf)

This function starts the cross section calculation for a given top-quark mass and the factoriza-
tion/renormalization scales provided as arguments. Unless a specific scheme is set through
setScheme the default setting is used:
Hathor::LO | Hathor::NLO | Hathor::NNLO

The cross section for the central PDF is returned. More information can be obtained through
getResult.

• void getResult(int pdfset, double & integral, double & err)

This function is used to obtain additional information after the cross section has been cal-
culated for a specific setting of the renormalization/factorization scale usinggetXsection.
The integer valuepdfset specifies the respective PDF: 0 for the central value, and 1 to
getPdfNumber() for the respective error PDF. The result for the central value and the nu-
merical error from the numerical integration are returned throughintegral anderr. Note
thaterr should always be negligible. If this is not the case the precision of the numerical
integration should be increased throughsetPrecision.

• void getPdfErr(double & up, double \& down)

This function returns the PDF uncertainty, if the optionHathor::PDF_SCAN has been used.
By default, Hathor assumes an asymmetric PDF error convention. In case of a symmetric
one, the optionPDF_SCAN has to be combined with the optionPDF_SYM_ERR (see Section 2
and the discussion above).

• int getPdfNumber()

Returns the number of error PDFs currently in use. If 0 is returned the optionPDF_SCAN is
not switched on or the PDF set does not support error PDFs. E.g., in case of the PDF set
mstw2008nnlo.68cl the return value would be 40.
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• void sethc2(double)

Can be used to change the value for (hc)2 which is used by Hathor to convert the cross
sections from GeV−2 to pico barn. The default used by Hathor is:
0.389379323e+9.

5 Usage and examples

A concrete instance of the Hathor class is built using:

Lhapdf pdf("MSTW2008nnlo68cl");

Hathor XS(pdf);

The evaluation of the cross section (using the default setting) is then done using

XS.getXsection(171.,171.*2,171./2);

where the mass has been set to 171 GeV andµr = 2×171 GeV andµ f = 171/2 GeV. The result of
the evaluation is obtained through

XS.getResult(0,val,err,chi2a);

Note thatXS.getXsection(171.,171.*2,171./2); triggers the numerical integration of the
cross section. It has to be called first beforeXS.getResult(0,val,err,chi2a); can be used.
In a typical application we may want to use a lower statistic in the Monte Carlo integration for the
evaluation of the PDF uncertainty. This is achieved by the following code:

unsigned int scheme = Hathor::LO | Hathor::NLO | Hathor::NNLO;

double mt = 171., muf=171.,mur=171.;

double val,err,chi2a,up,down;

Lhapdf pdf("MSTW2008nnlo68cl");

Hathor XS(pdf);

XS.setPrecision(Hathor::MEDIUM);

XS.getXsection(mt,mur,muf);

XS.getResult(0,val,err,chi2a);

XS.setScheme(scheme | Hathor::PDF_SCAN);

XS.setPrecision(Hathor::LOW);

XS.getXsection(mt,mur,muf);

XS.getPdfErr(up,down);

The central value is calculated with the precision set toMEDIUM. The estimate of the PDF uncer-
tainty is then obtained with a lower accuracy.
An example of the usage of Hathor illustrates the calculation with running a mass. It reproduces
the central curve (NNLO) of the right plot in Figure 5 of Ref. [12].

double val,err,chi;

Lhapdf lhapdf("MSTW2008nnlo68cl");

12



Hathor XS(lhapdf);

XS.setColliderType(Hathor::PPBAR);

XS.setScheme(Hathor::LO | Hathor::NLO | Hathor::NNLO | Hathor::MS_MASS );

XS.setPrecision(Hathor::LOW);

for(double mt = 140; mt < 181.; mt++ ){

XS.getXsection(mt,mt,mt);

XS.getResult(0,val,err,chi);

cout << mt << " " << XS.getAlphas(mt) <<" "<< val << " " << err << endl;

}

The typical runtimes for these examples range between seconds and a few minutes and also de-
pend on the chosen compilers. E.g. on an Intel 3.00GHz QuadCore PC we have obtained with the
optionsNNLO, PDF_SCAN (PDF setMSTW2008nnlo68cl) andXS.setPrecision(Hathor::LOW)
the result for the cross section after 64 seconds using the gfortran compiler, and, 41 seconds re-
spectively, using Intel’s ifort compiler.

The Java GUI is invoked by the commandxhathor (see the discussion in Sec. 3 for the installa-
tion). A screenshot is displayed in Fig. 1 and the input is self-explanatory with the help of Sec. 4
for the description of all options.

Figure 1:Screen shot of the Java graphical user interface for Hathor.

6 Conclusions

Top-quark production at hadron colliders is at the edge of becoming a precision measurement
requiring accurate theory predictions. Hathor is a fast andflexible program for the computation
of the total cross section of hadronic heavy-quark pair-production. It takes into account the latest
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theoretical developments through a variety of options, it allows for separate variations of all scales
and can be used with a large number of PDFs through the LHAPDF interface. As a novelty,
Hathor offers predictions in different renormalization schemes for the heavy-quark mass (pole and
MS) and it can also be applied to a hypothetical fourth quark family assuming standard QCD
couplings. Thus, with these functionalities Hathor can serve as a reference for future cross section
calculations.
Hathor typically runs in a few seconds up to a few minutes (depending on the chosen options, e.g.
extensive PDF scans) on standard desktop or notebook PCs. The Hathor package can either be
used as a stand alone program or, as a small library, it can be easily integrated into existing code,
e.g. for experimental analyses.

Hathor is publicly available for download from [40] or from the authors upon request.

Acknowledgments

We acknowledge useful discussions with S. Alekhin and U. Husemann. This work is supported
in part by the Deutsche Forschungsgemeinschaft in Sonderforschungsbereich/Transregio 9 and the
Helmholtz Gemeinschaft under contract VH-NG-105 and contract VH-HA-101 (Alliance“Physics
at the Terascale”).

A Total cross section with a running mass

The starting point is the relation between the on-shell massand theMS mass:

mt =m(µr )
(

1+asd1+a2
sd2

)

, (A.1)

with as= αs/π. If the decouplingαs
nf=6→ αs

nf=5 is performed atm(µr ) the coefficients are given
by

d1 =
4
3
+ ℓ , (A.2)

d2 =
307
32
+2ζ2+

2
3
ζ2 ln2−

1
6
ζ3+

509
72
ℓ+

47
24
ℓ2 (A.3)

−

(

71
144
+

1
3
ζ2+

13
36
ℓ+

1
12
ℓ2

)

nf +
4
3

∑

l

∆(ml/mt) ,

which are known from Refs. [41–43] andℓ = ln(µr
2/m(µr )

2). Note that the coefficientsdi depend
in general on the renormalization scale. Usingm(m) instead ofm(µr ) the formulae simplify signifi-
cantly. The full renormalization scale dependence can be restored at the end using renormalization
group arguments.∆(mi/mt) accounts for all massive quarksmi lighter than the top-quark. For all
light quarks we setml = 0 so the sum in Eq. (A.3) vanishes.
To convert the cross section to theMS mass scheme we start from the hadronic cross section
expanded inαs:

σh1h2→tt̄X(S,mt) = a2
sσ

(0)(S,mt)+a3
sσ

(1)(S,mt)+a4
sσ

(2)(S,mt)+O(a5
s) . (A.4)

Expressingmt in terms ofm(m) and expanding inαs we obtain

σh1h2→tt̄X = a2
sσ

(0)(S,m(m))+a3
sσ

(1)(S,m(m))+a4
sσ

(2)(S,m(m)) (A.5)
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+a3
sd1m(m)

dσ(0)(mt)
dmt

∣

∣
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∣

∣

∣

mt=m(m)
+a4

s















m(m)d2
dσ(0)(mt)

dmt

∣

∣

∣

∣

∣

∣

mt=m(m)

+m(m)d1
dσ(1)(mt)

dmt

∣

∣

∣

∣

∣

∣

mt=m(m)
+

1
2

m(m)2d2
1

d2σ(0)(mt)

dmt
2

∣

∣

∣

∣

∣

∣

mt=m(m)















.

The derivatives of the LO cross sections with respect to the mass can be written in the following
form:

dσ(0)(mt)
dmt

∣

∣

∣

∣

∣

∣

mt=m(m)
=

2
m(m)

∫ S

4m(m)2
ds

(

s
d
ds
Li j (s,S,µ f )

)

σ̂
(0)
i j (s,m(m)) , (A.6)

and

d2σ(0)

dm2
t

∣

∣

∣

∣

∣

∣

mt=m(m)

= −
2

m(m)2

∫ S

4m(m)2
ds

(

s
d
ds
Li j (s,S,µ f )

)

σ̂
(0)
i j (s,m(m)) (A.7)

+
2

m(m)

∫ S

4m(m)2
ds

(

s
d
ds
Li j (s,S,µ f )

) dσ̂(0)
i j

dmt

∣

∣

∣

∣

∣

∣

∣

∣

mt=m(m)

,

where a summation over the contributing parton channels is understood. Note that in Eqs. (A.5), (A.6)
and (A.7) the renormalization scale is set toµr =m(m). The required derivatives of the LO partonic
cross sections with respect to the mass are easily obtained from Eqs. (4), (5):

mt
dσqq

dmt
= −

1

m2
t

1
9
παs

2ρ
3

β
, (A.8)

mt
dσgg

dmt
=

1
192
παs

2 1

m2
t

ρ

β

(

β(36−40β2+4β4) ln

(

1+β
1−β

)

−7−116β2+91β4
)

. (A.9)

For the first derivative ofσ(1) we obtain a similar result:

dσ(1)

dmt

∣

∣

∣

∣

∣

∣

mt=m(m)
= −

∫ S

4m(m)2
dsLi j (s,S,µ f )

1
m(m)

σ̃
(1)
i j (s,m(m)) (A.10)

+
2

m(m)

∫ S

4m(m)2
ds

(

s
d
ds
Li j (s,S,µ f )

)

σ(i)
(

s,m(m),
µ f

m(m)
,1

)

,

with

σ̃
(1)
i j (s,m(m)) = µ f

∂

∂µ f
σ

(1)
i j

(

s,m(m),
µ f

m(m)
,1

)

. (A.11)

Using Eq. (6) the contribution ˜σ(1)
i j (s,m(m)) can be written as

a2
sσ̃

(1)
i j = 8

αs
2(m(m))

m(m)2
f (11)
i j . (A.12)

Since the luminosities are only known numerically the derivatives are evaluated using

d
ds
Li j (s,S,µ f ) =

1
2δ

(

Li j (s+δ,S,µ f )−Li j (s−δ,S,µ f )
)

+O(δ2) . (A.13)

The results presented so far are only valid forµr =m(m). Using

as(m(m)) = as(µr )
(

1+4π2as(µr )LR̄β0+ (4π2)2as(µr )
2(β1LR̄+β

2
0L2

R̄)
)

, (A.14)

with LR̄= ln(µr
2/m(m)2) it is easy to restore the complete renormalization scale dependence inas.
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B Scaling functions

Here we present the expressions for the scaling functions asimplemented in the program Hathor.
At Born level,

f (0)
qq̄ =

πβρ

27
[2+ρ] , (B.1)

f (0)
gq = 0, (B.2)

f (0)
gg =

πβρ

192

[1
β

(ρ2+16ρ+16) ln
(1+β
1−β

)

−28−31ρ
]

, (B.3)

whereβ =
√

1−ρ andρ = 4m2
t /s. At NLO the functionsf (10)

i j have been described through precise
parametrizations with per mil accuracy and the following ansatz [12]:

f (10)
qq̄ =

ρβ

36π

[32
3

ln2β+

(

32ln2−
82
3

)

lnβ−
1
12
π2

β

]

+βρaqq
0 +h(β,a1, . . . ,a17) (B.4)

+
1

8π2
(nf −4) f (0)

qq̄

[4
3

ln2−
2
3

lnρ−
10
9

]

,

f (10)
gq =

1
16π
β3

[5
9

lnβ+
5
6

ln2−
73
108

]

+h(a)
gq(β,a1, . . . ,a15) , (B.5)

f (10)
gg =

7β
768π

[

24ln2β+

(

72ln2−
366
7

)

lnβ+
11
84
π2

β

]

+βagg
0 +h(β,a1, . . . ,a17) (B.6)

+(nf −4)
ρ2

1024π

[

ln
(1+β
1−β

)

−2β
]

,

wherenf denotes the number of light quarks and the completenf -dependence has been kept

manifest. The constantsai j
0 readaqq

0 = 0.03294734 andagg
0 = 0.01875287 and the fit functions

h(β,a1, . . . ,a17) andh(a)
gq(β,a1, . . . ,a15) are given in Eqs. (B.18), (B.19) together with a list of all

parameters in Tabs. 1–3. The exact expressions for scale dependent functionsf (11)
i j have already

compact analytical form containing at most dilogarithms. They read [1]

f (11)
qq̄ =

1

8π2

[

16π
81
ρ ln

(

1+β
1−β

)

+
1
9

f (0)
qq̄ (ρ)

(

127−6nf +48ln

(

ρ

4β2

))]

, (B.7)

f (11)
gq =

1

8π2

π

192

[

4
9
ρ
(

14ρ2+27ρ−136
)

ln

(

1+β
1−β

)

(B.8)

−
32
3
ρ (2−ρ)h1(β)−

8
135
β
(

1319ρ2−3468ρ+724
)

]

,

f (11)
gg =

1

8π2

[

π

192

{

2ρ
(

59ρ2+198ρ−288
)

ln

(

1+β
1−β

)

(B.9)

+12ρ
(

ρ2+16ρ+16
)

h2(β)−6ρ
(

ρ2−16ρ+32
)

h1(β)

−
4
15
β
(

7449ρ2−3328ρ+724
)

}

+12f (0)
gg (ρ) ln

(

ρ

4β2

)]

,

with the auxiliary functions containing the standard dilogarithm Li2(x) = −
∫ x
0

dt
t ln(1− t),

h1(β) = ln2
(

1+β
2

)

− ln2
(

1−β
2

)

+2Li2

(

1+β
2

)

−2Li2

(

1−β
2

)

, (B.10)
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h2(β) = Li2

(

2β
1+β

)

−Li2

(

−2β
1−β

)

. (B.11)

At NNLO the functionsf (21)
i j and f (22)

i j are known exactly [12]. The fits to the scaling functions
generally have per mil accuracy with exceptions in regions close to zero, where an accuracy better
than one percent is kept.

f (21)
qq̄ =

1

(16π2)2
f (0)
qq̄

[

−
8192

9
ln3β+

(12928
3
−

32768
9

ln2
)

ln2β (B.12)

+

(

−840.51065+70.183854
1
β

)

lnβ−82.246703
1
β
+467.90402

]

+
nf

(16π2)2
f (0)
qq̄

[

−
256
3

ln2β+

(2608
9
−

2816
9

ln2
)

lnβ+6.5797363
1
β
−64.614276

]

+h(β,bi +nf ci)−
4nf

2

(16π2)2
f (0)
qq̄

[

4
3

ln2−
2
3

lnρ−
10
9

]

,

f (22)
qq̄ =

1

(16π2)2
f (0)
qq̄

[2048
9

ln2β+

(

−
7840

9
+

4096
9

ln2
)

lnβ+270.89724
]

(B.13)

+
nf

(16π2)2
f (0)
qq̄

[320
9

lnβ−
596
9
+

320
9

ln2
]

+h(β,bi +nf ci)+
4nf

2

3(16π2)2
f (0)
qq̄ ,

f (21)
gq = −

π

(16π2)2
β3

[770
27

ln2β+

(

−
6805
81
+

6160
81

ln2
)

lnβ+0.13707784
1
β

(B.14)

+0.22068868
]

−
πnf

81(16π2)2
β3

[

46lnβ−
163
3
+76ln2

]

+h(b)
gq(β,bi +nf ci)

f (22)
gq =

π

(16π2)2
β3

[385
81

lnβ−
1540
243
+

385
81

ln2
]

+h(b)
gq(β,bi +nf ci) , (B.15)

f (21)
gg =

1

(16π2)2
f (0)
gg

[

−4608ln3β+

(109920
7
−18432ln2

)

ln2β (B.16)

+

(

69.647185−248.15005
1
β

)

lnβ+56.867721
1
β
+17.010070

]

+
nf

(16π2)2
f (0)
gg

[

−64ln2β+

(4048
21
−192ln2

)

lnβ−3.4465285
1
β
−37.602004

]

+h(β,bi +nf ci) ,

f (22)
gg =

1

(16π2)2
f (0)
gg

[

1152ln2β+ (−2568+2304ln2) lnβ−79.74312140
]

(B.17)

+
nf

(16π2)2
f (0)
gg

[

16lnβ−16+16ln2
]

+h(β,bi +nf ci) ,

with the fit functionsh(β,a1, . . . ,a17) andh(b)
gq(β,a1, . . . ,a18) (see Tabs. 1–3 for a list of all parame-

ters),

h(β,a1, . . . ,a17) = a1β
2+a2β

3+a3β
4+a4β

5 (B.18)

+a5β
2 lnβ+a6β

3 lnβ+a7β
4 lnβ+a8β

5 lnβ

+a9β
2 ln2β+a10β

3 ln2β+a11β lnρ+a12β ln2ρ+a13β
2 lnρ

+a14β
2 ln2ρ+a15β

3 lnρ+a16β
3 ln2ρ+a17β

4 lnρ ,

h(a)
gq(β,a1, . . . ,a15) = a1β

4+a2β
5+a3β

6 (B.19)
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+a4β
4 lnβ+a5β

5 lnβ+a6β
6 lnβ

+a7β
2ρ lnρ+a8β

2ρ ln2ρ+a9β
3ρ lnρ

+a10β
3ρ ln2ρ+a11β

4ρ lnρ

+a12β
4ρ ln2ρ+a13β

2ρ ln3ρ+a14β
2ρ ln4ρ+a15β

2ρ ln5ρ ,

h(b)
gq(β,a1, . . . ,a18) = a1β

3+a2β
4+a3β

5+a4β
6+a5β

7 (B.20)

+a6β
4 lnβ+a7β

5 lnβ+a8β
6 lnβ+a9β

7 lnβ

+a10β
3 lnρ+a11β

3 ln2ρ+a12β
4 lnρ+a13β

4 ln2ρ

+a14β
5 lnρ+a15β

5 ln2ρ+a16β
6 lnρ+a17β

6 ln2ρ+a18β
7 lnρ .

f (10)
qq̄ f (21)

qq̄ f (22)
qq̄

i ai bi ci bi ci

1 0.07120603 −0.15388765 −0.07960658 0.37947056 −0.00224114

2 −1.27169999 4.85226571 0.50111294 −4.25138041 0.02685576

3 1.24099536 −7.06602840 −0.09496432 2.91716094 −0.01777126

4 −0.04050443 2.36935255 −0.32590203 0.94994470 −0.00626121

5 0.02053737 −0.03634651 −0.02229012 0.10537529 −0.00062062

6 −0.31763337 1.25860837 0.23397666 −1.69689874 0.00980999

7 −0.71439686 2.75441901 0.30223487 −2.60977181 0.01631175

8 0.01170002 −1.26571709 0.13113818 −0.27215567 0.00182500

9 0.00148918 −0.00230536 −0.00162603 0.00787855 −0.00004627

10 −0.14451497 0.15633927 0.08378465 −0.47933827 0.00286176

11 −0.13906364 1.79535231 −0.09147804 −0.18217132 0.00111459

12 0.01076756 0.36960437 −0.01581518 −0.04067972 0.00017425

13 0.49397845 −5.45794874 0.26834309 0.54147194 −0.00359593

14 −0.00567381 −0.76651636 0.03251642 0.08404406 −0.00035339

15 −0.53741901 5.35350436 −0.25679483 −0.51918414 0.00363300

16 −0.00509378 0.39690927 −0.01670122 −0.04336452 0.00017915

17 0.18250366 −1.68935685 0.07993054 0.15957988 −0.00115164

Table 1:Coefficients for fits of theqq̄ scaling functions.

18



f (10)
gq f (21)

gq f (22)
gq

i ai bi ci bi ci

1 −0.26103970 −0.00120532 0.00003257 −0.00022247 0.00001789

2 0.30192672 −0.04906353 0.00014276 0.00050422 0.00000071

3 −0.01505487 −0.20885725 −0.00402017 −0.02945504 −0.00020581

4 −0.00142150 −13.73137224 0.06329831 0.34340412 0.00108759

5 −0.04660699 14.01818840 −0.05952825 −0.31894917 −0.00086284

6 −0.15089038 −0.00930488 0.00002694 0.00009213 0.00000010

7 −0.25397761 −0.52223668 0.00159804 0.00690402 0.00001638

8 −0.00999129 −4.68440515 0.01522672 0.07847233 0.00022730

9 0.39878717 −7.61046166 0.02869438 0.16042051 0.00045698

10 −0.02444172 1.36687743 −0.00875589 −0.05186974 −0.00025620

11 −0.14178346 1.84698291 −0.00800271 −0.03861021 −0.00016026

12 0.01867287 −7.26265988 0.04043479 0.21650362 0.00070713

13 0.00238656 −4.89364026 0.01965878 0.10137656 0.00034937

14 −0.00003399 11.04566784 −0.05262293 −0.28056264 −0.00072547

15 −0.00000089 4.13660190 −0.01457395 −0.08090469 −0.00025525

16 0.00000000 −6.33477051 0.02314616 0.13077889 0.00034015

17 0.00000000 −1.08995440 0.00291792 0.01813862 0.00006613

18 0.00000000 1.19010561 −0.00220115 −0.01585757 −0.00006562

Table 2:Coefficients for fits of thegqscaling functions.
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f (10)
gg f (21)

gg f (22)
gg

i ai bi ci bi ci

1 −8.92563222 −4.18931464 0.12306772 0.01222783 −0.00380386

2 149.90572830 82.35066406 −2.75808806 −0.77856184 0.08757766

3 −140.55601420 −87.87311969 3.19739272 1.33955698 −0.10742267

4 −0.34115615 9.80259328 −0.56233045 −0.59108409 0.02382706

5 −2.41049833 −1.12268550 0.03240048 0.00248333 −0.00099760

6 54.73381889 29.51830225 −0.92541788 −0.23827213 0.02932941

7 90.91548015 48.36110694 −1.57154712 −0.38868910 0.04906147

8 −4.88401008 −7.06261770 0.35109760 0.28342153 −0.01373734

9 −0.17466779 −0.08025226 0.00227936 0.00010876 −0.00006986

10 13.47033628 7.01493779 −0.21030153 −0.03383862 0.00658371

11 22.66482710 15.00588140 −0.63688407 −0.29071016 0.02089321

12 4.60726682 3.84142441 −0.12959776 −0.11473654 0.00495414

13 −67.62342328 −47.02161789 1.91690216 0.98929369 −0.06553459

14 −9.70391427 −8.05583379 0.26755747 0.24899069 −0.01046635

15 65.08050888 47.02740535 −1.86154423 −1.06096321 0.06559130

16 5.09663260 4.21438052 −0.13795865 −0.13425338 0.00551218

17 −20.12225341 −14.99599732 0.58155056 0.35935660 −0.02095059

Table 3:Coefficients for fits of theggscaling functions.
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