arxXiv:1201.3538v1 [gquant-ph] 17 Jan 2012

An efficient quantum circuit analyser
on qubits and qudits

T. Loke and J. B. Wang
School of Physics, The University of Western Australia 98@€rth, Australia

Abstract

This paper presents a highly efficient decomposition schanaeits associ-
atedMathematicanotebook for the analysis of complicated quantum circuita<
prised of single/multiple qubit and qudit quantum gategdrticular, this scheme
reduces the evaluation of multiple unitary gate operatisith many condition-
als to just two matrix additions, regardless of the numberariditionals or gate
dimensions. This improves significantly the capability afumntum circuit anal-
yser implemented in a classical computer. This is also teedificient quantum
circuit analyser to include qudit quantum logic gates.

1. Program Summary

Title of program CUGates.m

Programming language usédathematica

Computers and operating systeragy computer installed withlathematice6.0
or higher

Distribution format Mathematicanotebook

Nature of problemThe CUGatesnotebook simulates arbitrarily complex
quantum circuits comprised of single/multiple qubit andigguantum gates.

Method of solutionlt utilizes an irreducible form of matrix decompositiorn f@
general controlled gate with multiple conditionals andighty efficient in
simulating complex quantum circuits.

Running time Details of CPU time usage for various example runs are given
Section 4.

Program obtainable fronCPC Program Library, Queens University of Belfast,
N. Ireland

Preprint submitted to Elsevier September 15, 2018

http://arxiv.org/abs/1201.3538v1

2. Introduction

At the heart of a quantum computer lies a set of qubits andiditsjwhose
states are manipulated by a series of quantum logic gatesglpa quantum cir-
cuit, to provide the ultimate computational results. Itherefore of particular
interest to be able to efficiently evaluate the performarfca quantum circuit
(such as its reliability, effectiveness, robustness, ieitg to decoherence and
errors) in the design stage using a classical computer.

There are currently several quantum computer simulatperted in the liter-
ature [1, 2, 3. 4,/5], which simulate quantum circuits catsgsof 1, 2 or 3 qubit
gates such as the Hadamard, CNOT and Toffoli gate. The CNOTaffioli gate
are examples of controlled unitary gates (CUGs), which enm@nt operations
that are conditional on the state of the specified controltqui®ther more gen-
eral CUGs (acting across qubits or qudits) can always berdposed in terms
of a universal set of 1- and 2-qubit quantum gates [6], bgtwould require sig-
nificant computational overhead in the analysis. To the besur knowledge,
there are no efficient quantum simulators on quantum cseuth multiple qudit
controlled quantum gates.

In this paper, we present a highly efficient scheme for théuewi@n of arbi-
trary CUGs. This scheme reduces the evaluation of multipleaty gate opera-
tions with many conditionals to just two matrix additionsgardless of the num-
ber of conditionals or gate dimensions. The implementadiothis scheme, and
many other functions used to analyse quantum circuitspig@ed in aMathemat-
ica 7.0 package entitle@UGates.m The computation time required to evaluate
the CNOT and Toffoli gates using this package is comparel thit QDENSITY
packagel[1] and is found to be several orders of magnitude ®efticient. Exam-
ples of quantum circuits involving controlled unitary gasand their analysis using
the notebook are presented. A compilation of Methematicacode presented in
the paper is provided in thdathematicanotebookCUGates.nb

3. Decomposition of CUGs

3.1. CUGs across qubits

3.1.1. Definitions and notation

Denote a set of qubits &3, and the wavefunction (if definable) for tlin
qubit as|¢s). Qis in a basis state iffys) = [0) V |¢4) = |1) Vi € Q. DefineC® as
being conditional on the stat#) of qubitc;, andC® as being conditional on the
state|0) of qubitc;.

Ufl...Ulfk, whereuy, ..., U, denotes the starting qubit of the correspondinigiock,
is represented b@Cu--GCC--CiU . .U X, Effectively, the action of this CUG is
such that it implements the operatido 1...U|f" iff the set of control qubits is in

basis state, the CUG leaves the system of qubits unchandggerel shows an
example of the€'C35U2U3 gate.

Y1) —o—

W2) —{Us}—
Y3) ——o——

|Wa) — —
U

|Ws) — —

| We) #

Figure 1: TheC1C36U2U4 gate, withC conditional on qubit 1 beingll), C conditional on qubit 3
and 6 beind0), and the operatiorid; andU, are implemented on qubits 2 and 4 to 5 respectively.

3.1.2. Decomposition
An efficient way to evaluate arbitrary controlled unitaryegis to decompose
the operation by defining the projection operatéysandP; as:

10 00
Poz(o o>’P1:(o 1)'

Note thatPy andP; are non-unitary matrices afd+ Pp = I, is the 2-by-2 identity
matrix. Now consider th€1U? (abbreviated a€U) gate, shown in Figur 2.

1)

|2)

Figure 2: TheCU gate.

It can be readily verified and proven that the matrix for @& gate is given
asCU =PRy®lo+P,®U (see appendix A for details). This result, called the
decomposition of th€U gate as a sum, is graphically summarised in Figure 3.

3

)
|Y2) l

Figure 3: Decomposition of theU gate.

The key idea is that we can use the projection operd&oendP; to project
the set of control qubits to a basis state. For any basis, dtaeaction of the
CUG gate is either just trtdfl...ulf" operators, or no action at all (i.e. the identity
operator). By considering all possible basis states of ¢hefscontrol qubits, we
can construct the matrix of the CUG gate by summing togetheattion of the
CUG gate corresponding to each possible basis state.

with a Py or P, operator. Thrs can be done in @istinct ways. For the basis
state described by, ..) = |1), which corresponds to the permutatof — Py

¥ m=c,...,c, the action of the CUG is the operatiobig™...U*. Any other

basis state (and hence permutation) corresponds to ttenadtthe CUG being
the identity operator. The sum of thé @ermutations yields the matrix of the
ca--GU .. .U gate. For example,

ClRU2 =R, 0P+ P2 L, PL+PL@ L, P+ PLoU 2Py,

as graphically shown in Figule 4 (see appendix B for a mattieadgroof).

) — R}
|4) = +
) —{Rf-

Figure 4: Decomposition of theé>2U? gate.

ﬁaﬁ

ﬁaﬁ
|
ﬁ#ﬁ

Similarly, for any arbrtraryCCl ~~~~~ °lU“1 “k gate, consider the!2possible
permutations that arise from replacing eﬁbtonditional with &P or P, operator.
For the basis state described|lgy; ... &) = |0), which corresponds to the permu-
tationC" — Py ¥ n= &1, ..., Cj, the action of the CUG is the operatiddg?...U.
Any other basis state corresponds to the action of the CUglibe identity op-
erator. The sum of thel permutations gives the matrix of i@ CIU”1 .Ulfk

4

gate, for example,
ClU2 =P RU P +P @, @P +PL® P+ P @lLe P,

as graphically shown in Figufe 5.

)
) - + + +
s

Figure 5: Decomposition of theé!3U 2 gate.

~ Hence, for any arbitrargct--GCCL-+Cj Ufl...Ulfk gate, we consider each of the
2't) permutations that arise from replacing e&andC conditional with aP, or
Py operator. For the basis state describedyay .) = |1) and|{g. &) = |0),
which corresponds to the permutati6f' — P, ¥V m= cy,...,¢; andC" — Py V
n=C,...,Cj, the action of the CUG is the operatidds...U*. Any other basis
state corresponds to the action of the CUG being the idemityator. The sum of
the 21 permutations yields the matrix of ti@-GCe-Ciu.. .UX gate. For
example,

C3CW2 =P 1L,P+PhRURP+PL@l,@Py+ P, @ Py,

as graphically shown in Figufé 6.
1) —
) = i} + Ul + i}~ + —[l2]~
)

Figure 6: Decomposition of th@C1U? gate.

3.1.3. Reduction to its irreducible form

For an arbitrar;CClv---vCiCTEL---v?il_Jfl...Ulfk gate, a naive implementation of the
previous section would requird”2 — 1 matrix additions to compute the matrix
of the gate. However, this overhead can be reduced sigrifyclay noting that

5

only one permutation has tmbfl...ult‘k operators being implemented, while the
other 27) — 1 possible permutations have identity operators substtin for the
Ulul...UliJk operators. As an example, consider the gate (essentialyddntity
matrix |g) shown in Figuré17, which has’2- 1 of the same permutations as in
Figure[6. Consequently, we can write the decomposition ®CiCU? gate as
the following _

C3CW2 =g+ PRU P —Py® &Py, (1)

which is graphically represented by Figlfe 8.

) —— R mitin

o) —— = + o=+l +
gs) —o— (R

Figure 7: Decomposition of thig gate.

) — —R -
|Y2) =
|Ws3)

_
Figure 8: Optimize

R

decomposition of tB8C1U2 gate.

#EE

o

is simply the identity matrix (of appropriate dimensiorejded together with the
permutation that has the operatidﬂ%l...uliJk implemented, subtracted with the
same permutation with thdfl...Ult‘k operators replaced with identity operators.

In effect, the identity matrix is used to encapsuldtel 2 1 permutations. Hence,

requires only two matrix additions, regardless of the nundfecontrols or the
gate dimensions. Note that the only instance in which thi®dgosition scheme
is less efficient than the naive implementation is when omlg © or C condi-
tional is involved. The optimized decomposition of a morenptex example, the
C?CtAU3U3 gate, is given in Figurél 9.

Y1) —o—

) —9—
we) Vsl = o] + U] - Iz
) ——

Uz

|Ys) @

Figure 9: Optimized decomposition of tB8C14U3U3 gate.

3.2. CUGs across qudits
3.2.1. Definitions and notation
Denote the wavefuntion of thdevel qudit] as) Lp} > Define a quantum circuit

consisting ofn qudits{‘wfl>, w§2>,..., ‘ §”>} where(; represents the number

of levels in theith qudit and{ = {{1,{>,...,{n}. We call { the quantum circuit
profile, which is the list of qudit levels, arranged accogdio the order of the
qudits. For example, any CUG applied across qubits¢has{2,2,...,2}, since
qubits are 2-level qudits. Also defil@ as being conditional on the stgte— 1)
of quditci, where 1< 5 < (.

A CUG with conditionalsSg!...Cg implementing unitary operatiots ..U, %,
whereus, ..., Ux denotes the starting qudit of the correspondihglock, is repre-
sented byCS!...C§U ..U X Figure[ID shows an example of tBgC3C3UUS
gate.

3.2.2. Decomposition

We can readily extend the concept of projection operatogaithts, by defin-
ing (Pa,b)m = 0ai0aj V 1 <1, j <b(whereg; is the Kronecker delta) as the projec-
tion to the statéa— 1) acting on &-leveled qudit, with the restriction4 a < b.
Hence evenp-leveled qudit has a set @fprojection operators defined, with the

b
property Pa7b = lp.
2,

For a generaCs!...C§U;"...UX gate, it is clear that by substituting each con-

) —{Ui}—
wg) —{Caf—
3))~
wg) U2}~
ug) —Cof—

Figure 10: TheC2C3C3ULU; gate, acting on 5 qudits of various levels. The quantum tipcofile
is { = {3,4,5,5,2}.

i
ditional with a (valid) projection operator, it would resut {p = I_LZCJ. distinct
J:

permutations. However, since the unitary operatiUt’jé..U,f" are only carried
out iff the control quditgy, ..., ¢ are in the statels; — 1), ..., |s — 1) respectively,
only the permutation described mz; — st,Zc,- vV j=1,...,i exactly will have

Ulul...UliJk implemented; any other permutation will have identity @pers sub-
stituted in place oqul...Ulfk. The sum of allp permutations yields the matrix of
theCgl...C§U; " ..U, X gate. For example,

CICIU2 =P 3@15@P2+Pi3®Is@Po+P3@Is@Pra+ (2)
P3®@Ils@Poo+Ps3@U@Po+P3®@Is@P2

as graphically shown in Figukell1.

@3 — Pzt Pz APz P3Pzl P33l
W3) AUl = s + Hls|- + ls|- + —{ls)|- + {U]- + ls]-
|5) +Pio AP P2 4P P2 Pt

Figure 11: Decomposition of tMe}C3U? gate.

3.2.3. Reduction to its irreducible form

As before, we can use the identity matrix (of appropriateatigions) to en-
capsulatelp — 1 permutations of &5!...C§U;"*...U X gate, since only one of the
permutations have thd:fl...ulfk operations implemented. The matrix of the CUG
is thus the identity matrix (of appropriate dimensions)eidogether with the
permutation described uy;i — PSch,- v j=1,...,i, minus the same permutation

with identity matrices substituted in placelosfl...ulfk. The optimized decompo-
sition of theCIC3U? gate is given in Figure_12. The optimized decomposition of
a more complex example, ti@C3CSU{US gate, is given in Figurg13.

P33 P33
- &+ U -
Pl,Z —P172—

)
) — Paat— —Paai—
W§> + —Pist— — —Pi5—
42)
[— P2 — P

Figure 13: Decomposition of tHeZC3C3U{US gate.

4. Comparison with the QDENSITY package

The QDENSITYpackage![1] provides many functions for the simulation of
guantum circuits, two of which simulate the CNOT gate andTib#oli gate. A
more recent paper [7] introduc€3CWAVEas an extension of th@DENSITY
package QCWAVEhas the functions Op2 and Op3 that can be used to reproduce

9

the action ofCNOT, and Toffoli, gates on state vectors, but does not give the
matrix of the gates itself. We find it more straightforwarddagfficient to use
the QDENSITYfunctions to construct the matrix and then act on the stattove
and hence we perform the following comparison using@@ENSITYpackage

of version 4.0 (updated since [1]).

Here, we compare the CPU time taken to compute the matricebdcsame
gates, using the CNOT and Toffoli functions provided in @BENSITYpack-
age and the more general CUGate function provided irCli&ates.npackage.
The QDENSITYfunctions implements a decompaosition using many more watri
additions and list manipulations in comparison with theesoh described in this
paper.

We define theCNOT, gate as spanning qubits with theC control located
at the first qubit, and the NOT gate located at tffequbit. The Toffolj, gate is
defined as spanningqubits with theC controls at qubits 1 and 2, and the NOT
gate located at thet" qubit. Using these definitions, we are able to measure the
CPU time taken to compute the matrix againsivhich is plotted in Figurg 14.

1000
100
=
=
=
g 10
Q@
z
'
S
o 1
=1
N
@
E
* 01
)
a
@]
0.01
0‘0015 6 7 8 9 10 11 12 13 14

Number of qubits, n

Figure 14: CPU time taken. Circle/Square: Time taken udiegG@NOT/Toffoli function in the
QDENSITY4.0 package. Diamond/Triangle: Time taken using the CU@atetion in theCU-
Gates.nmpackage with the sparse-matrix optimization to computeN©T/Toffoli gate.

10

As demonstrated in Figute 14, the CUGate function is sicanifily faster (by
several orders of magnitude) than the CNOT and Toffoli fioms provided in the
QDENSITY package. In the actuklathematicamplementation of the CUGate
function, we utilized sparse-matrix optimization to makimcalculation speed,
which in this case, provides a speedup of about 1.8 compartbe CUGate func-
tion without the sparse-matrix optimization. It is also #wonoting that while the
Toffoli function takes almost twice as long as the CNOT fumctto compute its
result, the CUGate function takes approximately the samgttheof time to com-
pute the matrix of a CNOT and Toffoli gate for any particulawhich is expected
from the decomposition scheme described in this paper. nergé computation
of the matrix of any two controlled unitary gates spanning same number of
gubits using the CUGate function takes the same length @&.tim

To perform this analysis, we have timed the use of the funstioMathemat-
ica using the Timing function, averaged over 10 trials. Comoits were done
on a laptop with an Intel Core i7-740QM processor with a spefetl. 73GHz.
Results fom < 10 using the CUGate function is omitted since the minimunmgra
ularity of the Timing function is more than the CPU time nefler the CUGate
function.

5. Worked examples

First load the CUGates.m packageMiathematicausing the following syntax:

In[1] := Needs[*'CUGates"]

Brief descriptions of each function included in the CUGategackage can be
accessed using the *?’ operator. For example,

In[2] := ?CUGate
Out[2] ;= CUGate[cpos,cbarpos,ubegin,umatrix]
Returns the matrix of a CUG across qubits with C conditioaalspos,
C conditionals at cbarpos, and unitary operators umatrik e

corresponding starting positions ubegin.

11

In[3] := ?CUGateG
Out[3] ;= CUGateGJqcp,clist,ubegin,umatrix]
Returns the matrix of a CUG across qudits with conditionakscdibed by clist,
and unitary operators umatrix with the correspondingistguositions ubegin.

Note: clist is a list of{ Index of qudit in gcp,Conditional state

The qubit-specific subroutines are: BasisStateVector, &8GEqualSuper-
position, HadamardGate, ListStates, MeasureQubits, ie&igleQubit, NOT-
Gate, PHASEGate, SWAPGate and SWAPQubits.

The general qudit subroutines are: BasisStateVectorG, d&&&G EqualSu-
perpositionG, ListStatesG, PHASEGateG, POp, QFTMinuslT &S, RMinus,
RPIus and SWAPQudits. The definitions for the functions Qkild and QFT-
Plus are similar to that of the QFT operator defined in [8].

5.1. Shor’s algorithm

Figure[15 shows the implementation of Shor’s algorithm tridezeN = 15
for co-prime,C =7 [9].

0) {H] H%
0) {H] /2 HH A
H]

D

0 m/AH /2
0 D

0 > DD

|O r/ r/ (/

1 S

)
)
)
)
)
)
)

Figure 15: Quantum circuit for Shor’s algorithid,= 15 andC = 7.

UsingMathematicawe first initialize the qubit states as follows:

In[4] := InputVector = BasisStateVector{0,0,0,0,0,0,}];
HTransform = KroneckerProduct{HadamardGate[],HadamardGate][],
HadamardGate[],IdentityMatrix[24];

12

Modular exponentiation is carried out on qubits 4 to 7 below:

In[5] := ModA = KroneckerProduct[ldentityMatrix[27,

CUGate[{3},{},{5},{NOTGate[] }],IdentityMatrix[27];

ModB = KroneckerProduct[IdentityMatrix[27,
CUGate[{3},{},{6},{NOTGate[]}],IdentityMatrix[21];

ModC = KroneckerProduct[ldentityMatrix[29,
CUGate[{4},{},{6},{NOTGate[]}],IdentityMatrix[21];

ModD = KroneckerProduct[ldentityMatrix[21],
CUGate[{2,6},{},{4},{NOTGate[] }],IdentityMatrix[21];

ModE = ModC,;

ModF = KroneckerProduct[ldentityMatrix[27,
CUGate[{7},{},{5},{NOTGate[] }II;

ModG = KroneckerProduct[ldentityMatrix[27,
CUGate[{2,5},{},{7},{NOTGate[] }I;

ModH = ModF;

Next, the inverse QFT (Quantum Fourier Transform) is penteat on the first
three qubits:

In[6] := QftA = KroneckerProduct{HadamardGate[],|dentityMatrix[27];

QftB = KroneckerProduct[CUGate[{1},{},{2},{PHASEGate[rr/2]}],
IdentityMatrix[2°]];

QftC = KroneckerProduct[ldentityMatrix[2'],HadamardGate][],
IdentityMatrix|[2°]];

QftD = KroneckerProduct[CUGate[{1},{},{3}.{PHASEGate[rr/4]}],
IdentityMatrix[2%]];

QftE = KroneckerProduct[ldentityMatrix[2],
CUGate[{2},{},{3},{PHASEGate[r/2]}],IdentityMatrix[24]];

QftF = KroneckerProduct[ldentityMatrix[24,HadamardGate][],
IdentityMatrix[24]];

13

We then multiply the matrices together from right to leftppit to an initial
qubit states, and obtain the final state of the quantum exgist

In[7] := TMatrix = QftF.QftE.QftD.QftC.QftB.QftA.ModH.ModG.

ModF.ModE.ModD.ModC.ModB.ModA.HTransform;

OutputVector = TMatrix.InputVector;

ListStates[OutputVector];

Out[7] := List of qubit states with a non-zero amplitude:

(%) 10000003 + (%) 0000100+ (%) (000011} + (%) |0001103+

(3)10010001 + (%) |0010100+ (—2) 001011} + (—3)[0011103+

(3)/010000} + (—3)[0100100+ () |010011} + (—£) 0101103+

(3)]0110003 + (—1) |0110100+ (1) |011011} + (§)[011110}

N

Bl= A=

The most important part of the result is the state measureafequbits 1, 2
and 3, which constitute the output register. Upon measunemebit 1 is solely
in the computational basi), whereas qubits 2 and 3 are in a mixture of both
computational base$)) and|1). Written in reverse order, we have a superpo-
sition of the combined statéf00), (010, [100), and|110 for the three qubits
in the output register, which has a periodicity pf= 2. According to Shor’s

algorithm, the factors are then given by the greatest comdigsor (gcd) of
n—1

CZT +1 andN, wheren = 3 is the number of qubits in the output register. There-
23-1

n—1
foregedC P +1,N) = ged(7°2 +1,15) = ged(72+ 1, 15) = 3,5, which are
indeed the factors dfl = 15.

5.2. Quantum random walks

Here, we are concerned with the quantum circuit implemamntatf quantum
walks on highly symmetrical graphs. There exists diffesmftware packages that
can implement quantum random walks across graphs, e.g. \tfekQyackage
implements a quantum walk across 1-dimensional and 2-difoeal lattices [10]
and the gqwViz package visualize a quantum walks on arbigradmplex graphs
[11], as well as various quantum state based physical imgiégtion schemes
such as described in [12,/13], without reference to a ciioyslementation of the
graph. However, we consider circuit implementations heiréustrate the use of
the CUGates package.

14

5.2.1. 16-length cycle

Consider the quantum circuit shown in Figlre 16, which impats a quan-
tum walk on a 16-length cycle using the Increment/Decrergates [[14] shown
in Figurel1T. First, we define the functions IncrementGate@ecrementGate in
Mathematicaas below to calculate the matrix of the Increment/Decrergatd,
given the number of qubits involved.

node incr | | decr

subnode >—L

Figure 16: Quantum circuit implementing a quantum walk glari6-length cycle.

Increment Decrement
> N

N

D
J

N
N>

Figure 17: Increment and decrement gatesyaqubits, producing cyclic permutations in th 2
bit-string states.

15

In[8] := IncrementGate[NQubit_Integer] :=
(
Module
[{ReturnMatrix,i,j },
ReturnMatrix = IdentityMatrix[2NQubi):
For[i=1,i < NQubit, ++i,
ReturnMatrix = KroneckerProduct[ldentityMatrix[2'—1],
CUGate[Table[j,{j,i+1,NQubit }],{}{i},
{NOTGate[] }].ReturnMatrix;
I;
Return[KroneckerProduct[ldentityMatrix| 2NQubit-1],
NOTGate[]].ReturnMatrix];

In[9] := DecrementGate[NQubitinteger] :=
(
Module
[{ReturnMatrix,i,j },
ReturnMatrix = IdentityMatrix[2NQubi:
For[i=1,i < NQubit, ++i,
ReturnMatrix = KroneckerProduct[ldentityMatrix[2'—1],
CUGate[{},Table[j,{j,i+1,NQubit }],{i},
{NOTGate[] }].ReturnMatrix;
I;
Return[KroneckerProduct[ldentityMatrix[2NQubit-1],
NOTGate[]].ReturnMatrix];

16

Using these definitions, we calculate the matrix of the citeud apply it to the
state vector signifying the initial vertex to be the 9th e&r{node representation
of |1000Q) with the subnode initially set t(®).

In[10] := InputVector = BasisStateVector[{1,0,0,0,3];
Coin = KroneckerProduct[ldentityMatrix[2*],HadamardGate[]];
T1 = CUGate[{5},{},{1},{IncrementGate[4]}];
T2 = CUGate[{},{5},{1},{ DecrementGate[4}];
TMatrix = T2.T1.Coin;
OutputVector = TMatrix.InputVector;
ListStates[OutputVector];

Out[10] := List of qubit states with a non-zero amplitude:

(&) 101209 + (%) 10013

From the output, we can see that the initial st4®000 has been shifted to a
superposition of statd®1100 and|10011, which are the nodes adjacent to the
initial state in a 16-length cycle. Further iterations ve#luse the quantum walk
to propagate further along the cycle, with each state sanathusly moving to its
adjacent states.

5.2.2. Complet&3-graph with self-loops

As an example involving qudits in a quantum circuit, we amalyhe quan-
tum walk along the complete'3yraph with self loops as discussed|in/[14]. The
complete 8-graph with self-loops can be constructed as in Figute 18.

Here, the operator is defined agT.), , = %eizm

¥ v1<ab<3,andthe
quantum circuit profile is nowW = {3,3,3,3,3,3,2}. This can be implemented in
Mathematicaas follows:

In[11] := TMinus = QFTMinus[3];
TPlus = QFTPIus[3];
QCProfile = {3,3,3,3,3,3,2;

The coin operator is calculated as follows:

17

Node

Subnode

0)

Figure 18: Quantum circuit implementing a quantum walk glarcomplete 3-graph with self-
loops. The node and subnode are composed of 3-level quditg(itrits).

In[12] ;= C1 = SparseArray[KroneckerProduct[ldentityMatrix] 37,
TPlus, TPlus, TPlus,ldentityMatrix[2]]];

C2 = SparseArray[KroneckerProduct[ldentityMatrix[37,
CUGateG[QCProfile,{{4,1},{5,1},{6,1} } {7}, {NOTGate[] }],
IdentityMatrix[2]]];

C3 = SparseArray[KroneckerProduct[ldentityMatrix[3,
CUGateG[QCProfile,{{7,1}},{6},{PHASEGateG[{ 1,0,0}] }]1I;

C4 =C2;

C5 = SparseArray[KroneckerProduct[ldentityMatrix[37,

TMinus, TMinus, TMinus,ldentityMatrix[2]]];

The shifting operator can be implemented as such:

In[13] := T1 = SparseArray[KroneckerProduct[SWAPQudits[QCProfile,1,4],
IdentityMatrix| 32 2]]];
T2 = SparseArray[KroneckerProduct[ldentityMatrix[3],
SWAPQudits[QCProfile,2,5], IdentityMatrix[3x 2]]];
T3 = SparseArray[KroneckerProduct[IdentityMatrix| 37,
SWAPQudits[QCProfile,3,6], IdentityMatrix[2]]];

18

Finally, we can calculate the matrix of the circuit, and gpplto the state
vector signifying the initial vertex to be the 1st vertex georepresentation of
|000)), and obtain the result of a single iteration of the circuit.

In[14] := InputVector = BasisStateVectorG[QCProfile{0,0,0,0,0,0,]
TMatrix = Normal[T3.T2.T1.C5.C4.C3.C2.C1];
OutputVector = TMatrix.InputVector;
ListStatesG[QCProfile,OutputVector];
Out[14]:= List of qudit states with a non-zero amplitude:
7) 10000000+ (—32) (0010000 + (—32) 0020000+ (%) 0100000+
10110000+ () 0120000+ () 0200000+ () 0210000+
10220000+ (%) |1000000+ (%) |1010000+ (%) | 1020000+
|1100000 + 11110000+ (%) |1120000+ |1200000+
11210000+ () |1220000 + () 2000000+ () |2010000+
(
(

2
27

NSNS

~— — — ~— ~—

SN

~— — — ~— ~— ~—

2
2

(57
(
(
(3
(
(
(

~

7 7

2
2

ﬂ
N e e e N
NSNS

e N N N N

2
27
2
27

2020000+ 2100000+ (-2) [2110000+ 2120000+
27

12200000+ £) 2220000

A~ Y~~~ —~
o N Nl Nl

N

~

//_/_/_/_/

12210000+

N
~

5.2.3. 3 generation 3-Cayley tree

As a further example involving a mixture of qubits and qudite demonstrate
how to implement a quantum walk on th& generation 3-Cayley tree (shown in
Figure[19) with the central node marked, by using its cowadging quantum
circuit shown in Figuré&_20.

The G, operator is defined a$Gy)i j = % —§j V1<i,j <n. Here, theGs
operator acts on only 3 of the 4 subnode states, so it doesiratith the state
|11). TheZ, andZ_ gates are generalized increment and decrement gates re-
spectively. For &-leveled qudit, they are defined asby-b matrices given as
(Z+)i.i = &mod b+1,j @d(Z-)i.j = O jmod b+1 respectively. A natural ex-
tension to multlple qudits is given in Figurel21. In genethé Rs andR_ oper-
ators, shown in Figure 22, correspond to a clockwise andlackwise rotation
of qudits. However, in the context of Figurel &k andR_ are both single SWAP
gates.

Given the length of the code needed to simulate the quantwuicfor a
guantum walk along the 3-Cayley tree, we refer the readehddathematica
notebookCUGates.nb The results of the quantum walk across 50 steps (starting

19

Figure 19: & generation 3-Cayley tree.

in an equal superposition of vertex states, which is thewlisided according to
the subnode states of the vertex) is shown in Figute 23, wthereentre marked
node is distinguished by its much larger probability peak.

6. Conclusions

TheMathematicanotebook presented in this paper utilizes an irreducibi@fo
of matrix decomposition of a general controlled quantune géith multiple con-
ditionals and is highly efficient in simulating complex gtiam circuits. It pro-
vides a powerful tool to assist researchers analyze thenpeaihce of proposed
guantum circuits. It has helped to identify several errarthe quantum circuits
described in/[14], which was addressed and acknowledgetEin Another im-
portant application in which large and complex circuitsahaebe efficiently sim-
ulated is in the area of quantum error correction, in whiamegalized control uni-
tary gates are used with both qubits and qudits[16, 17]. package will prove
to be immensely helpful in the design of codification cirsuit this area. Imple-

mentation ilMathematicaallows the code to be used in a cohesive and interactive

environment which is nevertheless computationally poweifhe interactive na-
ture of this environment also makes this notebook suitaiMddaching, where

20

incr decr ‘ ‘

Level { ‘

Tree number

C1

—

—
)
NP

—
it

Node {

Subnod{

1)

N N (NN N
U U \NPANVAN U

N
N
N

Figure 20: Quantum circuit implementing a quantum walk glar89 generation 3-Cayley tree,
with the central node marked. Any vertex is uniquely defing@ltombination of the level, tree
number, and node states.

guantum algorithms and quantum gate operations can besdtuddetail.

21

|w2)

— [¢F)

|3)
[779;
[;
[3;
[T

|1%)

Z. gate

o)

W§2}2> A

{n-
Lljnfll> T CZn—l] Canl

w€"> —Cg, —Cq,

| CZn 7%+

Z_ gate

‘L[Jfl> 7

W§n22> %Cl F

92

i) GG

,%

W§"> %Cchl}—{ClF:@f*

Figure 21:%, and%_ gates om qudits, with a quantum circuit profile @ = {{1, {2, ...,{n}-

% g "2 >
v
)

i

Figure 22:Rg andR_ gates om qudits, with a quantum circuit profile @f = {{1, {2, ...

Wy z >
W)
)

22

7Zn}-

Probability

Figure 23: Probability distribution along thé®3yeneration 3-Cayley tree against the number of
walking steps.

23

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

B. Julia-Diaz, J. M. Burdis, F. Tabakin, QDENSITY - a Mathatica quan-
tum computer simulation, Computer Physics Communicatioffs (2006)
914-934.

T. Radtke, S. Fritzsche, Simulation of n-qubit quantugstems: A
computer-algebraic approach, Computer Physics Commiinnsal73
(2005) 91-113.

K. M. Obenland, A. M. Despain, A parallel quantum compggienulator, at
http://arxiv.org/abs/quant-ph/9804039 (1998).

K. D. Raedt, K. Michielsen, H. D. Raedt, B. Trieu, G. ArdpM. Richter,
T. Lippert, H. Watanabe, N. Ito, Massively parallel quantcomputer sim-
ulator, Computer Physics Communications 176 (2007) 126-13

E. Gutierrez, S. Romero, M. A. Trenas, E. L. Zapata, Quantomputer
simulation using the CUDA programming model, Computer Risy€om-
munications 181 (2010) 283-300.

M. A. Nielsen, I. Chuang, Quantum Computation and Quaniiaformation,
Cambridge University Press, 2000.

F. Tabakin, B. Julia-Diaz, QCWAVE - a Mathematica quantaomputer
simulation update, Computer Physics Communications (201dress).

[8] A. S. Ermilov, V. E. Zobov, Implementation of the quantwrder-finding

[9]

[10]

[11]

algorithm by adiabatic evolution of two qudits, Quantum Quters and
Computing 9 (2009) 39-48.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannao¥ii. H. Sher-
wood, I. L. Chuang, Experimental realization of Shor’s quam factoring
algorithm using nuclear magnetic resonance, Nature 4101(2883—-887.

F. L. Marquezino, R. Portugal, The QWalk simulator ofagtum walks,
Computer Physics Communications 179 (2008) 359-3609.

S. D. Berry, P. Bourke, J. B. Wang, qwviz: Visualisatioihquantum walks
on graphs, Computer Physics Communications 182 (2011).2295

24

[12] K. Manouchehri, J. B. Wang, Quantum walks in an array wdmfum dots,
Journal of Physics A 41 (2008) 065304.

[13] K. Manouchehri, J. B. Wang, Quantum random walks withwalking,
Physical Review A 80 (2009) 060304(R).

[14] B. L. Douglas, J. B. Wang, Efficient quantum circuit irapientation of
quantum walks, Physical Review A 79 (2009) 052335.

[15] B. L. Douglas, J. B. Wang, Erratum: Efficient quantuncait implementa-
tion of quantum walks, Physical Review A 80 (2009) 059901(E)

[16] R.lonicioiu, T. P. Spiller, W. J. Munro, Generalizedffiai gates using qudit
catalysis, Physical Review A 80 (2009) 012312.

[17] A. N. Al-Rabadi, Reversible viterbi algorithm and itéosed-system g-
domain circuit design and computation, Journal of Cirgusigstems, and
Computers 18 (2009) 1627-1649.

25

Appendices

Appendix A. CU gate decomposition proof

For any arbitary staté} (a|0) + b|1)) — a|0) andPy (a|0) + b|1)) — b|1), i.e.
the Py and P, operators projects arbitrary states onto f@eand |[1) computa-
tional basis state respectively. Consider the quanturnicircFigurelA.24, where
|@1) = &1|0) + by |1) and|yp) = a|0) + ba[1).

yn) —Po]

— = M

|W2)

Figure A.24: Application of, to theCU gate.
SincePy (|1)) — &1]0), then

CU (R (|4n) ®|4r)) = a1]0) @ [gr) = Ro(|¢n)) @ 12(|¢2))

i.e. theU gate is not applied to the second qubit because the conthit igun
the statea; |0) after the application of thEy operator, and thus the action of the
CU gate is the identity operator. Hence, we can simplify theusir as shown in
FigurelA.24.

Similarly, if the P, operator is applied as in Figure Al25, thar(|yn)) — by |1)
and thus

CU (PL(lgn)) @ [g2)) = ba|1) @U (|¢2)) = Po([¢)) @ U ([¢h2) ,

because the control qubit is in the sthiél) after the application of thB; opera-
tor, so the action of th€U gate is thdJ2 operator. The equivalent circuit is also
shown in Figur&A.25.

%y

— = M,

|2)

Figure A.25: Application of; to theCU gate.

26

Note thatM; andM,, as defined in Figurds A.P4 anhd Al25 respectively, are
non-unitary. However the suM; + M, = Pp® I, + P, ® U is unitary and also

M1+My=CU (Ry®12) +CU (PL®15) (A.1)
=CU((Rh+P)®l2) (A.2)
=CU(l,®ly) (A.3)
=CU

ConsequenthyCU = Py® Il +Pr®U.

Appendix B. C13U2 gate decomposition proof

The decomposition can be derived by considering each ofdbsilple permu-
tations, which are defined as follows:

M; =CPU2 (R @ 1,0 Py) = Py® 1, @ Py (B.1)
My =CHPU2(RR 1@ P) =R lo P (B.2)
M3 =CLPU2 (P @1, @ Py) = PL® 2@ Py (B.3)

My =CHU2 (P12 P) =PioU P,
As before, we consider the permutation sum :

M1+ My +Msz+Mz =CHBU2 (Ry@ 1, @ Py) +CHBU? (Ro@ 1, @ Py) + (B.4)
CHPU2(PL®l,@Py) +CHU?(PLolh,oP) (B.5)

=ClU2(R®l,® (P +Py) + (B.6)

PL®l®(Po+P1)) (B.7)
=CLPUZ((R+P)®12®1)) (B.8)
=ClPU2(I,@1,®1,) (B.9)
—cLl3yz

ConsequenthC1PU2 =R b P+ P @ b @PL+PLo @ Py +PLoU @ Py,

Appendix C. Arbitrary CUG decomposition

For an arbitrary CUG across qubits wittconditionals, we have2possible
permutations when placingR or P; projection operator in front of each condi-
tional. Each permutation then has a column that is deschligdtie tensor prod-
uct of the projection operators with identity matrices ie #ppropriate positions

27

placed in front of the CUG. Proving that the sum of these pé¢atians is equal to
the gate itself is fairly trivial; it simply involves factorg together permutations
that differ by a single conditional, using the identRy+ P, = I,, and then doing
so repeatedly until we end up with the original CUG. The sifigaltion comes
by considering the action of the projection operators onstiage going into the
CUG, and since the CUG implements the action iff the inputesis in the ba-
sis state corresponding to the conditionals, we can easiik wut which of the
permutations has the action of the CUG implemented, whéedist do not.
Similarly, for an arbitrary CUG across qudits, we have a nends permuta-
tions corresponding to the qudit levels on which the conddis are placed, and
b

by using the identityz Pap = lp, We can readily prove that the sum of all permu-

tations correspondg1 t(l) the CUG itself, and can thus simgiéypermutations as
before. In both cases, we can simplify the decompositiorsicenably by using

the identity matrix to represent the sum of all permutatiasih no action ap-

plied, then adding on the appropriate permutation with tti®a of the CUG and

subtracting the same permutation without the action.

28

14!

el

I

sjiqnb Jo Joquuny
01 6

i1°'0

101

100°0

110°0

1001

(93s) NdD

	1 Program Summary
	2 Introduction
	3 Decomposition of CUGs
	3.1 CUGs across qubits
	3.1.1 Definitions and notation
	3.1.2 Decomposition
	3.1.3 Reduction to its irreducible form

	3.2 CUGs across qudits
	3.2.1 Definitions and notation
	3.2.2 Decomposition
	3.2.3 Reduction to its irreducible form

	4 Comparison with the QDENSITY package
	5 Worked examples
	5.1 Shor's algorithm
	5.2 Quantum random walks
	5.2.1 16-length cycle
	5.2.2 Complete 33 -graph with self-loops
	5.2.3 3rd generation 3-Cayley tree

	6 Conclusions
	Appendices
	Appendix A CU gate decomposition proof
	Appendix B C1,3U2 gate decomposition proof
	Appendix C Arbitrary CUG decomposition

