arXiv:1107.4379v1 [physics.comp-ph] 21 Jul 2011

The High-Energy Physicist’s Guide to MathLink

T. Hahn?®

*Max-Planck-Institut fiir Physik
Fohringer Ring 6, D-80805 Munich, Germany

MPP-2011-88
PACS: 02.70.Wz, 07.05.Bx, 07.05.Wr

MathLink is Wolfram Research’s protocol for communicating with the Mathematica Kernel and is used ex-
tensively in their own Notebook Frontends. The Mathematica Book insinuates that linking C programs with
MathLink is straightforward but in practice there are quite a number of stumbling blocks, in particular in cross-
language and cross-platform usage. This write-up tries to clarify the main issues and hopefully makes it easier
for software authors to set up Mathematica interfacing in a portable way.

1. Introduction

Wolfram Research’s Mathematica is conceptu-
ally set up in two pieces, the Kernel (the compu-
tational engine) and the Notebook Frontend (the
GUI, also used for formatting, rendering, etc.).
The MathLink protocol is the means of communi-
cating with a running Mathematica Kernel, both
from the Kernel invoking an external program
and an external program invoking the Kernel,
where most commonly the ‘external program’ is
the Frontend. If necessary, the communication
can take place across the internet through a TCP
connection.

The MathLink SDK is installed together with
Mathematica and its API is documented in Math-
ematica’s Documentation Center (‘Help’ menu),
which describes the operations for linking a C pro-
gram with MathLink as rather trivial. In every-
day work this is true only for simple C programs,
however. Cross-language or cross-platform use in
particular is fairly non-straightforward.

This article does not cover interpreted lan-
guages such as Java or Python for some of which
own interfaces exist (e.g. J/Link).

MathLink has been a moving target over the
Mathematica versions and platforms. The script-
ing code given herein represents the state of af-
fairs up to Mathematica 8, MacOS 10.6, Win-
dows 7/Cygwin 1.7, and, of course, any flavour of
Linux. The scripts are described in the following
for better understanding but can largely be used
as black boxes. All code is available for down-

load at http://feynarts.de/mathlink/. The
line numbers of the code excerpts in this text do
not necessarily correspond to the actual scripts.

2. General setup

There are various ways of setting up a Math-
Link program, some of which depend on the pro-
gramming environment (e.g. XCode). We concen-
trate here on the ‘standard” MathLink template
file (.tm) which is portable across all platforms.

The following is only a brief introduction to the
template file format. For a more thorough treat-
ment and reference please see the Mathematica
Help Browser under ‘.tm file’.

A template file consists of three parts:

1. A header identifying the functions visible from
Mathematica, for example
:Begin:
:Function: a0
:Pattern: AO[m_, opt___Rule]
:Arguments: {N[m],
N[Delta /. {opt} /. Options[AO]],
N[Mudim /. {opt} /. Options[AO]]}
:ArgumentTypes: {Real, Real, Real}
:ReturnType: Real
:End:

:Evaluate: Options[AO] =
{Delta -> 0, Mudim -> 1}

Ostensibly, argument and option processing hap-
pens at this point, and the C function receives
exactly the quantities given under :Arguments:.

http://arxiv.org/abs/1107.4379v1

2. C code implementing those functions,

#include "mathlink.h"

static double aO(const double m,
const double delta, const double mudim) {
return (m == 0) ? 0 :
m* (1 - log(m/mudim) + delta);
}

3. A main function which might set up global
variables, invoke initialization routines, etc., but
eventually hands control over to MLMain:

int main(int argc, char **argv) {
return MLMain(argc, argv) ;

}

MLMain returns if the MathLink program is unin-
stalled either by an explicit Uninstall or by quit-
ting the corresponding Mathematica Kernel. Af-
ter that main may want go through some final-
ization procedure (e.g. closing files) before finally
terminating.

The MathLink API functions are documented
in Mathematica’s Help Browser, including a tu-
torial under ‘tutorial/MathLink AndExternalPro-
gramCommunicationOverview’.

Compiling such a program should in principle
be as easy as substituting mcc for cc on the com-
mand line, as in:

mcc -o mlprog mlprog.tm

More on compilation in Sect. @ below, however.

Once the MathLink program has been built
successfully, it can be installed in Mathematica
using

Install["mlprog"]

Unless invoked with an explicit path, the program
has to be on either the system PATH or on Math-
ematica’s $Path.

Alternately, start the MathLink program on
the command line:

> ./mlprog
Create link:

Choose an arbitrary string as a name for the link
and enter it here. In Mathematica, type

T. Hahn

Install[LinkConnect["linkname"]]

where 1linkname is the chosen name, to establish
the connection. In this way, mlprog can also be
started in the debugger, which is the routine way
of debugging MathLink programs.

If the link target is on another machine, start
the MathLink program with

./mlprog -linkname port \
-linkprotocol TCPIP

where port is an integer larger than 1024 (a port
number not in the reserved range) and connect
from Mathematica via

Install[LinkConnect ["port@host",
LinkProtocol -> "TCPIP"]]

3. Linking

Unix (Linux, MacOS, ...) linkers are one-pass
linkers (except when linking shared libraries).
What this means is that if library 1ibneed. a ref-
erences symbol X and 1ibprovide.a provides X,
the following command nevertheless fails to re-
solve X:

cc ... —lprovide -lneed

because the linker does not ‘go back’ to earlier
libraries. If necessary, -lprovide has to appear
several times on the command line.

When providing ready-made executables to the
general public, I strongly advertise statically link-
ing the executable as far as possible (-static in
gee, —st in mec). A statically linked 32-bit x86
Linux executable, for example, should run on es-
sentially all Linux flavours currently available and
will likely do so 10 years from now.

Besides, executables dynamically linked with
the MathLink libraries require the MathLink li-
brary directory to be included on the library path
(LD_LIBRARY PATH or /etc/ld.so.conf) when
invoked outside of Mathematica or in Mathemat-
ica versions before 6.

On MacOS and Windows it is not possible to
statically link the system libraries, as e.g. Apple
reserves the right to change their system library
in an upward-compatible way. One should try
to statically link at least the external libraries of

The High-Energy Physicist’s Guide to MathLink

the compiler(s) used, such as Fortran run-time
libraries, so as to make the MathLink executable
independent of those compilers. In the case of
gce, replace —static by -static-libgcc.

4. The mcc Compiler

The MathLink C compiler, mcc, is a shell script
which supposedly replaces cc, the C compiler, in
MathLink applications using approximately the
same command line. Even after many e-mails to
Wolfram Support, mcc still fails to take care of
library ordering, however.

Luckily, mcc observes the CC and CXX environ-
ment variables, making it possible to substitute
the actual C/C++ compilers with a shell script
that corrects the library ordering. Such a script
would look like

#! /bin/sh
script to compile C programs that are
linked against Fortran libraries

args=
objs=
ldflags=
fldflags=
compileonly=

cc="${REALCC:-cc}"
cxx="${REALCXX:—-c++1}"
test ‘basename $0°¢ = f++ && cc="$cxx"

while test $# -gt 0 ; do
case "$1" in
-st | -b32 | -b64)
;; # ignore mcc-specific flags
-arch)
shift ;;
-lstdc++)
cc="$cxx" ;;
-[L1I* | -W1lx)
ldflags="$ldflags *$1°" ;;
*.tm.o)
objs="’$1’ $objs" ;;
*.a | *.0 | *.s0)
objs="$objs ’$1°" ;;
*.cc)
args="$args ’$1°"

cc="$cxx" ;;

-¢)
compileonly="-c" ;;
-0)
args="$args -o *$2°"
shift ;;
*)
args="$args ’$1°" ;;
esac
shift
done

eval "set -x ; exec $cc $args \
${compileonly:-$objs $1dflags $fldflagsl}"

Lines 5-12 initialize a few variables. Since the en-
vironment variable CC is obviously taken, we need
REALCC and REALCXX as replacements for choosing
the actual C and C++ compilers, respectively.

This script is named fcc (‘C compiler for link-
ing with Fortran’) and is symlinked to £++. When
invoked as f++, the C++ compiler is taken as de-
fault (line 13).

The while loop starting in line 15 runs over
all arguments and categorizes them: object files
into objs, libraries and linker flags into 1dflags,
a —c into compileonly, all other arguments (e.g.
source files, compiler flags) into args.

An -arch x argument is removed (line 17-18)
because mcc tries to build the executable for all
admissible platforms, e.g. on Mac for both Intel
and PPC, and this conflicts during linking if an
external library does not contain object code for
all the given architectures. An explicit ~1stdc++
has to be removed likewise (line 21-22) as it would
render a possible -static-libstdc++ flag use-
less. The explicit (re-)quoting and the final eval
(line 43) are necessary to treat arguments with
spaces properly.

Finally, the actual compiler is invoked with the
arguments in the proper order (lines 43-44). If
compileonly is set, the object files and linker
flags are omitted. The set -x makes the shell
echo the actual compiler command line, which is
a very good diagnostic if anything goes wrong.

The seemingly unused variable f1dflags can
be modified to contain external libraries needed
for linking with the object files of a particular

compiler, e.g. -1gfortran in the case of gfortran
(see App. [B). In this way, fcc serves also as a
compile script for non-MathLink programs linked
with code from another compiler.

The invocation of mcc must now include the
definition of CC and CXX. Though fcc acts largely
transparently, it is probably not a good idea to set
CC and CXX permanently as they are understood
by several tools. In a makefile, the following syn-
tax might be used:

FCC = path/to/fcc
mlprog: mlprog.tm
REALCC="$(CC)" REALCXX="$(CXX)" \
CC="$(FCC)" CXX="$(FCCO" \
mcc -o mlprog $(CFLAGS) mlprog.tm \
$(LDFLAGS) $(LIBS)

5. Finding mcc

Except on Linux, mcc is not installed in a lo-
cation which is on the PATH, so we have to find it
first. To this end we make a script of the same
name, mcc, and place that in a directory which we
append to the PATH. If a true mcc is on the PATH,
as in Linux, this gets called. If not, the substitute
script gets called.

The substitute script first dispatches to the ap-
propriate OS-specific routine:

case ‘uname -s‘ in
Darwin) macmcc "$Q@" ;;
CYG*) cygmcc "$@" ;;
*) defaultmcc "$Q" ;;
esac

Since a naive find over the entire hard disk is not
feasible, we resort to heuristics: we search for the
Mathematica Kernel in a list of typical locations
and run that to determine the $TopDirectory,
which is where the copy of Mathematica to which
that Kernel belongs is installed. This is done by
the sdkpath function (described below) which re-
ceives the name of the Kernel (argument 1) and
the list of possible locations (arguments 2-end).

On MacOS that is all, i.e. once the Mathemat-
ica directory is known, we start mcc from that
location and exit:

T. Hahn

macmcc () {
sdkpath MathKernel \
{/Applications,$HOME/Desktopl}/\
Mathematica*/Contents/Mac0S
exec "$sdk/mcc" "$@"
}

The cygmcc function for Windows has to do quite
a bit more and will be discussed in Section [l on
Cygwin below. The defaultmcc function acts as
a catch-all. It tries a few standard places in case
e.g. some ignorant system administrator installed
Mathematica in a location not on the path:

defaultmcc() {
sdkpath math \
/usr/local/bin \
/usr/local/Wolfram/bin \
/usr/local/Wolfram/\
Mathematica/*/Executables \
/opt/Wolfram/bin \
/opt/Wolfram/\
Mathematica/*/Executables
exec "$sdk/mcc" "$@"
}

But now the sdkpath function:

sdkpath() {
mathcmd="$1"
shift
mathcmd=‘IFS=:
PATH="$PATH:$*" which $mathcmd®

eval ‘"$mathcmd" -run °’
Print["sysid=\"", $SystemID, "\""];
Print["topdir=\"", $TopDirectory, "\""];
Exit[]

> < /dev/null | tr ’\r’ ’> ° | tail -2¢

check whether Cygwin’s dlltool
can handle 64-bit DLLs
test "$sysid" = Windows-x86-64 && {
${DLLTOOL:-d1ltool} —--help | \
grep x86-64 > /dev/null || \
sysid=Windows

}

topdir=‘cd "$topdir" ; echo $PWD*

The High-Energy Physicist’s Guide to MathLink

for sdk in \
"$topdir/SystemFiles/Links/MathLink/\
DeveloperKit/$sysid/CompilerAdditions" \
"$topdir/SystemFiles/Links/MathLink/\
DeveloperKit/CompilerAdditions" \
"$topdir/AddOns/MathLink/\
DeveloperKit/$sysid/CompilerAdditions"
do
test -d "$sdk" && return
done

echo "MathLink SDK not found" 1>&2
exit 1

}

Lines 24-27: Search for the specified Mathemat-
ica Kernel in the given list of locations by tem-
porarily adding them to the PATH. Then run the
resulting Kernel (line 29) and have it print out
(lines 30-31) the $SystemID, a string identifying
the platform, and $TopDirectory, the installa-
tion directory of that Mathematica copy.

On Windows-64, downgrade the $SystemID to
32-bit (line 37-41) if Cygwin’s d11tool professes
not to handle 64-bit libraries (see Sect. [dl below).
Canonicalize $TopDirectory (line 43), mainly to
get rid of Windows-style path names (C:\x\y).

Go through the list of typical places underneath
$TopDirectory (lines 46-51) and return the first
match (line 53). If there is no match, exit with
an error (lines 56-57).

6. Cygwin

Cygwin is a Unix-like environment running na-
tively (i.e. not virtualized) on Windows. In the
sense in which the colloquial ‘Linux’ is more cor-
rectly GNU/Linux (GNU utilities, Linux kernel),
Cygwin might be termed GNU/Windows. It is
likely the least painful way of porting programs
from Unix to Windows.

The installation is straightforward even for
non-expert users (http://cygwin.com), though
one should review the package selection as many
tools obviously necessary to build MathLink pro-
grams, such as gcc, g++, make, are not included
in the default setup.

The cygmcc function starts in much the same
way as the macmcc function, by finding the path

to Mathematicas:

cygmcc () {
sdkpath math \
"‘cygpath ’$ProgramW6432’ ¢/\
Wolfram Research/Mathematica"/* \
"¢cygpath ’$PROGRAMFILES’ ‘/\
Wolfram Research/Mathematica"/*

$Programw6432 and $PROGRAMFILES point to the
64- and 32-bit Applications directory on Windows
(“C:\Program Files”), respectively. cygpath
turns Windows-style into Unix-style path names
(/cygdrive/c/Program Files).

From Mathematica 7 on, the MathLink SDK
does include Cygwin libraries and tools, but these
are broken so badly (e.g. filename quoting) that
not even simple programs can be built success-
fully. For this reason we skip the cygwin directory
underneath $sdk and move to one of the mldev
directories (e.g. mldev32):

for sdk in "$sdk"/m* ; do
break
done

The chosen mldev directory contains native Win-
dows DLLs. To make Cygwin’s 1d accept these,
one needs to create a so-called ‘library stub’ which
contains the library’s location and symbol table.
Cygwin’s d11tool provides this information and
can be used e.g. as follows:

cache=MLcyg-cache
test -d $cache || mkdir $cache

MLversion=3

for OSbits in 32 64 ; do
dllname=m1${0Sbits}i$MLversion
libname="$sdk/1ib/${d11lname}m.1lib"
test -f "$libname" && break

done

lib="$cache/${dllname}m"
test -f "$lib.a" || {
(echo "EXPORTS"
${NM:-nm} -C --defined-only \
"$libname" | \
awk °/ T [~.1/ { print $3 }’
) > "$lib.def"

${DLLTOOL:-d11ltool} -k \
--dllname "$dllname.dll" \
——def "$1lib.def" \
--output-1lib "$lib.a"
}

Creating a library stub is a one-time process, so
we can store it in a cache directory, here named
MLcyg-cache (lines 68-69). Lines 72-76 check
which MathLink library (32- or 64-bit) exists in
the given path. If the corresponding library stub
is not yet in the cache (line 79) the relevant in-
formation is extracted using nm and d11tool and
the library stub is created (lines 80-88).
Finally, we have to emulate mcc:

tmp=
args="-DWIN$OSbits -I’$sdk/include’"
for arg in "$@" ; do
case "$arg" in
*.tm)
cp "$arg" "$arg.tm"
"$sdk"/bin/mprep -lines \

-0 "$arg.c" "$arg.tm"
tmp="$tmp ’$arg.c’ ’$arg.tm’"
args="$args ’$arg.c’" ;;

*)
args="$args ’$arg’" ;;
esac
done

trap "rm -f $tmp" 0 1 2 3 15
eval "set -x ; \
${CC:-gcc} $args $lib.a -mwindows"

All .tm files are converted to C code using the
mprep utility (lines 96-97). Note the explicit cp in
line 95 which is necessary in case the original .tm
file is a symlink (symlinks are understood by Cyg-
win only, not by native Windows programs such
as mprep). The temporary files are added to tmp
(line 98) and scheduled for deletion at exit with
the trap statement in line 105. The -mwindows
flag (line 107) adds the Windows system libraries.

A somewhat regrettable feature is that exe-
cutables produced using Cygwin compilers and li-
braries require Cygwin (or at least cygwin1.d1l)
to be installed also on the system the executable
is run on. If one does not need fork, wait, or

T. Hahn

the pthread_* functions (and some few more), it
is possible to build executables on Cygwin that
do not depend on any Cygwin runtime libraries.
There are two ways:

e Either install the gcc-3 packages (including
g77-3 if necessary) and run with

CC=gcc-3 CFLAGS=-mno-cygwin
FC=g77-3 FFLAGS=-mno-cygwin

This is restricted to 32-bit, however.

e Or, install the mingw packages for the de-
sired target (1686 or x86_64) and work with
the targeted versions of compilers and bin-
utils, i.e. use h-gcc, h-nm, h-dl1ltool in-
stead of gcc, nm, d11tool, etc., where h is
the ‘host triplet’, e.g. 1686-pc-mingw32 or
x86_64-w64-mingw32.

7. Strings in MathLink

MathLink has an impressive number of string-
related functions which differ mainly in how non-
ASCII characters are treated. We will concen-
trate here on two methods only, character strings
and byte strings.

If the string exchange is known to be in pure
ASCII, both methods are pretty much equivalent
in functionality and one can select the more con-
venient one.

Strings from Mathematica should always be
considered immutable (const). If it becomes nec-
essary to modify such a string, make a copy be-
fore. A string read with one of the MLGet*String
functions needs to be de-allocated after use with
MLReleasexString.

7.1. Character strings

Character strings are ordinary null-terminated
7-bit C strings. Non-ASCII characters (not just
accented characters but greek letters, mathemati-
cal symbols, special punctuation marks, etc.) are
encoded by Mathematica as escape sequences,
such as \ [Alphal (‘a’, 8 characters).

Character strings are the method of choice if
one receives a string from Mathematica, a func-
tion or symbol name, say, and uses that string

The High-Energy Physicist’s Guide to MathLink

only in the communication with Mathematica in
a transparent way, i.e. without ‘looking into’ it.

For example, the MathLink function template
might include a user-defined inspector function
for debugging (Identity if none) to be wrapped
around (a part of) the result. The name of that
function would have no meaning to the MathLink
program other than that it gets sent back around
the right expression. In this case the MathLink
programmer would be happy to let Mathemat-
ica encode the string in whatever way it needs to
recognize it as the same later.

The MathLink API functions for character
strings are MLGetString and MLPutString. In
the template definition use String or Symbol (de-
pending on the desired pattern matching) and in
the function declaration const char x*.

7.2. Byte strings

Byte strings are 8-bit character arrays plus a
length, i.e. are not terminated with a special char-
acter. This is conceptually very similar to a For-
tran string (see App. [AG). In C one would op-
erate on them with the mem* family of functions
(memcpy, memchr, etc.).

The advantage of byte strings is that the char-
acters map 1:1 onto C or Fortran strings (no es-
cape sequences, no variable-length characters as
in UTF-8). On the other hand, a single byte is not
wide enough to hold an arbitrary Mathematica
character and thus the MLGetByteString func-
tion has one argument specifying an 8-bit substi-
tute for characters wider than 8 bits.

The MathLink API functions for byte strings
are MLGetByteString and MLPutByteString. In
the template definition use ByteString, in the
function declaration const unsigned char *,
const int.

8. stdout and stderr

The typical physicist’s practice of writing er-
ror, warning, progress messages etc. on stdout
(file descriptor 1, Fortran unit 6) or stderr (file
descriptor 2, Fortran unit 0) is not very effective
in a MathLink program, for stdout is suppressed
entirely and stderr appears on the terminal only
if running the Mathematica Kernel directly (no

Frontend). Silently dropping messages can be
anything from not helpful to outright dangerous.

An easy though somewhat clumsy solution is to
redirect stdout and/or stderr to a file instead.
More elegant is to capture the output and send it
to Mathematica for display. Even more flexible is
to let the user specify a file into which to write the
output and recognize e.g. "stdout" as a special
name in the case of which the output is sent to
Mathematica.

Capturing the output requires a second thread
which reads the stdout output generated by the
main thread through a pipe and sends it to the
Kernel. First we need a few global variables and
a copy of the original stdout file descriptor 1:

static int stdoutorig;
static int stdoutpipel[2];
static pthread_t stdouttid;
static int stdoutthr;

static inline void IniRedirect() {
int fd;
do fd = open("/dev/null", O_WRONLY);
while(fd <= 2);
close(£fd);
stdoutorig = dup(1);

}

int main(int argc, char **argv) {
IniRedirect();
return MLMain(argc, argv);

}

So as not to overlap with standard file descriptors
in the I/0O redirection later, we open /dev/null
as many times as it takes to obtain a file descrip-
tor not in 0, 1, 2 (lines 8-10), in case Mathematica
closed any of them.

Capturing is set off by invoking BeginRedirect
at the beginning of the MathLink function in
which the messages are generated:

static inline void BeginRedirect() {
stdoutthr = pipe(stdoutpipe) != -1 &&
pthread_create (&stdouttid, NULL,
MLstdout, NULL) == 0;
if(!stdoutthr) stdoutpipel[l] = 2;
dup2(stdoutpipel1], 1);

close(stdoutpipe[1]);
}

In the (somewhat hypothetical) case that pipe or
pthread_create fail, we fall back on the original
stderr (2) so that at least on a terminal there is a
chance of seeing the output (line 22). Alternately
one could exit with an error code here. Then we
connect stdout (1) to the write end of the new
pipe (lines 23-24).

The thread function MLstdout collects all out-
put in a buffer and sends it to Mathematica for
display only at the end. Depending on the typical
running time and message volume of the underly-
ing function one could also send output back line
by line, when a certain buffer volume is reached,
or similar.

static void *MLstdout(void *dummy) {
static unsigned char *buf = NULL;
static long size = 0;
enum { unit = 10240 };
long len = 0, n = 0;

do {
len += n;
if(size - len < 128)
buf = realloc(buf, size += unit);
n = read(stdoutpipe[0],
buf + len, size - len);
} while(n > 0);

if(len) {
MLPutFunction(stdlink,
"EvaluatePacket", 1);
MLPutFunction(stdlink,
"WriteString", 2);
MLPutString(stdlink, "stdout");
MLPutByteString(stdlink, buf, len);
MLEndPacket (stdlink) ;
MLNextPacket (stdlink) ;
MLNewPacket (stdlink) ;
}
return NULL;
}

The output buffer buf stays allocated, it usually
needs just a few kilobytes. If space runs low, buf
grows in units of 10 kbytes (lines 34-35).

T. Hahn

Due to the static variables, MLstdout is not
reentrant but this is not really necessary, either:
to redirect e.g. stderr, too, just connect descrip-
tor 2 to stdoutpipel[1] as well, similar to lines
23—24, rather than create another thread.

The EndRedirect function finally cancels the
redirection (line 55) which automatically closes
the pipe and causes the reader thread to wrap up
(lines 40-51) such that it can be joined (line 57).

static inline void EndRedirect() {
void *ret;
dup2(stdoutorig, 1);
if (stdoutthr)
pthread_join(stdouttid, &ret);
}

Mathematica is still waiting for the function re-
sults by the time EndRedirect is called, which is
why the WriteString (line 43) has to be issued
out-of-band in an EvaluatePacket (line 41). The
final MLNextPacket and MLNewPacket (lines 48—
49) discard the WriteString return value (Null).

Note that the transfer of redirected output to
Mathematica happens in a well-defined sequence,
i.e. there is no race condition here: it is triggered
by the dup2 in line 55 and guaranteed to be fin-
ished by the time pthread_join returns. The
function’s return value is transmitted strictly af-
ter the EndRedirect, so there is no way the com-
munication with Mathematica could be upset.

If such a sequence cannot be taken for granted,
e.g. if MLstdout is rearranged to send output after
each read while the main thread engages in more
communication with the Mathematica Kernel in
the meantime, it must be enforced using a mutex
around the transmission of the EvaluatePackets
(e.g. around lines 41-49 and corresponding ones
in the main thread).

A final word on buffering: Fortran maintains
its own I/O buffers over which the C program
has no control, thus the message output may not
be completely transferred by the time the Fortran
routine returns. The simplest and most portable
solution is to explicitly flush unit 6 before can-
celling the redirection. Fortran’s flush subrou-
tine is considered an intrinsic by some compilers
and therefore cannot portably be called from C
directly, so a trivial wrapper is necessary:

The High-Energy Physicist’s Guide to MathLink

subroutine fortranflush()
call flush(6)
end

Add fortranflush_(); to EndRedirect before
the dup2 statement and fortranflush.o to the
mcc command line. Alternately, the call to flush
may be added to each Fortran routine directly.

For pure C functions a simple £f1ush(stdout)
suffices, of course.

9. Summary

The preceding sections have collected the infor-
mation needed to get MathLink to work portably
across at least the more popular platforms cur-
rently available, Linux, Mac OS, and Windows.

It is not easy to avoid the impression that this
requires more workarounds than actual code. The
quality of the MathLink SDK has improved some-
what over the versions but is still far from perfect.
On Mac OS and Windows it would in fact seem
that MathLink virtually eschews any cooperation
with the user, which may be connected to the fact
that these are commercial platforms where users
typically do not (‘are not meant to’) build their
own executables.

On the positive side it has to be pointed out
that providing Mathematica connectivity to a
piece of C or Fortran code opens up fantastic new
possibilities for interactive use (think of functions
like Manipulate) and combination with Mathe-
matica’s sophisticated functions (if unconvinced,
try doing a ContourPlot in Fortran, for exam-
ple). For users not sufficiently familiar with C or
Fortran, it makes these functions available at all.

The only significant work is writing interfacing
code in a .tm program. Apart from that, a pack-
age author only needs to add the fcc and mcc
substitute scripts and tweak the makefile as de-
scribed in Sect. [l All things considered, this is a
fairly moderate effort.

The shell scripts together with demo code are
available from http://feynarts.de/mathlink/.
They can be witnessed ‘in action’ in the packages
LoopTools [I], Cuba [2], FeynHiggs [3], Diag [4],
and in FormCalc’s Mathematica interface [5].

Comments, improvements, and bug-fixes are
welcome at hahn@feynarts.de.

A. C—Fortran interfacing

MathLink’s native tongue is C so in order to
link Mathematica with Fortran code one needs to
know at least the basics of C—Fortran interfacing.
Fortran is less flexible in its calling conventions,
thus in general the C program has to adapt, not
the Fortran program.

A.1. Function names

Fortran names (subroutines, functions, com-
mon blocks, block data) are lowercased and an
underscore is appended by the time they end up
in the object file. The very few compilers which
do not add an underscore (HP-UX’s fort77, for
example) should largely be extinct by now. Steer
clear of underscores in Fortran names, as com-
pilers have different ways of mangling those, e.g.
some compilers add two underscores if the For-
tran name already contains one (cf. gfortran’s
-fsecond-underscore option).

Modern C compilers require prototypes for all
external routines. In C++4, the prototype must
be wrapped in extern "C" {...} to suppress
C++ name mangling.

Example: subroutine F0O in Fortran becomes
void foo_() in C.

In case of problems, check the spelling of the
symbols as visible to the linker by using nm on the
Fortran object file (and, for comparison, possibly
the C object file as well).

A.2. Function arguments
Fortran always calls by reference, i.e. passes a
pointer, not the variable itself (exceptions only
when using the much-deprecated %VAL).
Example:

subroutine foo(i)
integer i

becomes void foo_(int *i) in C — mind the *.

Hint 1: Since Fortran passes by reference, and
rather indiscriminately so (for example, many
compilers silently ignore mismatches between for-
mal and actual arguments even within the same
source file), it is an extremely good idea to set
up prototypes as strictly as possible, including
const in all places where the argument should
not be modified (even though Fortran has no way

10

of controlling this).

Hint 2: For portability between C and C++,
use the __cplusplus preprocessor variable around
the extern "C" bits:

#ifdef __cplusplus
extern "C" {
#endif

void aO_(double *res, const double *m);
(... possibly more prototypes ...)

#ifdef
}
#endif

cplusplus

Hint 3: It makes life a lot easier to wrap For-
tran functions in C inline functions, with proper
C calling conventions. The wrapper function can
be used just as a regular C function and ‘inline’
means there is no extra calling overhead, e.g.

static inline double AO(const double m) {
double res;
a0_(&res, &m);
return res;

}

Take care that the static attribute pertains to
the wrapper function only, as the Fortran func-
tion most certainly does not have file scope but
comes from an external library.

A.3. Return values

Prefer subroutines over functions in Fortran,
especially if the return value is not an integer or
double precision (realx8). Conventions vary
most notably for double complex functions. If a
function is required on the Fortran side e.g. be-
cause of an API, add a subroutine wrapper:

double complex foo(args...)
end

subroutine foowrapper(res, args...)
double complex res, foo

external foo

res = foo(args...)

end

T. Hahn

A.4. Data types
Most scalar types have an obvious counterpart
in C, e.g.

e integer (integer*4) — int,
integer*2 — short,
integer*8 — long long int,

e double precision (real*8) — double,
real (real*4) — float,

e double complex (complex*16)
— double complex (C99),
— struct { double re, im; } (C89),
— std: : complex<double> (C++),

e character — char
(but for strings see below).

There is no portable equivalent of logical in C,
however; it is better to use an integer in Fortran
instead. If you must use logical, interface with
an int and test for the lowest bit only.

These correspondences can also be coded with
typedef statements. Not only does this make the
Fortran types stand out visually, but the compiler
will automatically add casts or warn about incom-
patibilities when mixing with other C types. Note
the const versions for strict prototyping.

typedef int INTEGER;

typedef const INTEGER CINTEGER;

typedef double REAL;

typedef const REAL CREAL;

typedef struct { REAL re, im; } COMPLEX;
typedef const COMPLEX CCOMPLEX;

typedef char CHARACTER;

typedef const CHARACTER CCHARACTER;

For portability between C and C++, for example
in header files, one may want to provide wrapper
code for the homogeneous treatment of complex
numbers:

#define Real double
#define ToReal(r) (r)

#ifdef

cplusplus

#include <complex>
typedef std::complex<Real> Complex;

The High-Energy Physicist’s Guide to MathLink

#define ToComplex(c) \
Complex(ToReal((c).re), ToReal((c).im))
#define ToComplex2(r,i) \
Complex(r, i)
#define Re(x) std::real(x)
#define Im(x) std::imag(x)

#else

#include <complex.h>

typedef Real complex Complex;

#define ToComplex(c) \
(ToReal((c).re) + I*ToReal((c).im))

#define ToComplex2(r,i) \
(r + Ix(i))

#define Re(x) creal(x)

#define Im(x) cimag(x)

#endif

Referring to reals indirectly through the Real and
ToReal macros is useful for switching to a differ-
ent precision (float, long double; see App.[C).

A.5. Common blocks

Common blocks map onto C structs, with the
members in the same order. The struct should
be declared extern to prevent instantiation in C.
In C++4, extern "C" must be used in addition
to the extern (storage class modifier) because of
name mangling, as with the function prototypes.

Padding might be an issue if common members
are ordered unsuitably for alignment, e.g.

integer i
double precision r
common /c/ i, r

is not correctly aligned for a 64-bit architecture
because the integer is a 32-bit quantity. Ideally,
the common block should be reordered (widest
types first, e.g. double complex before double
precision before integer before character). If
this is not possible due to API requirements or
similar, wrap the common definition in

#pragma pack(push, 1)
extern struct {

int i;

double r;

11

}oc;
#pragma pack(pop)

This switches off padding (in gcc at least) but
carries a performance penalty, and on RISC plat-
forms such as the Alpha likely triggers unaligned-
access exceptions (in both Fortran and C).

A.6. Strings

There are no strings in Fortran, only charac-
ter arrays (padded with spaces as necessary), and
these are handled specially by the compiler, i.e.
differently from other arrays.

The C function gets called with two arguments
for every Fortran string: a char * pointer to the
characters, in the same place as the string argu-
ment in Fortran, and a const int following the
Fortran argument list. Example:

subroutine strfoo(sl, il, s2, i2)
character*(*) s1, s2
integer il, i2

in C becomes

void strfoo_(char *s1, int *il,
char *s2, int *i2,
const int sl_len, const int s2_len)

Fortran strings are not null-terminated and it is
in general, but in particular for functions invoked
with string literals as arguments, not advisable to
write a zero-byte into the Fortran string in situ
and hope it won’t disturb Fortran later.

The two ‘clean’ options are: use the mem* fam-
ily of functions (memcpy, memchr, etc.) which take
a length argument and do not require a termi-
nating zero-byte, or null-extend the string in al-
located memory. The latter is particularly simple
in C99/C++ where space can easily be allocated
on the stack (and is automatically de-allocated
when the object goes out of scope), e.g.

void sf_(char *s, const int s_len) {
char sn[s_len + 1];
memcpy(sn, s, s_len);
sn[s_len] = 0;

}

Note that, while the string sn is correctly null-
terminated now and may be worked on with the

12

str* functions, it may well include trailing spaces
as Fortran indicates only the allocated size in
s_len, not the actual length (sans trailing spaces)
of the character array.

In the opposite direction, invoking a Fortran
function with a string argument is straightfor-
ward, e.g.

fortfoo_(s, strlen(s));

When returning a string of a given length, i.e.
(over)writing one of the subroutine’s string argu-
ments, the unused characters should be filled with
spaces, as in:

void cfoo_(char *s, const int s_len) {

n = strlen(result);

if(n >= s_len)
memcpy (s, result, s_len);

else {
memcpy (s, result, n);
memset(s + n, > ’, s_len - n);

}

}

B. Required flags and libraries

The rules above are sufficient to obtain object-
level compatibility, i.e. making C and Fortran
routines talk to each other. For successful linking
one has to add the Fortran compiler’s run-time
libraries (e.g. I/O, extended math) to the C com-
mand line as well.

To determine the necessary flags, the Fortran
compiler is run in verbose mode on a test program
and all flags relevant to linking are collected from
the output. Here is how:

getldflags() {
ldflags="$LDFLAGS"
while read line ; do
set -- ‘echo $line | tr ’:,(’ 2
case $1 in
/collect2 | */1d* | 1d*) ;;
*) continue ;;
esac
while test $# -gt 1 ; do
shift
case $1 in

T. Hahn

x.0 | -1lc | -lgccx*)
-1% | -Lx | *.a)
ldflags="$ldflags $1" ;;
-Bstatic | -Bdynamic | *.1d)
ldflags="$ldflags -W1l,$1" ;;
/%)
ldflags="$ldflags -L$1" ;;
-rpathx*)
ldflags="$ldflags -Wl,$1,$2"
shift ;;
-dynamic-linker)
shift ;;
esac
done
done
echo $ldflags
}

Lines 5-8 select only the linker command lines
(note that gece uses collect2, not 1d). The while
loop starting in line 3 picks out the relevant items
from the 1d command line.

The above shell function is used as in

LDFLAGS=‘f77 -v -0 test test.f 2>&1 | \
getldflags*

where test.f is a simple test program, preferably
one producing output so that the I/0 libraries are
referenced, e.g.

program hw
print *, "Hello World"
end

C. Extended precision

MathLink provides a data type by the name
of Real128. Contrary to expectations, this does
not represent a genuine quadruple-precision 128-
bit floating-point number but ‘only’ C’s long
double data type which on Intel x86 hardware is
usually the 80-bit ‘extended-precision’ float, even
though C stores this in 12 (in 32-bit) or 16 bytes
(in 64-bit mode) for alignment.

Those few Fortran compilers that offer higher
than double precision typically have the real*16
data type which implements true 128-bit preci-
sion, albeit in software emulation (i.e. slow).

The High-Energy Physicist’s Guide to MathLink

The two formats are actually quite similar, the
main difference being that the most-significant bit
of the (normalized) fraction is implicit in real*16
and explicit in long double (which can thus also
represent denormalized fractions):

long double

sl exp |[] fraction |
1 6, 80
real*x16
s exp || fraction |
1 16 128

Conversion can be achieved e.g. as follows (note
that this code is specific to Intel x86 hardware):

#pragma pack(push, 1)
typedef union {
long double ri10;
struct {
unsigned long long frac;
unsigned short exp;
} i10;
struct {
char zerol[6];
unsigned long long frac;
unsigned short exp;
} i16;
unsigned long long i8[2];
} realil6;
#pragma pack(pop)

static inline reall6 ToREAL(long double r) {

reall6 new;
new.i8[0] = 0;
new.il6.frac =

((reall6 *)&r)->i10.frac << 1;
new.il6.exp = ((reall6 *)&r)->il0.exp;
return new;

}

static inline long double ToReal(reall6 r) {

reall6 new;

const long long z = r.il6.frac |
(r.i16.exp & Ox7fff);

new.il0.frac = (r.il6.frac >> 1) |
((z | -z) & 0x8000000000000000) ;

new.i1l0.exp = r.il16.exp;

return new.r10;

13

#define Real long double
typedef reall6 REAL;

One needs to apply ToREAL when transferring ar-
guments from C to Fortran, and ToReal when
transferring from Fortran to C. Defining Real as
in line 36 automatically upgrades the Complex
data type declared in App. [A4] too.

Double-precision Fortran code can be upgraded
to quadruple precision almost automatically if a
few rules are observed, through compiler flags like
-r16 (ifort). This can be very helpful to find out
whether a wrong result comes from a program-
ming mistake (bad algebra) or from e.g. accumu-
lation of round-off errors (bad numerics). The
rules:

e Use double precision/double complex,
not real*8/complex*16, the latter are not
affected by the automatic -r16 promotion.

e Use generic functions only, e.g. use abs, not
dabs. To force a type conversion, make
an explicit cast, e.g. use sqrt (DCMPLX (x)),
not cdsqrt (x) (on DCMPLX see next item).

e Despite their name, real, imag, conjg, and
cmplx are not generic but single-precision
real (real*4) functions and thus not pro-
moted automatically, either.

Solution: use the explicitly double-precision
functions DBLE, DIMAG, DCONJG, and DCMPLX
in the original code. Choose identical capi-
talization (e.g. all-caps as given here so as to
stand out) and have the preprocessor sub-
stitute the double- by quadruple-precision
variants by adding the following flags to the
command line:

-DDBLE=QEXT -DDCONJG=QCONJG \
-DDCONJG=QCONJG -DDCMPLX=QCMPLX

Note: The file extension should be .F in this
case, not . f, otherwise the preprocessor will
not be invoked automatically.

14

REFERENCES

1. T. Hahn, M. Perez-Victoria, Comput. Phys.

Commun. 118 (1999) 153-165
[hep-ph/9807565|.

2. T. Hahn, Comput. Phys. Commun. 168
(2005) 78-95 [hep-ph/0404043].

3. M. Frank, T. Hahn, S. Heinemeyer,
W. Hollik, H. Rzehak, G. Weiglein, JHEP
0702 (2007) 047 |hep-ph/0611326].

4. T. Hahn, physics/0607103.

5. T. Hahn, Comput. Phys. Commun. 178
(2008) 217 |hep-ph/0611273].

T. Hahn

http://arxiv.org/abs/hep-ph/9807565
http://arxiv.org/abs/hep-ph/0404043
http://arxiv.org/abs/hep-ph/0611326
http://arxiv.org/abs/physics/0607103
http://arxiv.org/abs/hep-ph/0611273

	1 Introduction
	2 General setup
	3 Linking
	4 The mcc Compiler
	5 Finding mcc
	6 Cygwin
	7 Strings in MathLink
	7.1 Character strings
	7.2 Byte strings

	8 stdout and stderr
	9 Summary
	A C–Fortran interfacing
	A.1 Function names
	A.2 Function arguments
	A.3 Return values
	A.4 Data types
	A.5 Common blocks
	A.6 Strings

	B Required flags and libraries
	C Extended precision

