
The Grid[Way] Job Template Manager,
a tool for parameter sweeping

Alejandro Lorca∗, Eduardo Huedo†, Ignacio M. Llorente‡

Facultad de Informática, Universidad Complutense de Madrid,

C/ Prof. José Garćıa Santesmases s/n, E-28040, Madrid, Spain

October 22, 2018

Abstract

Parameter sweeping is a widely used algorithmic technique in com-
putational science. It is specially suited for high-throughput comput-
ing since the jobs evaluating the parameter space are loosely coupled
or independent.

A tool that integrates the modeling of a parameter study with the
control of jobs in a distributed architecture is presented. The main
task is to facilitate the creation and deletion of job templates, which
are the elements describing the jobs to be run. Extra functionality re-
lies upon the GridWay Metascheduler, acting as the middleware layer
for job submission and control. It supports interesting features like
multi-dimensional sweeping space, wildcarding of parameters, func-
tional evaluation of ranges, value-skipping and job template automatic
indexation.

The use of this tool increases the reliability of the parameter sweep
study thanks to the systematic bookkeping of job templates and re-
spective job statuses. Furthermore, it simplifies the porting of the
target application to the grid reducing the required amount of time
and effort.

∗Corresponding author, e-Mail:alejandro.lorca@fdi.ucm.es
†e-Mail:ehuedo@fdi.ucm.es
‡e-Mail:llorente@dacya.ucm.es

1

ar
X

iv
:1

00
3.

12
91

v1
 [

cs
.D

C
]

 5
 M

ar
 2

01
0

mailto:alejandro.lorca@fdi.ucm.es
mailto:ehuedo@fdi.ucm.es
mailto:llorente@dacya.ucm.es

1 Program summary

• Title of the program: Grid[Way] Job Template Manager (version 1.0,
released on February 26th, 2010).

• Catalogue identifier:

• Program obtainable from:
http://dev.gridway.org/projects/gwjobtemplatemanager.

• Computer: any (tested on PC x86 and x86 64).

• Operating system: Unix, GNU/Linux (tested on Ubuntu 9.04, Scien-
tific Linux 4.7, centOS 5.4), Mac OS X (tested on Snow Leopard 10.6).

• Programming language used: perl 5.8.5 and above.

• Additional programs/libraries used: The GridWay Metascheduler [1].

• Memory required to execute with typical data: 10MB.

• No. of processors used: 1.

• No. of bytes in distributed program, including test data, etc.: 20799.

• Distribution format: Gzipped tar file.

• High-speed storage required: No.

• Keywords: e-science, parameter sweep, grid computing, middleware,
high-throughput computing.

• Nature of the physical problem: To parameterize and manage an appli-
cation running on a grid or cluster.

• Method of solution: Generation of job templates as a cross product
of the input parameter sets. Also management of the job template
files including the job submission to the grid, control and information
retrieval.

• Restriction of the complexity of the problem: The parameter sweep is
limited by disk space during generation of the job templates. The wild-
carding of parameters cannot be done in decreasing order. Job submis-
sion, control and information is delegated to the GridWay Metasched-
uler.

• Typical running time: From half a second in the simplest operation to
a few minutes for thousands of exponential sampling parameters.

2

http://dev.gridway.org/projects/gwjobtemplatemanager

2 Introduction

Parameter sweeping is a very common strategy in order to solve complex
scientific problems. It consists on scanning different points on a relevant
parameter space region. There are many possible interests on doing such,
for instance, the optimization of a functional by finding its minima over the
scanned region, to parameterize an analytical function with the help of in-
terpolated values or to understand different regimes of simulated physical
models. The variety of the scientific disciplines profiting from this strategy
is overwhelming; experimental high-energy physics, astrophysics and astro-
particle physics, life sciences, computational chemistry, earth sciences, com-
putational linguistics, game theory, etc, are just prominent examples.

The evaluation of parameter space points is a simple problem within com-
putational theory, but requires, in turn, some pre-processing of the problem
according to a given search criteria, the systematic exploration of the param-
eter space points and a final data post-processing.

According to the application profile three different categories can be es-
tablished for better understanding the scope of the tool:

• Parallelization. The second stage mentioned above, in which the pa-
rameter space is explored, requires the evaluation of some functional for
each point. Making this stage parallel is in some cases unfeasible and
the applications are run in sequential mode. Those parallelizable appli-
cations require some porting (i.e. either to cluster, grid or supercom-
puters) to improve the execution time, surmount memory limitations,
etc.

• Interactivity. User intervention might be automated to a certain degree
depending on the application profile. If it is not required at any stage of
the computation we will consider the applications as non-interactive.
Otherwise, for the interactive ones, the user is obliged to take some
decision during execution.

• Recursion. On one hand, single-pass applications do not profit from
the knowledge of the parameter space exploration or the results at a
post-processing stage. On the other hand, if the application is aware of
such feedback, an improved range of the parameter space can be chosen
for optimizing results or further testing. This workflow is common in
master-worker execution profiles.

With such classifications in mind, the parallel, non-interactive, single-pass
applications are the target group for the Grid[Way] Job Template Manager,
specially those with a large amount of independent tasks to be accomplished.

3

Large-scale problems well suited to high-throughput computing can be
tackled in different manners, from last generation supercomputers to dis-
tributed solutions such as workstations or PCs. Indeed, grid computing has
emerged during the last two decades as a new and affordable computational
paradigm. The main distinguishing feature of this distributed architecture
is the integration of different computing resources, typically involving high
performance clusters (computing elements) and massive database storages
(storage elements) hosted on universities, research centres, private compa-
nies, etc. The access to the grid is mediated through a software layer, usu-
ally referred to as the middleware, which takes care of the user’s certificate
checking, data transfer, host monitoring, file registering, and many other
additional services.

There are other tools on the market dealing with parameter studies on
the grid, like Nimrod/G [2] or APST[3] from AppLeS [4]. Nimrod/G possess
a “parametric engine” which is the agent centralizing the parameterization
of the experiment, job creation, submission and control. Nimrod/G requires
a static declarative language, allowing multi-dimensional analysis to set of
strings and basic real ranges. Alternatively, the AppLeS Parameter Sweep
Template uses a simple, XML-based1 interface which can be used from the
command-line or called from scripts, but it is left to the user the enumeration
of individual tasks. In both cases, the scheduling and other grid-related tasks
are part of the projects. This is not the case of the Grid[Way] Job Template
Manager, because the GridWay Metascheduler handles those operations di-
rectly. As will be shown later, the reason for naming our tool with a bracket
in the word Grid[Way] tries to make clear the relation to the grid technology,
being optional the underlying use of GridWay.

GridWay itself contains a mechanism to proceed with a collection of jobs
(i.e. job array)[5], but it is certainly limiting: only single parameter variation
through ingeters, both in step and values, can be achieved. This is some-
what similar to the possibilities integrated on the gLite WMS job description
language [6]. A remarkable effort to stardardize the parameter sweeps has
been carried out [7], but the approach is more a formal extension of the job
standard description language than a useful grammar easy to by remembered
by the end user.

The structure of the paper is as follows: The Sect. 3 describes the method
and framework used for the composition of the parameter sweep region di-
rectly from the spanning of the one-dimensional parameter sets. It also
describes the syntax of the parameter file. Sect. 4 moves on to the technical
steps to have the tool up and running while Sect. 5 shows the general use

1Extensible Markup Language.

4

of the tool. Several examples have been worked out in detail in Sect. 6 with
increasing dificulty. Finally we summarize the work in Sect. 7.

3 Algorithm

The basic working environment of the program is depicted in Fig. 1. The
user specifies what is going to be performed through the command line inter-
face and, depending on which tasks has been asked for, some input files will
be required. The parameter sweep specification comes from the parameter
file and job template appendices from the template file. During the process-
ing, some calls to the GridWay Metascheduler are required for submitting,
purging, killing and getting information about jobs. The main outcome of
the tool are the job template files, which contain the information about the
parameter sweep study and are ready for submission. The information about
the job creation and deletion, as well as from the jobs coming from these job
template files is available through the standard output and error. Addition-
ally, if GridWay is used, the corresponding jobs’ output will be available as
extra files.

Input
files

Grid[Way]
Job
Template
Manager

Input
cli

Output
files

Output
stdout/stderr

GridWay
Meta-
scheduler

Figure 1: Grid[Way] Job Template Manager framework. Continuous lines
represent input/output while dashed lines indicates interaction with Grid-
Way through optional instructions and information feedback.

5

3.1 Mathematical framework

The starting point for carrying out a parameter study is to define which
parameter points are considered for evaluation. Let denote by r a parameter
point belonging to the direct product space of suitable dimensions R:

r ∈ R, R = R1 × · · · ×Rn, (1)

being Ri the respective one-dimensional space of the i-th argument.
A given set of points P of arbitrary size m forms the complete parameter

sweep set:
P = {rj : rj ∈ R; 0 ≤ j ≤ m− 1}, (2)

but for simplification we will consider only the case where any element rj
comes from a Cartesian product of subsets Pi ⊂ Ri of some chosen elements,
each subset with size mi. Thus,

P = P1 × P2 × · · · × Pn, (3)

m = m1m2 · · ·mn =
n∏

i=1

mi. (4)

Indexing the n-tuple elements of P is trivial when following the natural
ordering of each set Pi until it gets exhausted, then incrementing the previous
set.

Note the difference in labeling convention: the elements in each set Pi are
indexed from 0 to mi − 1, while the composition of the n-tuples correspond
to 1, 2, . . . , n. This is because we expect the user to feed the application with
n command line arguments, being each job uniquely indexed:

r0 = (r1,0, r2,0, . . . , rn,0),

r1 = (r1,0, r2,0, . . . , rn,1),

... =
...

rm−1 = (r1,m1−1, r2,m2−1, . . . , rn,mn−1).

(5)

We have not yet described which is the allowed nature of the spaces Ri

where the subsets Pi are included. Let us discuss this issue altogether with
the mechanism to model the study.

3.2 Parameter file parsing

Next, the way to declare the sets Pi for each argument is explained. The dec-
laration grammar has been chosen to be fairly simple for user’s convenience:

6

• The parametric study, denoted by P is declared as n valid sentences in
the parameter file.

• Each set Pi is declared at the valid i-th sentence of the file, one per
line. It contains instructions to define the structure of the set and value
assignments.

• The words of the language are KEY=VALUE pairs, separated by blank
spaces.

The structure of each set is declared in the first word. The following
possibilities are currently available:

1. LOOPTYPE=LIST. The set consists of a list of given values. These are
assigned through an arbitrary number of VALUE=ri,j pairs. Admitted
values are taken as strings.

2. LOOPTYPE=RANGE. The set is built according to a linear range of val-
ues. The keys START and END define the initial and final elements of
the set, while the tags STEP or POINTS fix either the iteration incre-
ment between each element or the total number of points of the set
respectively. Admitted values can be entered in the following formats:

a) integer (i.e. -4 or 54764563),

b) floating point up to 16 digits (i.e. 567884.2234),

c) scientific up to 10±308 (i.e. 1.4E-12),

d) characters (i.e. j or z),

e) arbitrary-size2 (i.e. 1000000000000000000000000001).

3. LOOPTYPE=EXPRANGE. It is similar to RANGE but interpolates exponen-
tially between the initial and final elements. Therefore a STEP=1 means
exponential increases by one order of magnitude. Admitted values take
the same form than for RANGE.

A summary of the correct sentence composition is given in Table 1, where the
square brackets ([]) enclose optional words, and the pipe symbol (|) refers
to mutually exclusive pairs.

Additionally, there are two other keys which may be included for modi-
fying the evaluation of the sets, specially suited to the RANGE and EXPRANGE:

• SKIP. It permits to remove the specific point from the set.

2Should the user require this feature, then the the following option through the com-
mand line interface has to be added: --config use bignum=1.

7

Structure Assignment
LOOPTYPE=LIST VALUE=ri,0 [VALUE=ri,1 . . . VALUE=ri,mi−1]
LOOPTYPE=RANGE START=ri,0 END=ri,mi−1 [STEP=si|POINTS=mi]
LOOPTYPE=EXPRANGE START=ri,0 END=ri,mi−1 [STEP=ei|POINTS=mi]

Table 1: Basic syntactic grammar for the i-th line of the parameter file. ri,j
is the j-th value of the set Pi, si is a linear step increment while ei defines
order of magnitude factor to separate points in the EXPRANGE.

• FUNCTION. Any valid perl function or concatenation of functions which
accept an argument are candidates to transform the j-th element in
the set Pi according to ri,j → fi(ri,j).

A summary of possible option values for the FUNCTION key as well as the
syntax is given in Table 2.

3.3 Wildcarding

Once the parsing of the file is finished, the tool has obtained sufficient in-
formation to create the Cartesian product given by Eq. (3). A nice feature
which allows parameter substitution and job template index substitution is
wildcarding. The pattern for substitution has the following syntax:

• ${1}, ${2},. . ., ${n}. These tags are replaced during evaluation by
the corresponding values r1, r2, . . . , rn. Note that due to the strict
increasing order of replacement, no replacement for ${i} is performed
at lower set declarations from P1 to Pi−1.

• ${JT ID}. It is replaced by the index ordering the whole set P . If
m > 10, so many leading zeroes are included as necessary making file
matching and ordering easier.

4 Setup

The Grid[Way] Job Template Manager is a stand-alone perl script, which
includes all necessary subroutines for execution.

4.1 Installation

A simple download of the program into the current working directory is
enough condition to have it installed.

8

Key=Value Description
SKIP=ri,j
FUNCTION=fi =
abs absolute value function
atan2 arctangent in the range -π to π
cos cosine function
exp raise to a power
hex convert a string to a hexadecimal number
int get the integer portion of a number
log retrieve the natural logarithm for a number
oct convert a string to an octal number
rand retrieve the next pseudo-random number
sin return the sine of a number
sqrt square root function
srand seed the random number generator
chomp remove a trailing record separator from a string
chop remove the last character from a string
chr get character this number represents
crypt one-way passwd-style encryption
hex convert a string to a hexadecimal number
lc return lower-case version of a string
lcfirst return a string with just the next letter in lower case
length return the number of bytes in a string
oct convert a string to an octal number
ord find a character’s numeric representation
reverse flip a string or a list
uc return upper-case version of a string
ucfirst return a string with just the next letter in upper case

Table 2: Optional tags available for modifying the standard composition of
elements in each set.

If the GridWay Metascheduler is missing, only the create and delete op-
erations will be available for use. Instructions to install the Metascheduler
are available elsewhere[8] and lay outside the scope of the paper.

4.2 Configuration

There are two mechanisms to configure the behaviour of the program.

• In-line config option. This way allows the user a prompt modification of

9

Parameter Default Value
job template wildcard ’${JT ID}’
job template prefix ’’

job template suffix ’.jt’

std output dir ’.’

std error dir ’.’

input file default suffix ’.in’

comment char ’#’

keyassignment char ’=’

separation char ’,’

separation char cli ’ ’

separation char filename ’ ’

jt id to arg separation ’ ’

unix operators ’&|<>;()‘’

gridway submit ’gwsubmit’

gridway ps ’gwps’

gridway kill ’gwkill’

gridway wait ’gwwait’

gridway dir var ’’

use bignum 0

huge number points 10000

inode size kB 4

Table 3: Get config keywords parameter available. Strings are enclosed by
single ticks.

the configuration parameter through the --config PARAMETER=VALUE

command line option.

• Editing the program file. Alternatively, the program file contains all the
configuration options ordered in two subroutines Get config parameters
and Get config template keywords at the end of the program.

The whole set of possible parameters to be assigned are given in Tables 3−4

5 Usage

The tool has been designed to be used through the command line interface
of the users’ terminal. It suffices to invoke the main command together with
a subcommand which specifies the action to be performed and arguments to
set the scope of the operation. Typed at the prompt, it reads:

10

Parameter Default Value
Template executable ’EXECUTABLE’

Template arguments ’ARGUMENTS’

Template stdout file ’STDOUT FILE’

Template stderr file ’STDERR FILE’

Template job name ’NAME’

Template encloser char ’’

Template end of line ’’

Table 4: Get config template keywords. Strings are enclosed by single ticks.

gw_job_template_manager [OPTION] SUBCOMMAND ARG(S)

where some options for debug and configure also exists. All the elements
needed for a correct use are summarized in Table 5.

Firstly, the user would edit a parameter file containing the instruction
to generate the arguments wishing to pass as arguments to the executable.
These job templates include five definitions:

• EXECUTABLE = executable filename (i.e. WORKER FILE),

• ARGUMENTS = argument list, separated by whitespaces,

• STDOUT FILE = standard output destination file,

• STDERR FILE = standard error destination file,

• NAME = label for naming the job.

These definitions correspond to the GridWay Job Template Language and
can be extended by adding the TEMPLATE FILE with extra ones or modified
through the config option.

After a successful run of the program, a zero exit status is delivered.
Otherwise, it indicates an error, probably associated with either internal code
errors or wrong syntax. Because there is no systematic way to represent
program exit codes, an indication of the encountered problem is given in
Table 6.

6 Examples

A simple collection of examples will illustrate the usage of the tool and some
tips enhancing the possibilities of writing job templates.

11

6.1 Hello world!

Sticking to tradition, the first example must create a job template whose
job is submitted and prints “Hello world!”. Doing this involves at least two
executions of the Grid[Way] Job Template Manager. Step by step:

1. A file (say parameter.in) describes which is the string argument to be
printed. One valid line suffices in this case:

$ cat parameter.in

LOOPTYPE=LIST, VALUE="Hello world!"

2. Let us run the command3 with the creation of job templates (--create)
and an executable of the system (--worker):

$ gw_job_template_manager --create parameter.in --worker /bin/echo

Composed 1 job templates

Once finished, the job template appears in the current directory:

$ ls

0_echo_Hello_world!.jt parameter.in

with a name indicating the job template index (0), the job executable
(echo) without trailing path, the sampled argument (Hello World!)
where the whitespaces have been substituted by underscores, and a
suffix extension (.jt). It contains five fields with instructions for Grid-
Way:

$ cat 0_echo_Hello_world!.jt

NAME = 0_echo

EXECUTABLE = /bin/echo

ARGUMENTS = "Hello world!"

STDOUT_FILE = 0_echo_Hello_world!.out

STDERR_FILE = 0_echo_Hello_world!.err

3. The submission step is quite straightforward, since the tag all covers
the submission of all generated job templates:

$ gw_job_template_manager --submit all

Submitted 1 jobs from templates

depending on the scheduling, and resource availability, it will take more
or less time for the remote job to finish. When it is done, the standard
output file will be there containing the expected greeting.

$ cat 0_echo_Hello_world!.out

Hello world!

3Note that the command has been preceeded by a $ symbol resembling the shell prompt.

12

6.2 Interplanetary Hello world!

As a second non-trivial example, we present an extension of the previous case
where the ability to perform a two-dimensional product of sets is shown.

1. The file parameter.in has two lines:

LOOPTYPE=LIST, VALUE=hello, VALUE=goodbye, FUNCTION=ucfirst

LOOPTYPE=LIST, VALUE=world!, VALUE=mars!

where two new aspects appear. First, we have changed our strategy and
instead of echoing a single argument passed as a quoted string, we have
given two arguments to the /bin/echo worker application. The first
of them is composed by a combination of the set P1 ={hello, goodbye}
and the second belongs to the set P2 ={world!, mars!}. Secondly,
there is a transformation according to the perl function ucfirst which
capitalizes the first letter of the word in P1.

2. Creating the job templates generates the following files:

$ ls -1

0_echo_Hello_world!.jt

1_echo_Hello_mars!.jt

2_echo_Goodbye_world!.jt

3_echo_Goodbye_mars!.jt

parameter.in

with equivalent content as shown in the simple “Hello world!” example.

3. After the submission of all the templates, it is very useful to monitor
the status of the jobs. This action can be performed with the --info

subcommand

$ gw_job_template_manager --info now

JOB_NAME,LOCALTIME,TIME,MANAGER,STATUS,QUEUE_NAME,HOST_NAME,EXIT_STATUS

0_echo,Tue Feb 23 19:24:45 2010,1266949485,DISPATCH,WRAPPER,prod,egee.srce.hr,

1_echo,Tue Feb 23 19:25:05 2010,1266949505,DISPATCH,WRAPPER,gilda,grid.acad.bg,

2_echo,Tue Feb 23 19:24:54 2010,1266949494,EXECUTION,ACTIVE,prod,egee.srce.hr,

3_echo,Tue Feb 23 19:25:04 2010,1266949504,DISPATCH,DONE,prod,egee.srce.hr,0

which outputs a CSV-formatted4 table with information about each
job. This info subcommand is intended to provide knowledge about
the set of jobs of the parameter study, leaving aside those jobs which
do not match a parent job template in the current directory.

4. Once the jobs are successfully finished, it is possible to purge them
from the list

4Comma separated values.

13

$ gw_job_template_manager --purge successful

Purged 4 jobs from templates

and also to get rid of all the job templates

$ gw_job_template_manager --delete all

Deleted 4 job templates

being in the current directory. Nevertheless, there is some limitation
here; the [un]submitted, [un]finished, and [un]successful tags
only make sense while matching their respectives jobs from templates
listed through the gwps GridWay command. This means that if the
user purges the successful jobs, only the unsuccessful remain in the list
being therefore impossible to pursue more actions (like delete) on a
successful set.

5. The output of the jobs now resembles an interplanetary dialog.

$ cat *.out

Hello world!

Hello mars!

Goodbye world!

Goodbye mars!

6.3 Squaring and skipping

The next example tries to compute the square of the set P ={1,2,4,5}.

1. Instead of typing them by hand, a squaring executable which receives
a single argument has been prepared (named square). The parameter
file parameter.in has one line:

LOOPTYPE=RANGE, START=1, END=5, STEP=1, SKIP=3

saying it should fill the integer interval [1,5], and from them skip the
value 3

$ gw_job_template_manager -c parameter.in -w square

Composed 4 job templates

$ ls -1

0_square_1.jt

1_square_2.jt

2_square_4.jt

3_square_5.jt

parameter.in

square

Note that this time, the shortcuts -c and -w have been use instead of
--create and --worker.

14

2. Job templates do not need to be submitted all at a time. For instance,
the user could perform a first operation for jobs 0 to 1 and, later on, a
second operation with the rest.

$ gw_job_template_manager --submit 0-1

Submitted 2 jobs from templates

$ gw_job_template_manager --submit unsubmitted

Submitted 2 jobs from templates

3. Another way to get to know what happened to each job is to use the
history tag with the information command:

$ gw_job_template_manager --i history

JOB_NAME,LOCALTIME,TIME,MANAGER,STATUS,QUEUE_NAME,HOST_NAME,EXIT_STATUS

0_square,Wed Feb 24 12:33:35 2010,1267011215,DISPATCH,PENDING,,,

0_square,Wed Feb 24 12:33:38 2010,1267011218,DISPATCH,PROLOG,,,

0_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,WRAPPER,prod,egee.srce.hr,

0_square,Wed Feb 24 12:33:39 2010,1267011219,EXECUTION,FAILED,prod,egee.srce.hr,

0_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,EPILOG_FAIL,prod,egee.srce.hr,

0_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,PENDING,,,

0_square,Wed Feb 24 12:33:48 2010,1267011228,DISPATCH,PROLOG,,,

0_square,Wed Feb 24 12:33:48 2010,1267011228,DISPATCH,WRAPPER,gilda,grid.acad.bg,

0_square,Wed Feb 24 12:33:53 2010,1267011233,EXECUTION,FAILED,gilda,grid.acad.bg,

0_square,Wed Feb 24 12:33:53 2010,1267011233,DISPATCH,EPILOG_FAIL,gilda,grid.acad.bg,

0_square,Wed Feb 24 12:33:53 2010,1267011233,DISPATCH,PENDING,,,

0_square,Wed Feb 24 12:33:58 2010,1267011238,DISPATCH,PROLOG,,,

0_square,Wed Feb 24 12:34:33 2010,1267011273,DISPATCH,WRAPPER,default,gridway.org,

0_square,Wed Feb 24 12:34:33 2010,1267011273,EXECUTION,PENDING,default,gridway.org,

0_square,Wed Feb 24 12:34:38 2010,1267011278,EXECUTION,ACTIVE,default,gridway.org,

0_square,Wed Feb 24 12:34:39 2010,1267011279,EXECUTION,DONE,default,gridway.org,

0_square,Wed Feb 24 12:34:39 2010,1267011279,DISPATCH,EPILOG_STD,default,gridway.org,

0_square,Wed Feb 24 12:34:48 2010,1267011288,DISPATCH,EPILOG,default,gridway.org,

0_square,Wed Feb 24 12:34:57 2010,1267011297,DISPATCH,DONE,default,gridway.org,0

1_square,Wed Feb 24 12:33:35 2010,1267011215,DISPATCH,PENDING,,,

1_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,PROLOG,,,

1_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,WRAPPER,prod,egee.srce.hr,

1_square,Wed Feb 24 12:33:39 2010,1267011219,EXECUTION,FAILED,prod,egee.srce.hr,

1_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,EPILOG_FAIL,prod,egee.srce.hr,

1_square,Wed Feb 24 12:33:39 2010,1267011219,DISPATCH,PENDING,,,

1_square,Wed Feb 24 12:33:48 2010,1267011228,DISPATCH,PROLOG,,,

1_square,Wed Feb 24 12:33:48 2010,1267011228,DISPATCH,WRAPPER,gilda,grid.acad.bg,

1_square,Wed Feb 24 12:33:53 2010,1267011233,EXECUTION,FAILED,gilda,grid.acad.bg,

1_square,Wed Feb 24 12:33:53 2010,1267011233,DISPATCH,EPILOG_FAIL,gilda,grid.acad.bg,

1_square,Wed Feb 24 12:33:53 2010,1267011233,DISPATCH,PENDING,,,

1_square,Wed Feb 24 12:33:58 2010,1267011238,DISPATCH,PROLOG,,,

1_square,Wed Feb 24 12:34:33 2010,1267011273,DISPATCH,WRAPPER,default,gridway.org,

1_square,Wed Feb 24 12:34:33 2010,1267011273,EXECUTION,PENDING,default,gridway.org,

1_square,Wed Feb 24 12:34:38 2010,1267011278,EXECUTION,ACTIVE,default,gridway.org,

1_square,Wed Feb 24 12:34:39 2010,1267011279,EXECUTION,DONE,default,gridway.org,

1_square,Wed Feb 24 12:34:39 2010,1267011279,DISPATCH,EPILOG_STD,default,gridway.org,

1_square,Wed Feb 24 12:34:49 2010,1267011289,DISPATCH,EPILOG,default,gridway.org,

1_square,Wed Feb 24 12:34:58 2010,1267011298,DISPATCH,DONE,default,gridway.org,0

2_square,Wed Feb 24 12:34:01 2010,1267011241,DISPATCH,PENDING,,,

2_square,Wed Feb 24 12:34:08 2010,1267011248,DISPATCH,PROLOG,,,

2_square,Wed Feb 24 12:34:24 2010,1267011264,DISPATCH,WRAPPER,default,gridway.org,

2_square,Wed Feb 24 12:34:24 2010,1267011264,EXECUTION,PENDING,default,gridway.org,

2_square,Wed Feb 24 12:34:33 2010,1267011273,EXECUTION,ACTIVE,default,gridway.org,

2_square,Wed Feb 24 12:34:34 2010,1267011274,EXECUTION,DONE,default,gridway.org,

15

2_square,Wed Feb 24 12:34:34 2010,1267011274,DISPATCH,EPILOG_STD,default,gridway.org,

2_square,Wed Feb 24 12:34:41 2010,1267011281,DISPATCH,EPILOG,default,gridway.org,

2_square,Wed Feb 24 12:34:56 2010,1267011296,DISPATCH,DONE,default,gridway.org,0

3_square,Wed Feb 24 12:34:01 2010,1267011241,DISPATCH,PENDING,,,

3_square,Wed Feb 24 12:34:08 2010,1267011248,DISPATCH,PROLOG,,,

3_square,Wed Feb 24 12:34:22 2010,1267011262,DISPATCH,WRAPPER,default,gridway.org,

3_square,Wed Feb 24 12:34:24 2010,1267011264,EXECUTION,PENDING,default,gridway.org,

3_square,Wed Feb 24 12:34:34 2010,1267011274,EXECUTION,ACTIVE,default,gridway.org,

3_square,Wed Feb 24 12:34:34 2010,1267011274,EXECUTION,DONE,default,gridway.org,

3_square,Wed Feb 24 12:34:34 2010,1267011274,DISPATCH,EPILOG_STD,default,gridway.org,

3_square,Wed Feb 24 12:34:41 2010,1267011281,DISPATCH,EPILOG,default,gridway.org,

3_square,Wed Feb 24 12:34:55 2010,1267011295,DISPATCH,DONE,default,gridway.org,0

where the example shows how jobs 0 and 1 failed after trying to be
run without permissions at different resources and ended up in another
resource where jobs were allowed to run. The GridWay Metascheduler
learned from that and managed jobs 2 and 3 more efficiently.

4. The output shows a properly squared set

$ cat *.out

1^2=1

2^2=4

4^2=16

5^2=25

6.4 Random Monte-Carlo

Often, programs involving large statistical runs require a proper initiation
of the random number generator. This can be done by means of a seed
and is a key point for ensuring uncorrelated jobs. Here a simple way of
getting different seeds in the integer interval [0,1000) is implemented for
eight independent jobs.

1. The parameter.in looks like:

$ cat parameter.in

LOOPTYPE=RANGE, START=1000, END=1000, POINTS=8, \

FUNCTION=int rand

and note that evaluating eight jobs within 1000 and 1000 makes an
apparently dummy set {1000, . . . , 1000}, but the transformation under
the function composition int rand generates eight random numbers
and throws away the decimal part.

2. A possible output of the creation

$ gw_job_template_manager -w worker -c parameter.in

Composed 8 job templates

16

is

$ ls -1

0_worker_292.jt

1_worker_741.jt

2_worker_468.jt

3_worker_481.jt

4_worker_159.jt

5_worker_310.jt

6_worker_555.jt

7_worker_645.jt

parameter.in

worker

6.5 Advanced wildcarding

Another common way to produce results is writing to an output file instead
of to the standard output. In such a case, let us consider a worker executable
comparing a Taylor expansion and an exact result for several orders of mag-
nitude. It takes three arguments, being the last one a string containing the
file name in which results are to be written.

1. The parameter file could be

$ cat parameter.in

LOOPTYPE=LIST, VALUE=Taylor, VALUE=Exact

LOOPTYPE=EXPRANGE, START=1, END=1E3, STEP=1, SKIP=100

LOOPTYPE=LIST, VALUE=${JT_ID}.txt

with three features not yet seen: the EXPRANGE type which ranges expo-
nentially, the scientific notation 1E3 and a last line, indicating that part
of the third argument is going to be translated into the job template
index $JT ID for each job.

2. The creation of templates is this time slightly different due to the re-
trieval of extra output files. For this to be taken into account, an extra
job template input file is needed template.in:

$ cat template.in

OUTPUT_FILES=${3}

$ gw_job_template_manager -w worker -c parameter.in -t worker.in

Composed 6 job templates

and the result

$ ls -1

0_worker_Taylor_1_0.txt.jt

1_worker_Taylor_10_1.txt.jt

2_worker_Taylor_1000_2.txt.jt

3_worker_Exact_1_3.txt.jt

17

4_worker_Exact_10_4.txt.jt

5_worker_Exact_1000_5.txt.jt

parameter.in

worker

template.in

$ cat 5_worker_Exact_1000_5.txt.jt

NAME = 5_worker

EXECUTABLE = worker

ARGUMENTS = Exact 1000 5.txt

STDOUT_FILE = 5_worker_Exact_1000_5.txt.out

STDERR_FILE = 5_worker_Exact_1000_5.txt.err

OUTPUT_FILES=5.txt

3. The submission does not require any difference, but this time we want
to know how much do the jobs take to finish:

$ gw_job_template_manager -s all; time gw_job_template_manager -p all

Submitted 6 jobs from templates

Purged 6 jobs from templates

real 1m51.861s

user 0m0.660s

sys 0m0.060s

4. In this case, the relevant results are the text files

$ ls -1 *.txt

0.txt

1.txt

2.txt

3.txt

4.txt

5.txt

6.6 Big numbers

What if the input are very large numbers? Next illustrates how to proceed

1. Let consider the case in which the parameter file is

$ cat parameter.in

LOOPTYPE=RANGE,\

START=123456789012345678911234567892123456789312345678941,\

END=123456789012345678911234567892123456789312345678943,\

POINTS=3

2. The standard tentative will not work5

5Depending on the perl version, for perl 5.10 it does not work, but earlier versions (5.8)
did not yet transform automatically into scientific notation.

18

$ gw_job_template_manager -w /bin/echo -c parameter.in

Composed 3 job templates

$ ls -1

0_echo_1.23456789012346e+50.jt

1_echo_1.23456789012346e+50.jt

2_echo_1.23456789012346e+50.jt

parameter.in

because the transformation into scientific notation dropped out the
precision we expect to work with.

3. Instead, the user should instruct the tool to profit from the bignum perl
package

$ gw_job_template_manager --delete all

Deleted 3 job templates

$ gw_job_template_manager --config use_bignum=1\

-w /bin/echo -c parameter.in

Composed 3 job templates

$ ls -1

0_echo_123456789012345678911234567892123456789312345678941.jt

1_echo_123456789012345678911234567892123456789312345678942.jt

2_echo_123456789012345678911234567892123456789312345678943.jt

parameter.in

so obtaining the desired job templates.

6.7 Using gLite Job Description Language

When using the middleware gLite, the user will probably find a user interface
without the GridWay Metascheduler installed. In this example a method to
translate the job templates into JDL and how to submit them is described.

1. Four simple tests are prepared. They give a hint about the working
environment:

$ cat parameter.in

LOOPTYPE=LIST, VALUE=ps, VALUE=pwd, VALUE=ls, VALUE=whoami

$ cat template.in

OutputSandbox = {"${JT_ID}_env_${1}.out","${JT_ID}_env_${1}.err"};

2. A way to set up the propper grammar in the template file is to change
the keys and some formating elements through config options:

$ gw_job_template_manager \

-w /usr/bin/env -c parameter.in -t template.in \

--config Template_executable=Executable \

--config Template_arguments=Arguments \

--config Template_stdout_file=StdOutput \

--config Template_stderr_file=StdError \

--config Template_job_name=JobName \

19

--config Template_encloser_char=\" \

--config Template_end_of_line=\; \

--config job_template_suffix=.jdl

WARNING: GridWay location not set up.

This means that the usability of this tool is limited to create and delete

job templates. Please identify your $GW_LOCATION directory and set the

parameter to that value with "--config GW_LOCATION=value".

Composed 4 job templates

3. The Grid[Way] Job Template Manager does not know how to submit
templates for other middleware, but the user can still tweak the settings
through the --config modifier and get the submission procedure done:

$ gw_job_template_manager -s all \

--config gridway_submit=glite-wms-job-submit \

--config gridway_submit_flag=-a \

--config job_template_suffix=.jdl

WARNING: GridWay location not set up.

This means that the usability of this tool is limited to create and delete

job templates. Please identify your $GW_LOCATION directory and set the

parameter to that value with "--config GW_LOCATION=value".

Connecting to the service https://gilda-rb.rediris.es:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy

Your job identifier is:

https://gilda-rb.rediris.es:9000/9xFbq28QPgTcYLxCeVU5Kw

==

Connecting to the service https://gilda-rb.rediris.es:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy

Your job identifier is:

https://gilda-rb.rediris.es:9000/IP4LKZgkpxcL9NE58AHuPQ

==

Connecting to the service https://gilda-rb.rediris.es:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy

Your job identifier is:

https://gilda-rb.rediris.es:9000/3fyT-LnV3xkimEPfSsAHag

20

==

Connecting to the service https://gilda-rb.rediris.es:7443/glite_wms_wmproxy_server

====================== glite-wms-job-submit Success ======================

The job has been successfully submitted to the WMProxy

Your job identifier is:

https://gilda-rb.rediris.es:9000/53HM4HRBCsqwHwpa01zEVw

==

Submitted 4 jobs from templates

4. Finally, by picking up the job identifiers of the output, a final recovery
of data is straightforward but not possible with the help of the tool.
For example, to retrieve the output of the last job:

$ glite-wms-job-output https://gilda-rb.rediris.es:9000/IP4LKZgkpxcL9NE58AHuPQ

Connecting to the service https://gilda-rb.rediris.es:7443/glite_wms_wmproxy_server

==

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:

https://gilda-rb.rediris.es:9000/53HM4HRBCsqwHwpa01zEVw

have been successfully retrieved and stored in the directory:

/tmp/jobOutput/user_53HM4HRBCsqwHwpa01zEVw

==

$ cd /tmp/jobOutput/user_53HM4HRBCsqwHwpa01zEVw

$ ls -1

3_env_whoami.err

3_env_whoami.out

$ cat 3_env_whoami.out

gilda075

7 Conclusion

A tool for managing a parameter sweep study on a distributed architecture
has been presented, with special emphasis on the mechanism to create job
templates from a given parameter file. The syntax of the parameter file is
simple though quite powerful, specially because broad scoped features (arbi-
trary dimensions, exponentiation, value skipping, wildcarding and functions)
have been implemented.

21

The usage has been designed to perform an action and the anti-action,
so to the creation of job templates a deletion exists. Moreover, submission
of jobs is also complemented by the purge. In any case, all the operations
are grouped under useful subcommands which can be accessed through the
command line interface.

In order to allow enough flexibility, the user has at disposal configuration
options to modify program parameters. Some examples have been worked
out for illustrating how a little amount of input give rise to a plethora of
possibilities, from the “Hello world!” trivial case up to a parameter study
controlled with the GridWay Metascheduler.

Within the aspects which could be desirable but not yet implemented,
it can be mentioned the capability to handle job templates in the XML-
formatted Job Standard Description Language. The problem to accept this
format is the inherent hierarchy of the XML syntax, which is incompatible
with appending a template file with extra information. Nevertheless, an
smart merge might be implemented under certain scheme. Another kind of
limitation is the use of wildcards and functions altogether, or the need of
other wildcards. The inclusion of these features could be studied if they turn
to handicap parameter sweep studies from the scientific community.

The tool can be viewed an extension of GridWay, which performs the
resource discovering, scheduling or workloading for the jobs. Being modular,
it is much easier to focus on the aspects regarding parameter sweeps and the
programming protocol to interact with the middleware. It has been shown
also the possibilities to interact with other submission agents, such as the
gLite WMS.

Altogether, this tool provides the user a powerful mechanism to port ap-
plications to clusters, grid or cloud. Our experience on this subject indicates
that the steep learning curve and lack of success are the main drawbacks for
adopting the solutions of distributed computing. Offering an opportunity to
save time on the generation of the parameters to be swept and to ensure
consistent operations on specific blocks of jobs is clearly an step forward to
enhance the overall performance of the application at the user’s convenience.

Acknowledgements

We would like to thank the gilda VO [9] for providing a working infrastruc-
ture for tests within the EGEE project [10]. Also, we would like to express
our gratitude to Antonio Fuentes and Virginia Mart́ın-Rubio from RedIRIS
for the kind organization of several tutorials for grid application developers,
giving us the opportunity to interact with interested groups of students and

22

researchers. They all gave us unvaluable feedback to improve the tool.
This work was supported by the Consejeŕıa de Educación de la Comu-

nidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and
Fondo Social Europeo (FSE), through the MEDIANET Research Program
S2009/TIC-1468, by the spanish Ministerio de Ciencia e Innovacion, through
the research grant TIN2009-07146, and by the European Union through the
EGEE-III grant agreement INFSO-RI-222667.

References

References

[1] E. Huedo, R. S. Montero, I. M. Llorente.
The GridWay Framework for Adaptive Scheduling and Execution on
Grids.
Scalable Computing, Practice and Experience 6 (3) 2005, pp 1-8.

[2] D. Abramson, J. Giddy, L. Kotler.
High Performance Parametric Modeling with Nimrod/G: Killer Appli-
cation for the Global Grid?.
International Parallel and Distributed Processing Symposium (IPDPS),
Cancun, Mexico. May 2000. pp. 520-528

[3] H. Casanova, F. Berman.
Parameter Sweeps on the Grid with APST.
Grid Computing: Making the Global Infrastructure a Reality, 2003, pp.
773-787.

[4] F. Berman, R. Wolski, H. Casanova et al.
Adaptive Computing on the Grid Using AppLeS.
IEEE Transactions on Parallel and Distributed Systems, pp. 369-382,
April, 2003.

[5] E. Huedo, R. S. Montero, I. M. Llorente.
Experiences on Adaptive Grid Scheduling of Parameter Sweep Applica-
tions.
Proceedings of the 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (Euromicro-PDP’04), 2004. pp. 28-33.

[6] GLite Job Description Language.
Workload Management System User and Reference Guide.

23

https://edms.cern.ch/document/572489/1,
Attributes Specification.
https://edms.cern.ch/document/555796/1JDL

[7] M. Drescher, A. Anjomshoaa, G. Williams, D. Meredith.
JSDL Parameter Sweep Job Extension.
http://www.ogf.org/documents/GFD.149.pdf

[8] GridWay Installation Guide.
http://gridway.org/doku.php?id=documentation:release 5.6:ig

[9] Grid INFN Laboratory for Dissemination Activities.
https://gilda.ct.infn.it/vo.html

[10] EGEE: Enabling Grids for E-sciencE.
http://www.eu-egee.org

24

https://edms.cern.ch/document/572489/1
https://edms.cern.ch/document/555796/1JDL
http://www.ogf.org/documents/GFD.149.pdf
http://gridway.org/doku.php?id=documentation:release_5.6:ig
http://gridway.org/doku.php?id=documentation:release_5.6:ig
https://gilda.ct.infn.it/vo.html
http://www.eu-egee.org

Subcommand Description
-c, --create create templates
-d, --delete delete templates
-s, --submit submit the jobs from templates
-p, --purge purge the existing jobs from templates
-k, --kill kill the existing jobs from templates
-i, --info information about status of the submitted jobs
-v, --version version number of the program
-l, --license credits and license
-h, --help print help
Option Description
-w, --worker add worker file
-t, --template add template file
--signal add signal for kill
--debug show debugging information
--config key=value assign a key=value pair for configuration settings
Syntax
-c <PARAMETER FILE> [-w WORKER FILE] [-t TEMPLATE FILE]

-d <all|[un]submitted|[un]finished|[un]successful|FROM-TO>

-s <all|[un]submitted|[un]finished|[un]successful|FROM-TO>

-p <all|[un]finished|[un]successful|FROM-TO>

-k <all|[un]finished|[un]successful|FROM-TO> [--signal SIG]

-i <history|now|evolution>

Argument Description
PARAMETER FILE file with parameter description
WORKER FILE executable file to be run remotely
TEMPLATE FILE append extra variables from template file
all all the templates are subcommanded
[un]submitted only those which were [not] submitted
[un]finished only those whose jobs have [not] finished
[un]successful only those whose jobs finished [un]succesfully
FROM-TO deletes the range [FROM,TO]
SIG kill with signal passed to gwkill
history full historic information about each job
now last status update for each job
evolution timely snapshots of job statuses

Table 5: Different subcommands, syntax, arguments and options for the
command line interface. Square brackets indicate optional features whilst
angle brackets are compulsory elements.

25

Exit status Description
0 success
1 wrong syntax in the command line
2 system execution error
3 file not found or requirement not matched
4 parameter file syntax inconsistent
5 error opening file
6 error closing file
7 no job found coming from template in the list
8 internal computation error
9 internal parsing error

Table 6: Success and error code description from exit status.

26

	1 Program summary
	2 Introduction
	3 Algorithm
	3.1 Mathematical framework
	3.2 Parameter file parsing
	3.3 Wildcarding

	4 Setup
	4.1 Installation
	4.2 Configuration

	5 Usage
	6 Examples
	6.1 Hello world!
	6.2 Interplanetary Hello world!
	6.3 Squaring and skipping
	6.4 Random Monte-Carlo
	6.5 Advanced wildcarding
	6.6 Big numbers
	6.7 Using gLite Job Description Language

	7 Conclusion

