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A Fortran program is developed to calculate charge carrier (electron or hole) mobility in disordered
semiconductors from first-principles. The method is based on non-adiabatic ab initio molecular dynamics
and static master equation, treating dynamic and static disorder on the same footing. We have applied
the method to calculate the hole mobility in disordered poly(3-hexylthiophene) conjugated polymers
as a function of temperature and electric field and obtained excellent agreements with experimental
results. The program could be used to explore structure–mobility relation in disordered semiconducting
polymers/organic semiconductors and aid rational design of these materials.

Program summary

Program title: FPMu
Catalogue identifier: AEJV_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEJV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 788 580
No. of bytes in distributed program, including test data, etc.: 8 433 024
Distribution format: tar.gz
Programming language: Fortran 90
Computer: Any architecture with a Fortran 90 compiler
Operating system: Linux, Windows
RAM: Proportional to the system size, in our example, 1.2 GB
Classification: 7.9
Nature of problem: Determine carrier mobility from first-principles in disordered semiconductors as a
function of temperature, electric field and carrier concentration.
Solution method: Iteratively solve master equation with carrier state energy and transition rates
determined from first-principles.
Restrictions: Mobility for disordered semiconductors where the carrier wave-functions are localized and
the carrier transport is due to phonon-assisted hopping mechanism.
Running time: Depending on the system size (about an hour for the example here).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Disordered semiconducting polymers and organic semiconduc-
tors have recently received significant attention for their potential
applications in light-emitting diodes [1], field-effect transistors [2],

✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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and photovoltaics [3], etc. However, one of the major bottlenecks
that limit the efficiency of the disordered semiconductor devices is
their poor charge carrier mobility [4]. Therefore it is of great scien-
tific and technological importance to understand the charge trans-
port process and in particular to develop theoretical tools that can
predict the carrier mobility from first-principles. Here, we present
a Fortran program that can determine charge carrier (electron
or hole) mobility in disordered conjugated polymers and organic
semiconductors as a function of temperature, electric field and car-
rier concentration, entirely from first-principles; i.e., there is no
empirical input or adjustable parameter in the simulations. In this
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program, ab initio non-adiabatic molecular dynamics (NAMD) [5]
is performed to simulate phonon-assisted electron transitions be-
tween localized electronic states in the disordered system and the
electronic energy levels are determined from first-principles Born–
Oppenheimer molecular dynamics (BOMD) on-the-fly. In conjunc-
tion with a macroscopic master equation [6], this program can
predict the carrier mobility of disordered semiconductors in which
the carrier wave-functions are localized and the charge transfer
is assisted by phonons. Here, we determine the hole mobility in
amorphous poly(3-hexylthiophene) (P3HT) polymer as an example.

2. Theoretical background

In this section, we briefly summarize the theoretical back-
ground of the program as its technical detail has been pub-
lished elsewhere [7]. The entire system of interest is divided into
Ngx × Ngy × Ngz cubes, and each cube (or site) should be chosen
as large as computationally feasible, but the minimal dimensions
of the cube should be greater than the inter-site distance used in
the well-known Gaussian mobility models [8]. One of these cubes
is designated as the home cube for which the BOMD is performed
based on the density functional theory (DFT). The Kohn–Sham (KS)
energy levels and wave-functions of the carrier are calculated at
each time-step of BOMD and are subsequently used to determine
the inter-state transition rates. To simulate the structural disor-
der, the energy levels and the wave-functions at other cubes are
obtained by selecting the wave-functions and the corresponding
energies from those at the home cube in a random snapshot (or
time-step), and the wave-functions are then randomly rotated be-
fore placed into the respective cube [7]. In this way, the KS energy
levels and orbitals in the entire disordered system can be approx-
imately constructed by performing the BOMD calculations for the
home cube only.

2.1. The inter-state transition rate

The inter-state or intra-cube transition rates are obtained from
the expansion coefficients of the time-dependent carrier wave-
functions based on the NAMD [7]. The time-dependent one-
electron wave-function of the carrier (electron or hole), ψi(r, t),
is expanded in terms of adiabatic KS orbitals φi(r,R(t)):

ψi(r, t) =
∑

j

c(i)
j (t)φ j

(
r,R(t)

)
, (1)

where c(i)
j (t) is the expansion coefficient; φi(r,R(t)) is the eigen-

state of the KS Hamiltonian at the instantaneous ionic positions
R(t). The label i indicates that at t = 0, ψi(r,0) = φi(r,R(0)). The
sum is over Nc electronic states that are chosen for a given sys-
tem. The coefficient c(i)

j (t) is determined by a second-order finite-
difference scheme of the time-dependent KS equation [5]:

c(i)
j

(
t + �t′) = c(i)

j

(
t − �t′) − 2�t′ ∑

k

c(i)
k (t)

(
i

h̄
εkδ jk + d jk

)
,

(2)

where εk is the energy of the kth KS orbital; �t′ is the electronic
time-step, typically 10−3 fs. d jk is the non-adiabatic (NA) coupling
between the jth and kth KS orbitals:

d jk ≈ 1

2�t

(〈
φ j(t)

∣∣φk(t + �t)
〉 − 〈

φ j(t + �t)
∣∣φk(t)

〉)
, (3)

where �t is the ionic time-step, typically 1 fs. The transition rate
from the state i to j is thus given by 〈|c(i)

j (t)|2/t〉, averaging over
one NAMD trajectory, and can be calculated as

γ 0
i, j = 〈∣∣c(i)

j (t)
∣∣2

/t
〉

� 1

Np

N p∑
k=1

|c(i)
j (kN0�t/Np)|2

kN0�t/Np
, (4)

where N p is the number of sampling points in N0�t NAMD tra-
jectory.

2.2. The position of KS orbitals

To assist the evaluation of the transition rates across neighbor-
ing cubes, we associate each localized state with a position vector
in the real space. First, we calculate the average position of the
localized state i by the first moment of its charge density via

ri =
∫

ρi(r)r dr, (5)

where ρi(r) = |φi(r)|2 is the charge density of the state i. Secondly,
we determine the root mean square deviation of the average posi-
tion δri by

δr2
i =

∫
ρi(r)(r − r)2 dr = r2

i − ri
2, (6)

with

r2
i =

∫
ρi(r)r2 dr. (7)

Finally, the spatial position of the localized state can be obtained
by a random selection from the range [ri − δri, ri + δri].

2.3. The inter-site transition rate

The inter-site or inter-cube transition rate γ 0
i, j′ , from the state i

in cube n to the state j′ in cube m, is determined from the relevant
intra-cube transition rates as

γ 0
i, j′ = (

γ 0
i, j + γ 0

i′, j′
)
/2, (8)

where the states i′ and j are selected from the cubes n and m
respectively so that the distances Rij and Ri′ j′ match as closely as
possible to Rij′ . Since the states i and j (i′ and j′) fall within the
same cube n (m), their intra-cube transition rate is calculated by
Eq. (4).

To ensure the detailed balance, the thermal equilibrium micro-
scopic transition rate γi, j′ is defined as [9]

γi, j′ =
{

γ 0
i, j′exp(− ε j′−εi

kB T ), if ε j′ � εi ,

γ 0
i, j′ , if ε j′ < εi .

(9)

Here εi and ε j′ are the eigenvalues of the states i and j′ in the
cubes n and m, respectively. The energy difference ε j′ − εi in γi, j′
contains −eE Rx

n,m and a uniform electric field E is applied in x di-
rection; Rn,m is the distance between the cubes n and m.

The macroscopic transition rate of the charge carrier from the
cube n to the cube m, Γn→m is given by summing up the micro-
scopic transition rates:

Γn→m =
∑
i∈n

pn fi

∑
j′∈m

γi, j′(1 − pm f j′), (10)

where the summations of i and j′ are over Nc electronic states
of the carrier in the cubes n and m, respectively; pn is the partial
concentration or density of the carriers in the cube n, and f i is
the Fermi–Dirac occupation of the state i. Note that the carrier
concentration pn is unknown and needs to be determined self-
consistently by solving a master equation, as described next.
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Fig. 1. The flowchart of the program.

2.4. Master equation for mobility calculation

In equilibrium, the static master equation∑
m

[Γn→m − Γm→n] = 0, (11)

is satisfied for each cube n. The partial concentration pn can be
determined from the master equation under the constraint that∑

n pn = pV , where p is the total carrier concentration (or density)
and V is the volume of the entire system. Therefore the carrier
mobility μ is given by

μ =
∑

n,m Γn→m Rx
n,m

pE V
. (12)

Numerically, the master equation is solved iteratively with an ini-
tial guess of pn . By defining

Xn→m =
∑

i

fni

∑
j

γni,mj, and (13)

Yn→m =
∑

i

fni

∑
j

γni,mj fmj, (14)

the macroscopic transition rate from the cube n to the cube m can
be rewritten as

Γn→m = pn(Xn→m − pmYn→m). (15)

Substituting it to Eq. (11), we can determine the partial concentra-
tion pn by

pn =
∑

m Xm→n∑
m Xn→m − pm

∑
m(Yn→m − Ym→n)

. (16)

3. Introduction to the program

The program consists of three main codes. The first code is
called BOMD, which is a standard DFT-based Born–Oppenheimer
molecular dynamics (MD). The BOMD code is not available for
download because it is based on a proprietary software VASP (Vi-
enna Ab-initio Simulation Package) [10]. However, there are open

source software such as ABINIT [11], QUANTUM-ESPRESSO [12],
SIESTA [13], CPMD [14] and PEtot [15], etc., which can perform
the same function as the BOMD code. The relevant information on
the KS energy levels and orbitals are extracted from the BOMD
snapshots and the inter-state transition rates are determined by
the time-dependent non-adiabatic molecular dynamics code, called
TDNA code. Finally, the mobility is calculated by solving the master
equation with the MuCal code. The flowchart of the entire program
is shown in Fig. 1.

3.1. Ab initio Born–Oppenheimer molecular dynamics

3.1.1. Extract information from BOMD code
In this code, the standard DFT BOMD simulation for the home

cube is performed. The KS eigenvalues, NA coupling matrix ele-
ments and the KS orbital positions are obtained for each BOMD
snapshot. Both the NA coupling matrix elements and the KS orbital
positions are determined from the relevant KS orbitals via Eqs. (3),
(5) and (7). Note that for the NA coupling, the wave-functions of
two adjacent BOMD snapshots or time-steps are needed. For these
quantities, only the top Nc valance bands (or the bottom Nc con-
duction bands) are considered for the hole (or electron) mobility.

3.1.2. BOMD output
The output from the BOMD code consists of four files: cou-

ple.dat, eigenvalue.dat, bandpos.dat and bandpossqr.dat. Their
format is listed below:

eigenvalue.dat. The eigenvalues of the relevant KS states in
each BOMD time-step. There is one comment line with the string
“new step” followed by Nc eigenvalues (real variables) for each
BOMD time-step:

new step
ε1
ε2
...

εNc

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Nc

new step
...

The subscripts 1 to Nc represent Nc KS states, and the order of
these states should be the same in all the other files.

bandpos.dat. The Cartesian coordinates of the KS states for
each BOMD time-step calculated from Eq. (5). There is one com-
ment line with the string “new step” followed by Nc lines. In each
line, the x, y and z coordinates (real variables) of a KS state are
given for each time-step, as shown below:

new step
x1 y1 z1
x2 y2 z2
...

xNc yNc zNc

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Nc

new step
...

bandpossqr.dat. The square of the KS state coordinates (real
variables) for each BOMD time-step calculated from Eq. (7). The
format of this file is the same as bandpos.dat.

couple.dat. The NA coupling matrix for each BOMD time-step.
There is one comment line with the string “new step” followed by
Nc × Nc matrix elements (complex variables) with one in each line,
as shown below:
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new step
d11
d21
...

dNc

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Nc

d12
d22
...

dNc2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Nc

...

d1Nc

d2Nc

...

dNc Nc

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Nc

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Nc × Nc

new step
...

3.2. TDNA code

3.2.1. The structure of TDNA code
In the TDNA code, the NAMD simulation of the selected states

is carried out, and the expansion coefficients are obtained to de-
termine the inter-state transition rates. To use this code, compile
the files in the folder \src\TDNA and then run the executable file
TDNA.exe.

The code contains four files: paras.f90 specifies the input
parameters; iofiles.f90 reads input and produces output files;
for_coefficient.f90 contains the subroutines to perform the time
evolution of the electronic states of the carrier; and main.f90
calls subroutines to perform the calculation. The flowchart of
main.f90 is shown in Fig. 2, and some important subroutines in
for_coefficient.f90 are listed below.

Subroutine evolve_coefficient: evolves the expansion coeffi-
cients in �t according to Eq. (2) with the time-step �t′ .

Subroutine cal_transition_rate: calculates the transition rates
based on Eq. (4) with the expansion coefficients.

3.2.2. TDNA input
The input files include eigenvalue.dat and couple.dat which

are obtained from the BOMD code, and parameter.dat which spec-
ifies the parameters in the code. A typical parameter.dat is listed
below, followed by the meaning of the parameters. The variable
names in the code are shown behind the parameters:

1000 ! Total_MD_step
100 ! MD_step
1 ! MD_step_size
1000 ! TD_step
16 ! C_dim
1 ! EH_flag

Total_MD_step. The total number of time-steps in the BOMD
simulation.

MD_step. The number of time-steps in each NAMD trajectory;
it corresponds to N0 in Eq. (4).

MD_step_size. The time-step in the BOMD simulation; it corre-
sponds to �t in Eq. (3).

TD_step. The number of NAMD time-steps in one BOMD time-
step, i.e., �t/�t′ .

C_dim. The number of KS orbitals in the expansion of the time-
dependent wave-functions of the carrier (Nc).

EH_flag. The flag indicates whether the simulation is for elec-
tron or hole. 1 is for hole, and other integers are for electron.

Fig. 2. The flowchart of the TDNA code.

3.2.3. TDNA output
The output of the TDNA code is transrate.dat. In this file, the

calculated transition rates from one state to another according to
Eq. (4) are listed. The rate from one state to itself is set to be zero.
For each MD time-step, there is one comment line with the string
“new step” followed by Nc × Nc transition rates (real variables)
with one in each line. The file format is the same as in couple.dat
but the entries are real numbers.

3.3. Carrier mobility calculation by the master equation

3.3.1. The structure of MuCal code
In the MUCal code, the master equation is solved iteratively to

calculate the carrier mobility of the macroscopic system. To use
the code, compile the files in the folder \src\MuCal and then run
the executable file MuCal.exe.

The code contains four files: parameters.f90 specifies the pa-
rameters used in the calculation; random.f90 generates a ran-
dom number from (0,1); mobility.f90 contains the subroutines
to construct the disordered macroscopic system, solve the mas-
ter equation and calculate the carrier mobility; and main.f90 calls
subroutines to perform the mobility calculation. The flowchart of
main.f90 is shown in Fig. 3, and some important subroutines in
mobility.f90 are listed below:

Subroutine gener_nb: generates the neighbor list of each cube.
Subroutine init_grnode: reads energies, positions and transition

rates of each BOMD time-step, and assigns them randomly to every
cube.

Subroutine calc_Wij: calculates Xn→m and Yn→m in Eqs. (13)
and (14).

Subroutine calc_Pi: solves the master equation iteratively and
obtains the partial carrier concentration in each cube.
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Fig. 3. The flowchart of the MuCal code.

Subroutine calc_mu: calculates the mobility by Eq. (12) with
the self-consistently determined carrier concentration.

3.3.2. MUCal input
The input files include eigenvalue.dat and bandpos.dat which

are obtained from the BOMD code; transrate.dat comes from the
TDNA code, and input.dat specifies the parameters in the simula-
tion. A typical input.dat is listed below, followed by the meaning
of the parameters:

1 1 1 ! periodic boundary condition flag in x, y, z
100 100 100 ! number of cubes, Ngx, Ngy and Ngz

1 ! total charge carrier number
1 ! 1 for hole, others for electron
300 ! temperature in K
0.025 ! electric field in V /a0
900 ! number of cubes
16 ! number of states
1.82 ! lattice constant, a0 in nm
1000 ! random number seed (integer, 0 < seed < 32 000)

For the periodic boundary condition flag in the first line, 1 stands
for the periodic boundary condition and 0 for the open bound-
ary condition (vacuum) in that direction. For the random number
seed, a different value indicates a different choice of random cube
selection and thus a different macroscopic configuration.

3.3.3. MUCal output
The output of this code is output.dat. In this file, some inter-

mediate results are provided, and the final result of the mobility is
given at the last line.

4. Hole mobility of P3HT polymer

As an example, the hole mobility of an amorphous P3HT poly-
mer system is calculated with the program. The detailed input

Fig. 4. The hole mobility of the amorphous P3HT polymer. (a) The initial structure of the disordered P3HT and the wave-function isosurface (0.01e/Å
3
) of two typical states.

(b) The distribution of the HOMO energy (solid square) during 1000 step micro-canonical MD simulations and the red curve is the Gaussian fit. (c) The distribution of
inter-state transition rates (unit in fs−1). (d) The mobility (in 10−9 m2/V s) vs. electric field (in V/m) at 300 K with the carrier concentration of 10−6e/cube averaged over
10 different macroscopic configurations; the error bar shows the standard deviation of the mobility. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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and output files can be found in the example files. The macro-
scopic system consists of 100 × 100 × 100 cubes and each cube
has a dimension of 1.8 nm. Each cube contains 606 atoms, includ-
ing three P3HT chains with each chain of eight thiophene rings,
which leads to a mass density of 1.1 g/cm3, the same as the ex-
perimental value [16]. The top 16 valence bands are chosen as
the relevant states of the hole carrier. The BOMD calculations are
carried out for the home cube with the periodic boundary con-
ditions using the VASP package [10]. The initial structure of the
P3HT chains starting from a randomly placed and warped config-
uration is fully relaxed to reach the local energy minimum. The
ab initio BOMD simulations are performed to bring the system to
300 K with repeated velocity scaling. The system is then kept at
the desired temperature for 500 fs with 1 fs time-step to reach
the thermal equilibrium. Subsequently, the micro-canonical pro-
duction run is carried out for 1000 fs with 1 fs time-step based
on a slightly modified VASP code. The eigenvalues, coupling matrix
elements and wave-function positions are generated in the output
files. Finally, the MuCal code is run to determine the hole mobility
for the macroscopic system as a function of the uniformly applied
electronic fields at the carrier density of 10−6e/cube.

Fig. 4(a) shows two representative hole states in the initial
structure, with the coordinates r = (16.1,13.0,4.9) for the blue
state and r = (9.9,9.2,10.0) for the red state (unit in Å). The lo-
calization of the states is evident. From the results of the BOMD
code, we calculate the energy distribution of the highest-occupied-
molecular-orbital (HOMO) level as shown in Fig. 4(b). This distri-
bution is fitted by a Gaussian function with a width σ = 0.10 eV.
This width is very close to the experimental value of 0.098 eV [17].
In Fig. 4(c), we show the distribution of the transition rates cal-
culated from the TDNA code. The inter-state transition rates range
from 10−6 to 10−2 fs−1 with the main peak around 10−5 fs−1. The
mobility vs. electric field curves are shown in Fig. 4(d). The mobil-
ity at low fields is about 2 × 10−9, which is consistent with the
experimental measurement of 2.8 × 10−9 [18]. The more detailed
results and discussions can be found elsewhere [7].

5. Summary

In summary, we have developed a first-principles based Fortran
program to calculate the carrier mobility in disordered semicon-
ductors. The first-principles BOMD and non-adiabatic MD are per-
formed to determine the microscopic and macroscopic transition
rates. The master equation is solved self-consistently to calculate
the carrier mobility as a function of applied electric field, tem-
perature and carrier concentration. There is no empirical input or
adjustable parameter in the program, which makes it a general
and reliable computational tool for calculating carrier mobility in
disordered semiconductors. The program can be very valuable for
rational design of organic electronic materials.
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