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on qubits and qudits
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Abstract

This paper presents a highly efficient decomposition schemeand its associ-
atedMathematicanotebook for the analysis of complicated quantum circuits com-
prised of single/multiple qubit and qudit quantum gates. Inparticular, this scheme
reduces the evaluation of multiple unitary gate operationswith many condition-
als to just two matrix additions, regardless of the number ofconditionals or gate
dimensions. This improves significantly the capability of aquantum circuit anal-
yser implemented in a classical computer. This is also the first efficient quantum
circuit analyser to include qudit quantum logic gates.

1. Program Summary

Title of program: CUGates.m
Programming language used: Mathematica
Computers and operating systems: any computer installed withMathematica6.0

or higher
Distribution format: Mathematicanotebook
Nature of problem: TheCUGatesnotebook simulates arbitrarily complex

quantum circuits comprised of single/multiple qubit and qudit quantum gates.
Method of solution: It utilizes an irreducible form of matrix decomposition for a

general controlled gate with multiple conditionals and is highly efficient in
simulating complex quantum circuits.

Running time: Details of CPU time usage for various example runs are givenin
Section 4.

Program obtainable from: CPC Program Library, Queens University of Belfast,
N. Ireland
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2. Introduction

At the heart of a quantum computer lies a set of qubits and/or qudits whose
states are manipulated by a series of quantum logic gates, namely a quantum cir-
cuit, to provide the ultimate computational results. It is therefore of particular
interest to be able to efficiently evaluate the performance of a quantum circuit
(such as its reliability, effectiveness, robustness, sensitivity to decoherence and
errors) in the design stage using a classical computer.

There are currently several quantum computer simulators reported in the liter-
ature [1, 2, 3, 4, 5], which simulate quantum circuits consisting of 1, 2 or 3 qubit
gates such as the Hadamard, CNOT and Toffoli gate. The CNOT and Toffoli gate
are examples of controlled unitary gates (CUGs), which implement operations
that are conditional on the state of the specified control qubits. Other more gen-
eral CUGs (acting across qubits or qudits) can always be decomposed in terms
of a universal set of 1- and 2-qubit quantum gates [6], but this would require sig-
nificant computational overhead in the analysis. To the bestof our knowledge,
there are no efficient quantum simulators on quantum circuits with multiple qudit
controlled quantum gates.

In this paper, we present a highly efficient scheme for the evaluation of arbi-
trary CUGs. This scheme reduces the evaluation of multiple unitary gate opera-
tions with many conditionals to just two matrix additions, regardless of the num-
ber of conditionals or gate dimensions. The implementationof this scheme, and
many other functions used to analyse quantum circuits, is provided in aMathemat-
ica 7.0 package entitledCUGates.m. The computation time required to evaluate
the CNOT and Toffoli gates using this package is compared with theQDENSITY
package [1] and is found to be several orders of magnitude more efficient. Exam-
ples of quantum circuits involving controlled unitary gates and their analysis using
the notebook are presented. A compilation of theMathematicacode presented in
the paper is provided in theMathematicanotebookCUGates.nb.

3. Decomposition of CUGs

3.1. CUGs across qubits

3.1.1. Definitions and notation
Denote a set of qubits asQ, and the wavefunction (if definable) for theith

qubit as|ψi〉. Q is in a basis state iff|ψi〉= |0〉∨ |ψi〉= |1〉 ∀ i ∈ Q. DefineCci as
being conditional on the state|1〉 of qubit ci , andC̄c̄ j as being conditional on the
state|0〉 of qubit c̄ j .
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A CUG with conditionalsCc1,...,ciC̄c̄1,...,c̄ j implementing unitary operations
Uu1

1 ...Uuk
k , whereu1, ...,uk denotes the starting qubit of the correspondingU block,

is represented byCc1,...,ciC̄c̄1,...,c̄ jUu1
1 ...Uuk

k . Effectively, the action of this CUG is
such that it implements the operationsUu1

1 ...Uuk
k iff the set of control qubits is in

the basis state described by|ψc1,...,ci〉 = |1〉 and
∣

∣ψc̄1,...,c̄ j

〉

= |0〉. For any other
basis state, the CUG leaves the system of qubits unchanged. Figure 1 shows an
example of theC1C̄3,6U2

1U4
2 gate.

|ψ1〉 •

|ψ2〉 U1

|ψ3〉

|ψ4〉
U2

|ψ5〉

|ψ6〉
Figure 1: TheC1C̄3,6U2

1U4
2 gate, withC conditional on qubit 1 being|1〉, C̄ conditional on qubit 3

and 6 being|0〉, and the operationsU1 andU2 are implemented on qubits 2 and 4 to 5 respectively.

3.1.2. Decomposition
An efficient way to evaluate arbitrary controlled unitary gates is to decompose

the operation by defining the projection operatorsP0 andP1 as:

P0 =

(

1 0
0 0

)

, P1 =

(

0 0
0 1

)

.

Note thatP0 andP1 are non-unitary matrices andP0+P1 = I2 is the 2-by-2 identity
matrix. Now consider theC1U2 (abbreviated asCU) gate, shown in Figure 2.

|ψ1〉 •

|ψ2〉 U

Figure 2: TheCU gate.

It can be readily verified and proven that the matrix for theCU gate is given
asCU = P0⊗ I2+P1⊗U (see appendix A for details). This result, called the
decomposition of theCU gate as a sum, is graphically summarised in Figure 3.
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|ψ1〉 •

|ψ2〉 U

P0

=

I2

P1

+

U

Figure 3: Decomposition of theCU gate.

The key idea is that we can use the projection operatorsP0 andP1 to project
the set of control qubits to a basis state. For any basis state, the action of the
CUG gate is either just theUu1

1 ...Uuk
k operators, or no action at all (i.e. the identity

operator). By considering all possible basis states of the set of control qubits, we
can construct the matrix of the CUG gate by summing together the action of the
CUG gate corresponding to each possible basis state.

For any arbitraryCc1,...,ciUu1
1 ...Uuk

k gate, consider replacing each conditional
with a P0 or P1 operator. This can be done in 2i distinct ways. For the basis
state described by|ψc1,...,ci〉= |1〉, which corresponds to the permutationCm→ P1

∀ m= c1, ...,ci, the action of the CUG is the operationsUu1
1 ...Uuk

k . Any other
basis state (and hence permutation) corresponds to the action of the CUG being
the identity operator. The sum of the 2i permutations yields the matrix of the
Cc1,...,ciUu1

1 ...Uuk
k gate. For example,

C1,3U2 = P0⊗ I2⊗P0+P0⊗ I2⊗P1+P1⊗ I2⊗P0+P1⊗U ⊗P1,

as graphically shown in Figure 4 (see appendix B for a mathematical proof).

|ψ1〉 •

|ψ2〉 U

|ψ3〉 •

P0

= I2

P0

P0

+ I2

P1

P1

+ I2

P0

P1

+ U

P1

Figure 4: Decomposition of theC1,3U2 gate.

Similarly, for any arbitraryC̄c̄1,...,c̄ jUu1
1 ...Uuk

k gate, consider the 2j possible
permutations that arise from replacing eachC̄ conditional with aP0 or P1 operator.
For the basis state described by|ψc̄1,...,c̄i〉= |0〉, which corresponds to the permu-
tationC̄n → P0 ∀ n= c̄1, ..., c̄ j , the action of the CUG is the operationsUu1

1 ...Uuk
k .

Any other basis state corresponds to the action of the CUG being the identity op-
erator. The sum of the 2j permutations gives the matrix of thēCc̄1,...,c̄ jUu1

1 ...Uuk
k
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gate, for example,

C̄1,3U2 = P0⊗U ⊗P0+P0⊗ I2⊗P1+P1⊗ I2⊗P0+P1⊗ I2⊗P1,

as graphically shown in Figure 5.

|ψ1〉

|ψ2〉 U

|ψ3〉

P0

= U

P0

P0

+ I2

P1

P1

+ I2

P0

P1

+ I2

P1

Figure 5: Decomposition of thēC1,3U2 gate.

Hence, for any arbitraryCc1,...,ciC̄c̄1,...,c̄ jUu1
1 ...Uuk

k gate, we consider each of the
2i+ j permutations that arise from replacing eachC andC̄ conditional with aP0 or
P1 operator. For the basis state described by|ψc1,...,ci〉 = |1〉 and|ψc̄1,...,c̄i〉 = |0〉,
which corresponds to the permutationCm → P1 ∀ m= c1, ...,ci andC̄n → P0 ∀
n= c̄1, ..., c̄ j , the action of the CUG is the operationsUu1

1 ...Uuk
k . Any other basis

state corresponds to the action of the CUG being the identityoperator. The sum of
the 2i+ j permutations yields the matrix of theCc1,...,ciC̄c̄1,...,c̄ jUu1

1 ...Uuk
k gate. For

example,

C3C̄1U2 = P0⊗ I2⊗P0+P0⊗U ⊗P1+P1⊗ I2⊗P0+P1⊗ I2⊗P1,

as graphically shown in Figure 6.

|ψ1〉

|ψ2〉 U

|ψ3〉 •

P0

= I2

P0

P0

+ U

P1

P1

+ I2

P0

P1

+ I2

P1

Figure 6: Decomposition of theC3C̄1U2 gate.

3.1.3. Reduction to its irreducible form
For an arbitraryCc1,...,ciC̄c̄1,...,c̄ jUu1

1 ...Uuk
k gate, a naive implementation of the

previous section would require 2i+ j −1 matrix additions to compute the matrix
of the gate. However, this overhead can be reduced significantly by noting that
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only one permutation has theUu1
1 ...Uuk

k operators being implemented, while the
other 2i+ j −1 possible permutations have identity operators substituted in for the
Uu1

1 ...Uuk
k operators. As an example, consider the gate (essentially the identity

matrix I8) shown in Figure 7, which has 22− 1 of the same permutations as in
Figure 6. Consequently, we can write the decomposition of the C3C̄1U2 gate as
the following

C3C̄1U2 = I8+P0⊗U ⊗P1−P0⊗ I2⊗P1, (1)

which is graphically represented by Figure 8.

|ψ1〉

|ψ2〉

|ψ3〉 •

P0

= I2

P0

P0

+ I2

P1

P1

+ I2

P0

P1

+ I2

P1

Figure 7: Decomposition of theI8 gate.

|ψ1〉

|ψ2〉 U

|ψ3〉 •

I2

= I2

I2

P0

+ U

P1

P0

− I2

P1

Figure 8: Optimized decomposition of theC3C̄1U2 gate.

For the general case, the matrix of any arbitraryCc1,...,ciC̄c̄1,...,c̄ jUu1
1 ...Uuk

k gate
is simply the identity matrix (of appropriate dimensions),added together with the
permutation that has the operationsUu1

1 ...Uuk
k implemented, subtracted with the

same permutation with theUu1
1 ...Uuk

k operators replaced with identity operators.
In effect, the identity matrix is used to encapsulate 2i+ j −1 permutations. Hence,
for any arbitraryCc1,...,ciC̄c̄1,...,c̄ jUu1

1 ...Uuk
k gate, computation of the gate matrix

requires only two matrix additions, regardless of the number of controls or the
gate dimensions. Note that the only instance in which this decomposition scheme
is less efficient than the naive implementation is when only one C or C̄ condi-
tional is involved. The optimized decomposition of a more complex example, the
C2C̄1,4U3

1U5
2 gate, is given in Figure 9.
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|ψ1〉

|ψ2〉 •

|ψ3〉 U1

|ψ4〉

|ψ5〉 U2

I2

I2

= I2

I2

I2

P0

P1

+ U1

P0

U2

P0

P1

− I2

P0

I2

Figure 9: Optimized decomposition of theC2C̄1,4U3
1U5

2 gate.

3.2. CUGs across qudits

3.2.1. Definitions and notation

Denote the wavefuntion of thei-level qudit j as
∣

∣

∣
ψ i

j

〉

. Define a quantum circuit

consisting ofn qudits
{
∣

∣

∣
ψζ1

1

〉

,
∣

∣

∣
ψζ2

2

〉

, ...,
∣

∣

∣
ψζn

n

〉}

whereζi represents the number

of levels in theith qudit andζ = {ζ1,ζ2, ...,ζn}. We callζ the quantum circuit
profile, which is the list of qudit levels, arranged according to the order of the
qudits. For example, any CUG applied across qubits hasζ = {2,2, ...,2}, since
qubits are 2-level qudits. Also defineCci

si as being conditional on the state|si −1〉
of quditci , where 1≤ si ≤ ζci .

A CUG with conditionalsCc1
s1 ...C

ci
si implementing unitary operationsUu1

1 ...Uuk
k ,

whereu1, ...,uk denotes the starting qudit of the correspondingU block, is repre-
sented byCc1

s1 ...C
ci
si U

u1
1 ...Uuk

k . Figure 10 shows an example of theC2
4C3

1C5
2U1

1U4
2

gate.

3.2.2. Decomposition
We can readily extend the concept of projection operators toqudits, by defin-

ing
(

Pa,b
)

i, j = δaiδa j ∀ 1≤ i, j ≤ b (whereδi j is the Kronecker delta) as the projec-
tion to the state|a−1〉 acting on ab-leveled qudit, with the restriction 1≤ a≤ b.
Hence everyb-leveled qudit has a set ofb projection operators defined, with the

property
b

∑
a=1

Pa,b = Ib.

For a generalCc1
s1 ...C

ci
si U

u1
1 ...Uuk

k gate, it is clear that by substituting each con-
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∣

∣ψ3
1

〉

U1

∣

∣ψ4
2

〉

C4

∣

∣ψ5
3

〉

C1

∣

∣ψ5
4

〉

U2

∣

∣ψ2
5

〉

C2

Figure 10: TheC2
4C3

1C5
2U1

1U4
2 gate, acting on 5 qudits of various levels. The quantum circuit profile

is ζ = {3,4,5,5,2}.

ditional with a (valid) projection operator, it would result in ζP =
i

∏
j=1

ζc j distinct

permutations. However, since the unitary operationsUu1
1 ...Uuk

k are only carried
out iff the control quditsc1, ...,ci are in the states|s1−1〉, ..., |si −1〉 respectively,
only the permutation described byC

c j
sj → Psj ,ζcj

∀ j = 1, ..., i exactly will have

Uu1
1 ...Uuk

k implemented; any other permutation will have identity operators sub-
stituted in place ofUu1

1 ...Uuk
k . The sum of allζP permutations yields the matrix of

theCc1
s1 ...C

ci
si U

u1
1 ...Uuk

k gate. For example,

C1
3C3

1U2 = P1,3⊗ I5⊗P1,2+P1,3⊗ I5⊗P2,2+P2,3⊗ I5⊗P1,2+ (2)

P2,3⊗ I5⊗P2,2+P3,3⊗U ⊗P1,2+P3,3⊗ I5⊗P2,2

as graphically shown in Figure 11.

∣

∣ψ3
1

〉

C3

∣

∣ψ5
2

〉

U

∣

∣ψ2
3

〉

C1

P1,3

= I5

P1,2

P1,3

+ I5

P2,2

P2,3

+ I5

P1,2

P2,3

+ I5

P2,2

P3,3

+ U

P1,2

P3,3

+ I5

P2,2

Figure 11: Decomposition of theC1
3C3

1U2 gate.
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3.2.3. Reduction to its irreducible form
As before, we can use the identity matrix (of appropriate dimensions) to en-

capsulateζP−1 permutations of aCc1
s1 ...C

ci
si U

u1
1 ...Uuk

k gate, since only one of the
permutations have theUu1

1 ...Uuk
k operations implemented. The matrix of the CUG

is thus the identity matrix (of appropriate dimensions) added together with the
permutation described byC

c j
sj → Psj ,ζcj

∀ j = 1, ..., i, minus the same permutation

with identity matrices substituted in place ofUu1
1 ...Uuk

k . The optimized decompo-
sition of theC1

3C3
1U2 gate is given in Figure 12. The optimized decomposition of

a more complex example, theC2
4C3

1C5
2U1

1U4
2 gate, is given in Figure 13.

∣

∣ψ3
1

〉

C3

∣

∣ψ5
2

〉

U

∣

∣ψ2
3

〉

C1

I3

= I5

I2

P3,3

+ U

P1,2

P3,3

− I5

P1,2

Figure 12: Optimized decomposition of theC1
3C3

1U2 gate.

∣

∣ψ3
1

〉

U1

∣

∣ψ4
2

〉

C4

∣

∣ψ5
3

〉

C1

∣

∣ψ5
4

〉

U2

∣

∣ψ2
5

〉

C2

I3

I4

= I5

I5

I2

U1

P4,4

+ P1,5

U2

P2,2

I3

P4,4

− P1,5

I5

P2,2

Figure 13: Decomposition of theC2
4C3

1C5
2U1

1U4
2 gate.

4. Comparison with theQDENSITY package

The QDENSITYpackage [1] provides many functions for the simulation of
quantum circuits, two of which simulate the CNOT gate and theToffoli gate. A
more recent paper [7] introducesQCWAVEas an extension of theQDENSITY
package.QCWAVEhas the functions Op2 and Op3 that can be used to reproduce
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the action ofCNOTn and Toffolin gates on state vectors, but does not give the
matrix of the gates itself. We find it more straightforward and efficient to use
theQDENSITYfunctions to construct the matrix and then act on the state vector,
and hence we perform the following comparison using theQDENSITYpackage
of version 4.0 (updated since [1]).

Here, we compare the CPU time taken to compute the matrices for the same
gates, using the CNOT and Toffoli functions provided in theQDENSITYpack-
age and the more general CUGate function provided in theCUGates.mpackage.
TheQDENSITYfunctions implements a decomposition using many more matrix
additions and list manipulations in comparison with the scheme described in this
paper.

We define theCNOTn gate as spanningn qubits with theC control located
at the first qubit, and the NOT gate located at thenth qubit. The Toffolin gate is
defined as spanningn qubits with theC controls at qubits 1 and 2, and the NOT
gate located at thenth qubit. Using these definitions, we are able to measure the
CPU time taken to compute the matrix againstn, which is plotted in Figure 14.

Figure 14: CPU time taken. Circle/Square: Time taken using the CNOT/Toffoli function in the
QDENSITY4.0 package. Diamond/Triangle: Time taken using the CUGatefunction in theCU-
Gates.mpackage with the sparse-matrix optimization to compute theCNOT/Toffoli gate.
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As demonstrated in Figure 14, the CUGate function is significantly faster (by
several orders of magnitude) than the CNOT and Toffoli functions provided in the
QDENSITY package. In the actualMathematicaimplementation of the CUGate
function, we utilized sparse-matrix optimization to maximize calculation speed,
which in this case, provides a speedup of about 1.8 compared to the CUGate func-
tion without the sparse-matrix optimization. It is also worth noting that while the
Toffoli function takes almost twice as long as the CNOT function to compute its
result, the CUGate function takes approximately the same length of time to com-
pute the matrix of a CNOT and Toffoli gate for any particularn, which is expected
from the decomposition scheme described in this paper. In general, computation
of the matrix of any two controlled unitary gates spanning the same number of
qubits using the CUGate function takes the same length of time.

To perform this analysis, we have timed the use of the functions inMathemat-
ica using the Timing function, averaged over 10 trials. Computations were done
on a laptop with an Intel Core i7-740QM processor with a speedof 1.73GHz.
Results forn< 10 using the CUGate function is omitted since the minimum gran-
ularity of the Timing function is more than the CPU time needed for the CUGate
function.

5. Worked examples

First load the CUGates.m package inMathematicausing the following syntax:

In[1] := Needs[“CUGates‘”]

Brief descriptions of each function included in the CUGates.m package can be
accessed using the ‘?’ operator. For example,

In[2] := ?CUGate

Out[2] := CUGate[cpos,cbarpos,ubegin,umatrix]

Returns the matrix of a CUG across qubits with C conditionalsat cpos,

C̄ conditionals at cbarpos, and unitary operators umatrix with the

corresponding starting positions ubegin.
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In[3] := ?CUGateG

Out[3] := CUGateG[qcp,clist,ubegin,umatrix]

Returns the matrix of a CUG across qudits with conditionals described by clist,

and unitary operators umatrix with the corresponding starting positions ubegin.

Note: clist is a list of{Index of qudit in qcp,Conditional state}

The qubit-specific subroutines are: BasisStateVector, CUGate, EqualSuper-
position, HadamardGate, ListStates, MeasureQubits, MeasureSingleQubit, NOT-
Gate, PHASEGate, SWAPGate and SWAPQubits.

The general qudit subroutines are: BasisStateVectorG, CUGateG, EqualSu-
perpositionG, ListStatesG, PHASEGateG, POp, QFTMinus, QFTPlus, RMinus,
RPlus and SWAPQudits. The definitions for the functions QFTMinus and QFT-
Plus are similar to that of the QFT operator defined in [8].

5.1. Shor’s algorithm

Figure 15 shows the implementation of Shor’s algorithm to factorizeN = 15
for co-prime,C= 7 [9].

|0〉 H H • •

|0〉 H • • π/2 H •

|0〉 H • • π/4 π/2 H

|0〉 • •
|0〉 •
|0〉 •
|1〉 • •

Figure 15: Quantum circuit for Shor’s algorithm,N = 15 andC= 7.

UsingMathematica, we first initialize the qubit states as follows:

In[4] := InputVector = BasisStateVector[{0,0,0,0,0,0,1}];

HTransform = KroneckerProduct[HadamardGate[],HadamardGate[],

HadamardGate[],IdentityMatrix[ 24]];

12



Modular exponentiation is carried out on qubits 4 to 7 below:

In[5] := ModA = KroneckerProduct[IdentityMatrix[ 22],

CUGate[{3},{},{5},{NOTGate[]}],IdentityMatrix[ 22]];

ModB = KroneckerProduct[IdentityMatrix[ 22],

CUGate[{3},{},{6},{NOTGate[]}],IdentityMatrix[ 21]];

ModC = KroneckerProduct[IdentityMatrix[ 23],

CUGate[{4},{},{6},{NOTGate[]}],IdentityMatrix[ 21]];

ModD = KroneckerProduct[IdentityMatrix[ 21],

CUGate[{2,6},{},{4},{NOTGate[]}],IdentityMatrix[ 21]];

ModE = ModC;

ModF = KroneckerProduct[IdentityMatrix[ 24],

CUGate[{7},{},{5},{NOTGate[]}]];

ModG = KroneckerProduct[IdentityMatrix[ 21],

CUGate[{2,5},{},{7},{NOTGate[]}]];

ModH = ModF;

Next, the inverse QFT (Quantum Fourier Transform) is performed on the first
three qubits:

In[6] := QftA = KroneckerProduct[HadamardGate[],IdentityMatrix[ 22]];

QftB = KroneckerProduct[CUGate[{1},{},{2},{PHASEGate[π/2]}],

IdentityMatrix[ 25]];

QftC = KroneckerProduct[IdentityMatrix[ 21],HadamardGate[],

IdentityMatrix[ 25]];

QftD = KroneckerProduct[CUGate[{1},{},{3},{PHASEGate[π/4]}],

IdentityMatrix[ 24]];

QftE = KroneckerProduct[IdentityMatrix[ 21],

CUGate[{2},{},{3},{PHASEGate[π/2]}],IdentityMatrix[ 24]];

QftF = KroneckerProduct[IdentityMatrix[ 22],HadamardGate[],

IdentityMatrix[ 24]];

13



We then multiply the matrices together from right to left, apply it to an initial
qubit states, and obtain the final state of the quantum register.

In[7] := TMatrix = QftF.QftE.QftD.QftC.QftB.QftA.ModH.ModG.

ModF.ModE.ModD.ModC.ModB.ModA.HTransform;

OutputVector = TMatrix.InputVector;

ListStates[OutputVector];

Out[7] := List of qubit states with a non-zero amplitude:
(

1
4

)

|0000001〉+
(

1
4

)

|0000100〉+
(

1
4

)

|0000111〉+
(

1
4

)

|0001101〉+
(1

4

)

|0010001〉+
(1

4

)

|0010100〉+
(

− 1
4

)

|0010111〉+
(

− 1
4

)

|0011101〉+
(

1
4

)

|0100001〉+
(

− 1
4

)

|0100100〉+
(

i
4

)

|0100111〉+
(

− i
4

)

|0101101〉+
(

1
4

)

|0110001〉+
(

− 1
4

)

|0110100〉+
(

− i
4

)

|0110111〉+
(

i
4

)

|0111101〉

The most important part of the result is the state measurement of qubits 1, 2
and 3, which constitute the output register. Upon measurement, qubit 1 is solely
in the computational basis|0〉, whereas qubits 2 and 3 are in a mixture of both
computational bases,|0〉 and |1〉. Written in reverse order, we have a superpo-
sition of the combined states|000〉, |010〉, |100〉, and|110〉 for the three qubits
in the output register, which has a periodicity ofp = 2. According to Shor’s
algorithm, the factors are then given by the greatest commondivisor (gcd) of

C
2n−1

p ±1 andN, wheren= 3 is the number of qubits in the output register. There-

fore gcd(C
2n−1

p ±1,N) = gcd(7
23−1

2 ±1,15) = gcd(72±1,15) = 3,5, which are
indeed the factors ofN = 15.

5.2. Quantum random walks

Here, we are concerned with the quantum circuit implementation of quantum
walks on highly symmetrical graphs. There exists differentsoftware packages that
can implement quantum random walks across graphs, e.g. the QWalk package
implements a quantum walk across 1-dimensional and 2-dimensional lattices [10]
and the qwViz package visualize a quantum walks on arbitrarily complex graphs
[11], as well as various quantum state based physical implementation schemes
such as described in [12, 13], without reference to a circuitimplementation of the
graph. However, we consider circuit implementations here to illustrate the use of
the CUGates package.
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5.2.1. 16-length cycle
Consider the quantum circuit shown in Figure 16, which implements a quan-

tum walk on a 16-length cycle using the Increment/Decrementgates [14] shown
in Figure 17. First, we define the functions IncrementGate and DecrementGate in
Mathematicaas below to calculate the matrix of the Increment/Decrementgate,
given the number of qubits involved.

incr decrnode

subnode H •















Figure 16: Quantum circuit implementing a quantum walk along a 16-length cycle.

Increment Decrement

...
...

•
• •
• • • × ×

Figure 17: Increment and decrement gates onn qubits, producing cyclic permutations in the 2n

bit-string states.
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In[8] := IncrementGate[NQubit Integer] :=

(

Module

[{ReturnMatrix,i,j },

ReturnMatrix = IdentityMatrix[ 2NQubit];

For[i = 1, i < NQubit, ++i,

ReturnMatrix = KroneckerProduct[IdentityMatrix[ 2i−1],

CUGate[Table[j,{j,i+1,NQubit }],{},{i},

{NOTGate[]}].ReturnMatrix;

];

Return[KroneckerProduct[IdentityMatrix[ 2NQubit−1],

NOTGate[]].ReturnMatrix];

]

)

In[9] := DecrementGate[NQubit Integer] :=

(

Module

[{ReturnMatrix,i,j },

ReturnMatrix = IdentityMatrix[ 2NQubit];

For[i = 1, i < NQubit, ++i,

ReturnMatrix = KroneckerProduct[IdentityMatrix[ 2i−1],

CUGate[{},Table[j,{j,i+1,NQubit }],{i},

{NOTGate[]}].ReturnMatrix;

];

Return[KroneckerProduct[IdentityMatrix[ 2NQubit−1],

NOTGate[]].ReturnMatrix];

]

)

16



Using these definitions, we calculate the matrix of the circuit and apply it to the
state vector signifying the initial vertex to be the 9th vertex (node representation
of |10000〉) with the subnode initially set to|0〉.

In[10] := InputVector = BasisStateVector[{1,0,0,0,0}];

Coin = KroneckerProduct[IdentityMatrix[ 24],HadamardGate[]];

T1 = CUGate[{5},{},{1},{IncrementGate[4]}];

T2 = CUGate[{},{5},{1},{DecrementGate[4]}];

TMatrix = T2.T1.Coin;

OutputVector = TMatrix.InputVector;

ListStates[OutputVector];

Out[10] := List of qubit states with a non-zero amplitude:
(

1√
2

)

|01100〉+
(

1√
2

)

|10011〉

From the output, we can see that the initial state|10000〉 has been shifted to a
superposition of states|01100〉 and|10011〉, which are the nodes adjacent to the
initial state in a 16-length cycle. Further iterations willcause the quantum walk
to propagate further along the cycle, with each state simultaneously moving to its
adjacent states.

5.2.2. Complete33-graph with self-loops
As an example involving qudits in a quantum circuit, we analyze the quan-

tum walk along the complete 3n-graph with self loops as discussed in [14]. The
complete 33-graph with self-loops can be constructed as in Figure 18.

Here, the operatorT± is defined as(T±)a,b =
1√
3
e±

2π iab
3 ∀ 1≤ a,b≤ 3, and the

quantum circuit profile is nowζ = {3,3,3,3,3,3,2}. This can be implemented in
Mathematicaas follows:

In[11] := TMinus = QFTMinus[3];

TPlus = QFTPlus[3];

QCProfile = {3,3,3,3,3,3,2};

The coin operator is calculated as follows:
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×
Node ×

×
T+ T− ×

Subnode T+ T− ×
T+ π T− ×

|0〉 •





























Figure 18: Quantum circuit implementing a quantum walk along a complete 33-graph with self-
loops. The node and subnode are composed of 3-level qudits (i.e. qutrits).

In[12] := C1 = SparseArray[KroneckerProduct[IdentityMatrix[ 33],

TPlus,TPlus,TPlus,IdentityMatrix[2]]];

C2 = SparseArray[KroneckerProduct[IdentityMatrix[ 33],

CUGateG[QCProfile,{{4,1},{5,1},{6,1}},{7},{NOTGate[]}],

IdentityMatrix[2]]];

C3 = SparseArray[KroneckerProduct[IdentityMatrix[ 35],

CUGateG[QCProfile,{{7,1}},{6},{PHASEGateG[{π ,0,0}]}]]];

C4 = C2;

C5 = SparseArray[KroneckerProduct[IdentityMatrix[ 33],

TMinus,TMinus,TMinus,IdentityMatrix[2]]];

The shifting operator can be implemented as such:

In[13] := T1 = SparseArray[KroneckerProduct[SWAPQudits[QCProfile,1,4],

IdentityMatrix[ 32∗2]]];

T2 = SparseArray[KroneckerProduct[IdentityMatrix[3],

SWAPQudits[QCProfile,2,5], IdentityMatrix[ 3∗2]]];

T3 = SparseArray[KroneckerProduct[IdentityMatrix[ 32],

SWAPQudits[QCProfile,3,6], IdentityMatrix[2]]];

18



Finally, we can calculate the matrix of the circuit, and apply it to the state
vector signifying the initial vertex to be the 1st vertex (node representation of
|000〉), and obtain the result of a single iteration of the circuit.

In[14] := InputVector = BasisStateVectorG[QCProfile,{0,0,0,0,0,0,0}]

TMatrix = Normal[T3.T2.T1.C5.C4.C3.C2.C1];

OutputVector = TMatrix.InputVector;

ListStatesG[QCProfile,OutputVector];

Out[14] := List of qudit states with a non-zero amplitude:
(11

27

)

|0000000〉+
(

− 16
27

)

|0010000〉+
(

− 16
27

)

|0020000〉+
( 2

27

)

|0100000〉+
(

2
27

)

|0110000〉+
(

2
27

)

|0120000〉+
(

2
27

)

|0200000〉+
(

2
27

)

|0210000〉+
(

2
27

)

|0220000〉+
(

2
27

)

|1000000〉+
(

2
27

)

|1010000〉+
(

2
27

)

|1020000〉+
( 2

27

)

|1100000〉+
( 2

27

)

|1110000〉+
( 2

27

)

|1120000〉+
( 2

27

)

|1200000〉+
(

2
27

)

|1210000〉+
(

2
27

)

|1220000〉+
(

2
27

)

|2000000〉+
(

2
27

)

|2010000〉+
(

2
27

)

|2020000〉+
(

2
27

)

|2100000〉+
(

2
27

)

|2110000〉+
(

2
27

)

|2120000〉+
( 2

27

)

|2200000〉+
( 2

27

)

|2210000〉+
( 2

27

)

|2220000〉

5.2.3. 3rd generation 3-Cayley tree
As a further example involving a mixture of qubits and qudits, we demonstrate

how to implement a quantum walk on the 3rd generation 3-Cayley tree (shown in
Figure 19) with the central node marked, by using its corresponding quantum
circuit shown in Figure 20.

The Gn operator is defined as(Gn)i, j =
2
n − δi j ∀ 1 ≤ i, j ≤ n. Here, theG3

operator acts on only 3 of the 4 subnode states, so it does not mix with the state
|11〉. TheR+ andR− gates are generalized increment and decrement gates re-
spectively. For ab-leveled qudit, they are defined asb-by-b matrices given as
(R+)i, j = δi(mod b)+1, j and(R−)i, j = δi, j(mod b)+1 respectively. A natural ex-
tension to multiple qudits is given in Figure 21. In general,theRR andRL oper-
ators, shown in Figure 22, correspond to a clockwise and anticlockwise rotation
of qudits. However, in the context of Figure 20,RR andRL are both single SWAP
gates.

Given the length of the code needed to simulate the quantum circuit for a
quantum walk along the 3-Cayley tree, we refer the reader to the Mathematica
notebookCUGates.nb. The results of the quantum walk across 50 steps (starting
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Figure 19: 3rd generation 3-Cayley tree.

in an equal superposition of vertex states, which is then subdivided according to
the subnode states of the vertex) is shown in Figure 23, wherethe centre marked
node is distinguished by its much larger probability peak.

6. Conclusions

TheMathematicanotebook presented in this paper utilizes an irreducible form
of matrix decomposition of a general controlled quantum gate with multiple con-
ditionals and is highly efficient in simulating complex quantum circuits. It pro-
vides a powerful tool to assist researchers analyze the performance of proposed
quantum circuits. It has helped to identify several errors in the quantum circuits
described in [14], which was addressed and acknowledged in [15]. Another im-
portant application in which large and complex circuits need to be efficiently sim-
ulated is in the area of quantum error correction, in which generalized control uni-
tary gates are used with both qubits and qudits [16, 17]. Thispackage will prove
to be immensely helpful in the design of codification circuits in this area. Imple-
mentation inMathematicaallows the code to be used in a cohesive and interactive
environment which is nevertheless computationally powerful. The interactive na-
ture of this environment also makes this notebook suitable for teaching, where
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• • •
incr decr

•
∣

∣ψ2
1

〉

Level
• • • • • •

∣

∣ψ2
2

〉

Tree number C1 R+ R− C1 C2 R− R+

∣

∣ψ3
3

〉

RL RR

∣

∣ψ2
4

〉

Node
• •

∣

∣ψ2
5

〉

−G3 G3

• • • • • • •
∣

∣ψ2
6

〉

Subnode
• • •

∣

∣ψ2
7

〉

∣

∣12
〉

• • • • •
∣

∣12
〉



















Figure 20: Quantum circuit implementing a quantum walk along a 3rd generation 3-Cayley tree,
with the central node marked. Any vertex is uniquely defined by a combination of the level, tree
number, and node states.

quantum algorithms and quantum gate operations can be studied in detail.
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R+ gate R− gate
∣

∣

∣
ψζ1

1

〉

R+

∣

∣

∣
ψζ1

1

〉

R−

...
...

∣

∣

∣
ψζn−2

n−2

〉

Cζn−2 R+

∣

∣

∣
ψζn−2

n−2

〉

C1 R−
∣

∣

∣
ψζn−1

n−1

〉

Cζn−1
Cζn−1 R+

∣

∣

∣
ψζn−1

n−1

〉

C1 C1 R−
∣

∣

∣
ψζn

n

〉

Cζn
Cζn

Cζn R+

∣

∣

∣
ψζn

n

〉

C1 C1 C1 R−

Figure 21:R+ andR− gates onn qudits, with a quantum circuit profile ofζ = {ζ1,ζ2, ...,ζn}.

RR gate RL gate
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∣

∣
ψζ1

1

〉

×
∣

∣

∣
ψζ1

1

〉

×
...

...
∣

∣

∣
ψζn−2

n−2

〉

×
∣

∣

∣
ψζn−2

n−2

〉

×
∣

∣

∣
ψζn−1

n−1

〉

×
∣

∣

∣
ψζn−1

n−1

〉

×
∣

∣

∣
ψζn

n

〉

×××
∣

∣

∣
ψζn

n

〉

×××
Figure 22:RR andRL gates onn qudits, with a quantum circuit profile ofζ = {ζ1,ζ2, ...,ζn}.

22



Probability

5

10

15

20

node

0

10

20

30

40

50

step

0.

0.3

0.6

Figure 23: Probability distribution along the 3rd generation 3-Cayley tree against the number of
walking steps.
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Appendices
Appendix A. CU gate decomposition proof

For any arbitary state,P0(a|0〉+b|1〉) 7→ a|0〉 andP1(a|0〉+b|1〉) 7→ b|1〉, i.e.
the P0 and P1 operators projects arbitrary states onto the|0〉 and |1〉 computa-
tional basis state respectively. Consider the quantum circuit in Figure A.24, where
|ψ1〉= a1|0〉+b1|1〉 and|ψ2〉= a2|0〉+b2|1〉.

|ψ1〉 P0 •

|ψ2〉 U

P0

= = M1

I2

Figure A.24: Application ofP0 to theCU gate.

SinceP0(|ψ1〉) 7→ a1|0〉, then

CU (P0(|ψ1〉)⊗|ψ2〉) 7→ a1|0〉⊗ |ψ2〉 ≡ P0(|ψ1〉)⊗ I2(|ψ2〉)

i.e. theU gate is not applied to the second qubit because the control qubit is in
the statea1|0〉 after the application of theP0 operator, and thus the action of the
CU gate is the identity operator. Hence, we can simplify the circuit, as shown in
Figure A.24.

Similarly, if theP1 operator is applied as in Figure A.25, thenP1(|ψ1〉) 7→b1|1〉
and thus

CU (P1(|ψ1〉)⊗|ψ2〉) 7→ b1|1〉⊗U (|ψ2〉)≡ P1(|ψ1〉)⊗U (|ψ2〉) ,

because the control qubit is in the stateb1|1〉 after the application of theP1 opera-
tor, so the action of theCU gate is theU2 operator. The equivalent circuit is also
shown in Figure A.25.

|ψ1〉 P1 •

|ψ2〉 U

P1

= = M2

U

Figure A.25: Application ofP1 to theCU gate.
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Note thatM1 andM2, as defined in Figures A.24 and A.25 respectively, are
non-unitary. However the sumM1+M2 = P0⊗ I2+P1⊗U is unitary and also

M1+M2 =CU (P0⊗ I2)+CU (P1⊗ I2) (A.1)

=CU ((P0+P1)⊗ I2) (A.2)

=CU (I2⊗ I2) (A.3)

=CU

Consequently,CU = P0⊗ I2+P1⊗U .

Appendix B. C1,3U2 gate decomposition proof

The decomposition can be derived by considering each of the possible permu-
tations, which are defined as follows:

M1 =C1,3U2(P0⊗ I2⊗P0) = P0⊗ I2⊗P0 (B.1)

M2 =C1,3U2(P0⊗ I2⊗P1) = P0⊗ I2⊗P1 (B.2)

M3 =C1,3U2(P1⊗ I2⊗P0) = P1⊗ I2⊗P0 (B.3)

M4 =C1,3U2(P1⊗ I2⊗P1) = P1⊗U ⊗P1

As before, we consider the permutation sum :

M1+M2+M3+M4 =C1,3U2(P0⊗ I2⊗P0)+C1,3U2(P0⊗ I2⊗P1)+ (B.4)

C1,3U2(P1⊗ I2⊗P0)+C1,3U2(P1⊗ I2⊗P1) (B.5)

=C1,3U2(P0⊗ I2⊗ (P0+P1)+ (B.6)

P1⊗ I2⊗ (P0+P1)) (B.7)

=C1,3U2((P0+P1)⊗ I2⊗ I2) (B.8)

=C1,3U2(I2⊗ I2⊗ I2) (B.9)

=C1,3U2

Consequently,C1,3U2 = P0⊗ I2⊗P0+P0⊗ I2⊗P1+P1⊗ I2⊗P0+P1⊗U ⊗P1.

Appendix C. Arbitrary CUG decomposition

For an arbitrary CUG across qubits withk conditionals, we have 2k possible
permutations when placing aP0 or P1 projection operator in front of each condi-
tional. Each permutation then has a column that is describedby the tensor prod-
uct of the projection operators with identity matrices in the appropriate positions
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placed in front of the CUG. Proving that the sum of these permutations is equal to
the gate itself is fairly trivial; it simply involves factoring together permutations
that differ by a single conditional, using the identityP0+P1 = I2, and then doing
so repeatedly until we end up with the original CUG. The simplification comes
by considering the action of the projection operators on thestate going into the
CUG, and since the CUG implements the action iff the input state is in the ba-
sis state corresponding to the conditionals, we can easily work out which of the
permutations has the action of the CUG implemented, while the rest do not.

Similarly, for an arbitrary CUG across qudits, we have a number of permuta-
tions corresponding to the qudit levels on which the conditionals are placed, and

by using the identity
b

∑
a=1

Pa,b = Ib, we can readily prove that the sum of all permu-

tations corresponds to the CUG itself, and can thus simplifythe permutations as
before. In both cases, we can simplify the decomposition considerably by using
the identity matrix to represent the sum of all permutationswith no action ap-
plied, then adding on the appropriate permutation with the action of the CUG and
subtracting the same permutation without the action.
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