A partly matrix-free solver for the gyrokinetic field
equation in three-dimensional geometry

R.Kleiber
Maax-Planck-Institut fir Plasmaphysik, EURATOM Association
17491 Greifswald, Germany
R.Hatzky

Maaz-Planck-Institut fir Plasmaphysik, EURATOM Association
85748 Garching, Germany

Abstract

In the case of adiabatic electrons the gyrokinetic field equation for the electro-
static potential includes an averaging operator acting on flux surfaces. For realis-
tic three-dimensional configurations, as e.g. in stellarator devices, the discretisa-
tion of this integro-differential equation leads to very large nearly dense matrices
(full matrix approach) which typically cannot be stored in computer memory
explicitly. A low memory consuming partly matrix-free approach, based on a
preconditioned iterative matrix solver, has been developed where the Helmholtz
part of the field equation is used in a matrix formulation while the averaging
term is treated matrix-free. For matrices which could still be stored in memory
explicitly, it is demonstrated that this approach is also much faster than the full
matrix approach.

Keywords: gyrokinetics, stellarators, simulation

1. Introduction

The gyrokinetic description [1] has become a standard for the simulation
of micro instabilities and turbulence in hot magnetised plasmas (e.g. in fusion
devices). This description, in its simplest form, consists of a kinetic equation
for the ion particle distribution function and a time-independent field equation
determining the electrostatic potential ¢ from the density n which, in turn, is
calculated as a moment of the distribution function. Numerically the equations
can be solved globally (i.e. in the full plasma volume) by continuum or particle-
in-cell (PIC) methods: In the former approach the kinetic equation is treated
as a partial differential equation and is solved using e.g. finite differences while
in the PIC approach it is discretised using a particle Monte-Carlo method. For
electrostatic simulations one usually employs the approximation of so-called
adiabatic electrons. In this case the field equation contains a term which is the

Preprint submitted to Elsevier February 27, 2012

average of the potential over a flux surface. For linear simulations of high mode
number perturbations this term has no effect and can be neglected. As soon as
small mode numbers get involved (e.g. due to an inverse cascade in nonlinear
simulations) it gets very important since it controls the zonal flow behaviour.
While the field equation without this term is of the Helmholtz type and can
be solved with moderate numerical effort, it becomes a much more complicated
integro-differential equation when the averaging term is included. However,
for axisymmetric systems (e.g. tokamaks) the numerical effort can be reduced
significantly by making use of the symmetry by transforming to Fourier space.
Unfortunately, for non-axisymmetric systems (e.g. stellarator configurations)
this approach leads to no improvement and it becomes necessary to develop an
elaborate solver in order to pave the way to global turbulence simulations.

In the following we first state the problem in a general way without reference to
gyrokinetics, then introduce the new solving strategy, its implementation and
finally present an application using the stellarator PIC code EUTERPE [2].

2. Equations

In the following we assume generalised toroidal coordinates z! = s, 22 =

¥, 2° = ¢ with a given metric g and Jacobian /g (we further define dV =
Vgdsdddy and dA = /gdddy). Here s € [0,1] is a radial coordinate and
¥, ¢ € [0,27] are angle-like coordinates in the poloidal and toroidal direction,
respectively. Such a coordinate system is very often used for describing toroidal
magnetic systems [3]. The equation to be solved in the toroidal domain is given
by

VLV G- (B =n (1)

together with the Dirichlet boundary condition ¢ = 0 at the outer boundary
(s = 1). Here n and p are functions of the spacial variables. p is non-zero and
of the order 1072 for a typical gyrokinetic application. The operator V| -p? V.
in the first term on the left hand side of Eq. (1) acts in the (s,d)-plane and is
given by

2o i 1 9
/L p Vi = —
= V90

The self-adjoint operator (@) is defined as the flux surface average of ¢ over the

toroidal surface s = const.:

(d)(s) défﬁ/: t pdA with N(s) déf/:) dA. (3)

(v 55) @)

Note, that due to the averaging Eq. (1) is an integro-differential equation with
a time-independent symmetric positive semi-definite operator (consisting of a
Helmholtz and an averaging part) on the left-hand side.

3. Numerical discretisation

Tensor products of B-splines (of order a) [4] A, = A;(s) A;(9) Ax(p) (where
v=_(1, j, k) denotes a multi index) are used for a finite element discretisation of
the equation on a regular grid with Ny, Ny, N, grid points for the corresponding
coordinate. Multiplication of Eq. (1) with A, and subsequent integration over
the whole space gives, after using the spline representation ¢ = " , ¢,»A,/, the
weak formulation

2

0N, OA,
Y u / 2y g G A | AV - / A () dV = / AyndV. (4)

i,j=1

This can be written more concisely as

Z HVU/¢V/ - MV(¢1/) = bl/ (5)
with H,,. the matrix representation of the Helmholtz operator and

M0 [A(0)av ©)
the averaging operator. Using the matrix representation of M, (¢)
Mo [Autiav "

one arrives at the matrix representation of Eq. (1)

Z(HVU/ - MVU’)¢U’ == bl/' (8)

!

4. Numerical solution

For the efficient numerical solution of Eq. (8) the above problem needs to be
parallelised. In the following a domain decomposition with np domains in the
 direction is assumed [the implementation is done using the Message-Passing-
Interface (MPI) library].

It is important to estimate the size of the matrices in Eq. (8): H,, results from
a differential operator and its filling factor (ratio of non-zero elements to total
number of elements) can be estimated as fu ~ (NsNyNy)~'. M,,/, on the
other hand, results from a nonlocal integral operator and has the structure of
a block-banded matrix of band width 2ac + 1 where each block is a full matrix
of size NyN,. So, its filling factor is given by fu ~ N1 Consequently, H,,
is a sparse matrix but M,, is not. Even for small cases (where typical values
for the number of grid points are Ny, = Ny = N, = 64) the matrix M,,, con-
tains too many elements to be stored in computer memory explicitly, while for

H,, this is feasible. Nevertheless, since for standard three-dimensional prob-
lems the dimension of H,, is too large (NsNyN,), direct methods for solving
the equation (e.g. by parallel sparse LU decomposition) are not efficient and
preconditioned iterative methods must be used instead. For this we employ the
PETSc library [5] which offers a convenient framework for choosing different
parallel solvers and preconditioners. In the following we use a conjugated gra-
dient (CG) method (see e.g. [6]) together with a block Jacobi preconditioner
(which applies an ILU(0) to each block). The blocks are determined by the
toroidal domain decomposition, so there are np blocks.

A considerable simplification of the numerical effort (as e.g. in PIC codes spe-
cialised in tokamak configurations) is possible if the physical system is axisym-
metric, i.e. the metric coefficients and p are independent of p. A Fourier trans-
formation of Eq. (1) with respect to ¢ then leads to a decomposition into N,
two-dimensional equations where only the equation corresponding to the n =0
Fourier component contains the averaging operator. The resulting matrix is
small enough to fit into the memory, and the matrix equation can be solved by
standard direct methods [7]. For three-dimensional systems a Fourier transfor-
mation does not give any advantage since it does not decouple the equations.
We have therefore developed a new method for solving Eq. (1): The entries of
H,, are time consuming to calculate but, due to its small filling factor, this
matrix fits easily into the memory and can consequently be pre-computed and
stored. Instead of using the matrix M,,, we employ a matrix-free formulation
where the operator M, is applied to ¢. In the PETSc framework this can be
conveniently implemented by using a matrix shell [5]. By this mechanism the
solver calls a user supplied matrix-vector routine whenever it needs to multi-
ply the matrix declared as a matrix shell with a vector. So, in order to solve
a matrix equation > , A, ¢,» = b, the CG-routine delivers at each iteration
step a vector qgl,r and the user routine has to return the result of its multiplica-
tion with A,, . Using the representation from Eq. (5) this results in taking the
matrix-vector product of H,, with (5,/ and applying the operator M, to d;l,/.
This method relies on the fact that the implementation of M, does not need
much memory and that its application can be done in an efficient way.

The averaging operator can be written as

MV(¢) :/N_lAiij Z Ai’ZGj/k/ i i ds (9)

il 3 k!
where the quantities

Gjr(s) = / AjALdA (10)

have been introduced. The integral in Eq. (9) is discretised using a Gauss-
Legendre integration rule with n, integration points in each of the N, s-grid
cells. In gyrokinetic PIC simulations it is convenient to use B-splines of order
a < 3 (see e.g. [7, 8]). Then, choosing ny = 4 is sufficient since it gives an exact
integration for the product of two splines. The quantities G} (s) involve surface
integrals and are as time consuming to calculate as H,,,. The important point

is that their memory consumption is relatively low: it is O(ng NsNyN,), which
is just ng times the size of the solution vector ¢,. Consequently, G, (s) can be
pre-computed and stored. In Eq. (9) the sum over ¢’ only involves those indices
where a finite overlap between the splines with index ' and 7 exists. Otherwise
the integral is zero since B-splines of order o have a finite support of a4+ 1 grid
cells. Thus this sum involves only 2 + 1 elements.

The most expensive part is the sum over j/ and &’ which consists of NyN,
elements. Due to the domain decomposition in ¢, calculating this sum also
involves parallel communication since the index &’ is distributed over the cores.
Using a sum over the np parallel domains, the sum over j/ and k' can be
rewritten as y 1=1.np L (7', s), which is easily implemented by the MPI command
MPI_ALLREDUCE. Here

Li(i's) = > > Gywl(s) dirjor (11)

k'eD; j’

and D; denotes the set of spline indices inside the domain [. So, the quantity
L;(i',s) needs to be communicated but since it contains only ngzN,(2c + 1)
elements the communication overhead is kept small.

For faster convergence iterative methods need a preconditioner. In case of the
matrix formulation Eq. (8) a preconditioner could be derived from H,, + M, .
In the partly matrix-free formulation just described it would be possible to build
a block Jacobi preconditioner by using the action of the operator M, on the
unit vectors to construct the block diagonal part of M, . Nevertheless, this is
not useful if one wants to avoid large matrices. The most convenient choice is
to derive the preconditioner from the sparse matrix H,, alone, although this
may not be optimal regarding the speed of convergence.

5. Results

The described method was implemented in the gyrokinetic code EUTERPE
[2], which is a gyrokinetic df particle-in-cell code simulating the full three-
dimensional toroidal equilibrium domain of a fusion device, e.g. a stellarator.
At each time step the particle density n is calculated from the particles using
B-splines in the charge assignment process. This is followed by solving the field
equation for the electrostatic potential, which then acts back on the particles.
For the equilibrium data of the Large Helical Device (LHD) stellarator con-
figuration, several runs were done on the HPC-FF Linux cluster (Intel Xeon
processors with a clock rate of 2.93 GHz) at the Jiilich Supercomputing Centre
(JSC) to investigate two cases: the partly matrix-free solver and, for the matrix
formulation of the problem (Eq. (8)), the CG method. The results for these
runs are displayed in Table 1. For all runs the above described block Jacobi
preconditioner (with ILU(0)) has been used. A relative convergence tolerance
of 107 for the CG method was assumed.

For building the preconditioner there are two choices: it can be derived either
from H,,» + M, or from H,, . These choices we denote by Pyynm and Py, re-
spectively. Due to the sparseness of H the preconditioner Py needs a relatively

small amount of memory. In contrast, using the Pgyn preconditioner is only
practicable for small grid sizes where it is possible to store the diagonal blocks
of M, explicitly.
For reference, column three in Table 1 shows the performance of solving the
field equation without the averaging term (¢). This needs few iterations and is
relatively fast. Adding the averaging term (see column four) leads to a strong
increase in the number of required iterations showing that the condition of the
problem gets worse. Since building the Py preconditioner is no longer pos-
sible for larger matrices we chose instead only Py (see column five). It can be
seen that using the Py preconditioner leads to a slight increase in the number
of iterations and the computing time. We conclude that using Py for large ma-
trices is thus an economic choice.
Results for the partly matrix-free solver (using the Py preconditioner) described
in the previous section are displayed in the last column. As expected, this solver
needs the same number of iterations as the non matrix-free solver with the Py
preconditioner (column five) but, especially for larger grid sizes, it needs much
less time. Performing the explicit sum in Eq. (9) is thereby much faster than a
matrix vector multiplication with the matrix M,,,. The reason for this is that
the summation takes advantage of the structure of the problem in an appro-
priate way while, on the other hand, the conventional solver uses the general
purpose sparse matrix-vector product of the PETSc framework for a non-sparse
matrix. Additionally, the communication overhead is minimised and the cache
usage is improved.
In physical applications done with the code EUTERPE it is normally most ef-
fective to use one core for each toroidal grid cell, i.e. np = N,. Additionally,
the physics involved usually requires to have the same grid resolution in ¢ and
@, i.e. Ny = N,. Consequently, in order to investigate the scaling of the solver
under realistic conditions, we increased the number of cores from 8 to 128 and
simultaneously the number of grid points in each angular direction (the number
of grid points in s was held fixed at Ny = 64). In Figure 1 the computing time
for using the partly matrix-free solver is shown (solid line). For comparison the
curve for solving the problem without the averaging term is also shown (dashed
line) since it shows the scaling of the underlying preconditioned CG solver (in
both cases Py was used). The scaling of both curves is similar and, as expected,
nearly linear. But solving the problem with the averaging term is slower by
approximately a factor of 4.6.
We also performed a weak scaling where only the grid size in the parallelised
direction (N,) together with the number of cores was increased from 8 to 128
but the other dimensions were held fixed at Ny = 64, Ny = 128. In Figure 2
the resulting executing time for one iteration is shown. Note, that the jump in
the curves from 8 to 16 cores is caused by the architecture of the HPC-FF ma-
chine: eight cores are located within a node. Again both curves scale similarly
with a relatively weak dependency on the number of cores which shows that the
communication overhead is acceptable.

In order to check the solver for a realistic three-dimensional problem we
performed the so-called Rosenbluth-Hinton test [9]. In this test the evolution

of an initially specified electrostatic field is followed in time. Here the term
(¢) in Eq. (1) is essential: If it were neglected the field would just decay to
zero. If, however, this term is taken into account the field performs damped
oscillations with the frequency of the geodesic acoustic mode (GAM) [10] and
finally settles down to a non-zero level (residual flow). For this problem the
solver is a crucial building block in the typical flowchart of a PIC code. The
result of a simulation for the LHD stellarator is shown in Figure 3. In this run
(about three hours on 512 cores), which uses 64 - 10% particles and a grid size
of Ny =32, Ny = N, = 64, typically 67 solver iterations were necessary. The
frequency of the GAM oscillation agrees very well with the analytical estimate
(more details about the physics involved can be found in [11, 12]). Simulations
like this become only possible with the partly matrix-free solver.

6. Conclusions

For gyrokinetic simulations with adiabatic electrons the equation for the
electrostatic field contains an averaging operator which results in a quite cum-
bersome integro-differential equation. If such an equation is discretised, e.g. by
finite elements using B-splines, the resulting matrix is relatively dense. Already
for medium size three-dimensional problems, such a matrix cannot be stored
explicitly in the main memory of today’s parallel computers. Hence, the mem-
ory consuming implementation of the averaging term of the potential equation
has to be treated in a matrix-free way while the other terms can be used in
a matrix representation. This approach is used in a partly matrix-free solver
based on a preconditioned iterative method employing the PETSc library. In
addition to its small memory consumption the proposed solver is much faster
(already by a factor of approximately 20 for relatively small cases) than a solver
relying on an explicitly stored matrix. Its speed-up is more pronounced the
larger the problem size becomes. The reason is that in its implementation the
structure of the operators has been taken into account in an appropriate way
and the communication overhead is reduced to a minimum. For up to 128 cores
it has been demonstrated that the solver shows a very good scaling behaviour.
This solver allows global simulations of zonal flows to be carried out in three
dimensional stellarator configurations, which has been impossible before. Fur-
ther work could be done on the reduction of the required number of iterations
of the solver. Especially, low memory matrix-free preconditioners would be of
interest.

Acknowledgements

We would like to thank A. Konies for useful hints regarding PETSc and
M. Borchardt for clarifying discussions.

References

1]

2]

T. S. Hahm, Nonlinear gyrokinetic equations for tokamak microturbulence,
Phys. Fluids 31 (1988) 2670.

V. Kornilov, R. Kleiber, R. Hatzky, L. Villard, G. Jost, Gyrokinetic global
three-dimensional simulations of linear ion-temperature-gradient modes in
Wendelstein 7-X, Phys. Plasmas 11 (2004) 3196.

W. D. D’Haeseleer, W. N. Hitchon, J. D. Callen, Flux Coordinates and
Magnetic Field Structure, Springer, 1991.

C. DeBoor, A Practical Guide to Splines, Springer, 1978.

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. Mclnnes, B. F. Smith, H. Zhang, PETSc users manual,
Tech. Rep. ANL-95/11 - Revision 3.0.0, Argonne National Laboratory,
http://www.mcs.anl.gov/petsc (2008).

Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, 1996.

S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T. M. Tran, B. F. Mcmillan,
O. Sauter, K. Appert, Y. Idomura, L. Villard, A global collisionless PIC
code in magnetic coordinates, Comp. Phys. Commun. 177 (2007) 409.

M. Fivaz, S. Brunner, G. de Ridder, O. Sauter, T. M. Tran, J. Va-
clavik, L. Villard, K. Appert, Finite element approach to global gyroki-
netic Particle-In-Cell simulations using magnetic coordinates, Comp. Phys.
Commun. 111 (1998) 27.

M. N. Rosenbluth, F. L. Hinton, Poloidal flow driven by ion-temperature-
gradient turbulence in tokamaks, Phys. Rev. Lett. 80 (1998) 724.

N. Winsor, J. L. Johnson, J. M. Dawson, Geodesic acoustic waves in hy-
dromagnetic systems, Phys. Fluids 11 (1968) 2448.

R. Kleiber, R. Hatzky, A. Mishchenko, Simulation of residual zonal flow lev-
els in stellarators including a radial electric field, Contributions to Plasma
Physics 50 (2010) 766.

P. Helander, A. Mishchenko, R. Kleiber, P. Xanthopoulos, Oscillations
of zonal flows in stellarators, Plasma Phys. Controlled Fusion 53 (2011)
054006.

Captions
Table 1: Time (in seconds) and number of iterations for different grid sizes
and number of cores on the HPC-FF machine at JSC. Column three: problem
without averaging term. Column four and five: problem with averaging term
using a matrix formulation for M. Column six: problem with averaging term
using the partly matrix-free solver. The type of preconditioner, if derived from
H or H + M, is denoted by Py or PyiwMm.

Figure 1: Computing time as a function of the number of cores. Solid line:
problem with averaging term, partly matrix-free solver. Dashed line: problem
without averaging term, matrix solver.

Figure 2: Computing time per iteration as a function of the number of cores
(weak scaling). Solid line: problem with averaging term, partly matrix-free
solver. Dashed line: problem without averaging term, matrix solver.

Figure 3: Time evolution of the normalised radial electric field at position
s = 0.5 for the Rosenbluth-Hinton test in the LHD stellarator configuration.

grid size | cores H+M H+M, matrix-free
NSXNﬂXNLp PH+1\/1 PH
time [s] (iter) time [s] (iter)

83 8 6.3E-3 (43) 6.0E-3 (52)

163 16 7.3E-2 (59) 1.2E-2 (66)

323 32 1.0 (59) 4.5E-2 (71)

10

0.4

0.3

0.1

cores
Figure 1

11

o
[N

-3
ti'[er [10 S]
o o o1
© o N

B
o)

A
\l

o TT T T [T T T T [T T T T[T T T T[T 1717

B
)

cores
Figure 2

12

0.3

0.2}

0.1

20000

40000
t

Figure 3

13

60000

80000

