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Abstract

We provide a Mathematica code for decomposing strongly correlated quan-
tum states described by a first-quantized, analytical wave function into many-
body Fock states. Within them, the single-particle occupations refer to the
subset of Fock-Darwin functions with no nodes. Such states, commonly appear-
ing in two-dimensional systems subjected to gauge fields, were first discussed
in the context of quantum Hall physics and are nowadays very relevant in the
field of ultracold quantum gases. As important examples, we explicitly apply
our decomposition scheme to the prominent Laughlin and Pfaffian states. This
allows for easily calculating the overlap between arbitrary states with these
highly correlated test states, and thus provides a useful tool to classify cor-
related quantum systems. Furthermore, we can directly read off the angular
momentum distribution of a state from its decomposition. Finally we make use
of our code to calculate the normalization factors for Laughlin’s famous quasi-
particle/quasi-hole excitations, from which we gain insight into the intriguing
fractional behavior of these excitations.
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1. Introduction

In recent years there has been a growing interest in the study of strongly
correlated quantum states and their possible realization in two-dimensional (2D)
systems of ultracold atoms [1, 2]. Such states, which were first postulated when
studying the dynamics of electrons subjected to strong magnetic fields, can also
be produced in systems of neutral atoms subjected to so-called artificial gauge
fields. One of the first examples was obtained by rotating a 2D atomic cloud
such that the centrifugal force on the atoms mimics the Lorentz force which a
charged particle would experience in the presence of a constant magnetic field
perpendicular to the system [3, 4, 5, 6]. The main drawback of this approach
is that large rotations are needed in order to observe strongly correlated states
such as the Laughlin [7], while it is difficult to stabilize in this fast rotating
regime. For this reason, the Laughlin state has not yet been engineered in the
pioneering experiments [8, 9]. Recently, Roncaglia et al. have proposed an
alternative experiment to avoid the instability difficulty by using a Mexican-hat
trap [10].

Other very promising proposals to overcome this problem come from quan-
tum optics and consider the coupling of the atoms to one or several laser fields.
These make the atoms experience a Berry phase [11, 12, 13, 14, 15], which, due
to the mathematical equivalence between geometric phases and external gauge
fields, can then be interpreted as if it were due to the presence of an external
gauge field. The experimental realization of such an artificial gauge field has
already been achieved [16].

An important motivation to study these systems is the possibility of produc-
ing strongly correlated quantum states and quasi-particle/quasi-hole excitations
which are neither described by fermionic nor by bosonic commutation laws. The
latter are expected to have strong impact in the context of anyonic quantum
computation [17]. One thus needs to quantify the strongly correlated states pro-
duced by different proposals and the properties of their quasi-particle/quasi-hole
excitations.

A common way to study such systems theoretically is by means of exact di-
agonalization of small-sized systems [3, 6]. The usual methodology is to employ
Fock-Darwin (FD) wave functions, which describe single particles with fixed an-
gular momentum in a fixed Landau level, and which are the eigenfunctions of a
2D non-interacting system with a perpendicular magnetic field in the symmetric
gauge. The many-body basis for bosons (fermions) is then built up by symmetric
(antisymmetric) combinations of the FD states. While this basis is practical for
definite calculations, many relevant states in the literature have been found by
proposing a first-quantized, analytic wave function. Here the Laughlin [7], the
Pfaffian, also called Moore-Read [18], or the Laughlin quasi-particle states [19]
are the most prominent examples. Translating the first-quantized wave func-
tions into the language of second quantization, however, turns out to be a hard
task [20, 21].
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In this paper, we present a computer code which achieves this goal for arbi-
trary states described by an analytic function, and thus provides practitioners
of this field with a simple and yet powerful tool to quantify the degree of cor-
relation by examining its expansion into an independent particle motion basis.
The code is written in Mathematica [22], which is a computer language specially
suited for symbolic evaluation.

We begin by presenting the first-quantized expression of the most important
strongly correlated states in Sect. 2. In Sect. 3, we briefly describe and construct
the many-body basis into which we then decompose the states in Sect. 4. Finally,
in Sect. 5, we consider two applications which can be tackled making use of
the described decomposition scheme. The most relevant routines contained in
Strongdeco.nb are explained within the text, a brief description of all routines
is given in the Appendix.

2. Analytical strongly correlated states

Strongly correlated states in 2D systems exposed to a gauge field are usually
studied in the regime where all particles occupy the lowest Landau level. The
Hilbert space of an N -body system in this regime can be represented by wave
functions of the form

Ψ(z1, . . . , zN) = Nf(z1, . . . , zN)e−
∑

|zi|
2/2λ2

⊥ , (1)

where zi = (xi + iyi)/λ⊥, N is a normalization constant, and f is a polynomial
in its arguments zi. The typical length scale of the system is given by λ⊥. The
most famous wave function of this form is the Laughlin function [7]:

ΨL(z1, . . . , zN) = NLfm(zi, . . . , zN )e−
∑

|zi|
2/2λ2

⊥ , (2)

with NL a normalization constant, and

fm(zi, . . . , zN ) ≡
∏

i<j

(zi − zj)
m , (3)

where m is an integer directly related to the filling factor ν = 1/m of the lowest
Landau level. Originally intended to describe electrons, this wave function had
to be antisymmetric, restricting m to odd numbers. However, as shown for
instance in Ref. [3], also the ground state of a two-dimensional system of rotating
bosons with contact interaction is, for certain values of the angular rotation,
described by the Laughlin state, if m is taken as an even integer [23, 24]. One
important property of the Laughlin wave function is that fm is a homogeneous
polynomial. Its degree determines the well-defined total angular momentum of
the system, given by L = 1

2mN(N − 1).
Besides the Laughlin state, other states of the form given by Eq. (1) show up

as the ground state of a rotating Bose gas, if we vary the rotation frequency [3,
19, 25]. For a broad range of rotation frequencies, for instance, a large overlap
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is found with the so-called Pfaffian state, which has L = N(N − 2)/2 for even
N , and L = (N − 1)2/2 for odd N . It explicitly reads,

ΨP = NpPf([z])
∏

i<j

(zi − zj) , (4)

with Np a normalization coefficient and,

Pf([z]) = A
[

1

(z1 − z2)

1

(z3 − z4)
· · · 1

(zN−1 − zN )

]

e−
∑

|zi|
2/2λ2

⊥ , (5)

where A is an antisymmetrizer of the product. As explained in Ref. [3], the
Pfaffian state can also be computed as,

ΨP = S
∏

i<j∈σ1

(zi − zj)
2
∏

k<l∈σ2

(zk − zl)
2 e−

∑
|zi|

2/2λ2

⊥ , (6)

where σ1 and σ2 are two subsets containing N/2 particles each if N is even, and
(N + 1)/2 and (N − 1)/2 if N is odd. S symmetrizes the expression.

Another relevant state is the Laughlin quasi-particle state,

ΨLqp(ξ, ξ
∗) = Nqp(ξ, ξ

∗)e−
∑

|zi|
2/2λ2

⊥

∏

i≤N

(∂zi − ξ)fm , (7)

where ξ represents the position of the quasiparticle. If we pin the quasi-particle
to the origin, the Laughlin quasi-particle state has a definite angular momentum
L = 1

2mN(N − 1) − N , and, as shown in Ref. [19] for m = 2 and N = 4, its
overlap with the ground state of rotating ultracold atoms is fairly large in certain
regions of the rotation.

The analog of Laughlin’s quasi-particle state is the quasi-hole state,

ΨLqh(ξ, ξ
∗) = Nqh(ξ, ξ

∗)e−
∑

|zi|
2/2λ2

⊥

∏

i≤N

(zi − ξ)fm , (8)

with an increased angular momentum 1
2mN(N−1) ≤ L ≤ 1

2mN(N−1)+N . An
interesting property of quasiparticles and quasiholes is their anyonic nature [26]
and fractional charge. Note that in the case of an electroneutral system, one
may define the analog of a charge by looking at the Berry phase a particle
acquires when moving in the presence of the artificial gauge field.

3. The many-body basis

After defining in the previous section the general structure for all wave func-
tions of interest, we now construct the many-body basis into which we wish to
decompose these states. A convenient choice to span the Hilbert space of the
many-body system are the eigenfunctions of the non-interacting problem, i.e.
the FD wave functions,

φℓ(z) =
zℓ√
πℓ!

1

λℓ+1
⊥

e−|z|2/(2λ2

⊥
) , ℓ = 0, . . . ,∞ , (9)
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where we have restricted ourselves to the lowest Landau level. These states
satisfy,

∫ ∞

−∞

dx

∫ ∞

−∞

dy φ∗
ℓ (z)φℓ′(z) = δℓ,ℓ′ . (10)

The many-body basis can be generated by considering products of the FD func-
tions, which in the case of bosons have to be combined in a symmetric way,
while antisymmetric combinations must be constructed in the case of fermions.
Here, we will concentrate on the bosonic case, but with only slight modifications
which are explicitly shown in the code file, fermionic systems can be treated in
the same way. For the bosonic system we write the many-body state as,

{ℓ1, ℓ2, . . . , ℓN} ≡ S [φℓ1(z1)φℓ2(z2) . . . φℓN (zN)] (11)

where S symmetrizes over the N particles. These states are called permanents,
which are the bosonic analog of the Slater determinants, with the difference that
all terms have a positive sign. Without loss of generality we may assume that
ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓN . The orthonormality of the permanents then reads

{ℓ1, ℓ2, . . . , ℓN} · {ℓ′1, ℓ′2, . . . , ℓ′N} = δℓ1,ℓ′1δℓ2,ℓ′2 · · · δℓN ,ℓ′
N
. (12)

For simplicity we will from now on set the scale factor λ⊥ = 1, and suppress
the exponential term which is common to all N -body states, and, as an overall
Gaussian, fixes the center of mass to the origin. We can then simplify the
problem to dealing with permanents of the form,

S
[

zℓ11 zℓ22 . . . zℓNN

]

. (13)

From Eq. (12) follows that, for a given N , all states of a fixed total angular mo-

mentum L =
∑N

i=1 ℓi form a subspace which is orthogonal to the subspace with
total angular momentum L′ 6= L. We can therefore perform the decomposition
independently in each subspace, and thus restrict ourselves to a subspace with
fixed L. Its basis (up to normalization factors and the overall exponential term)
can be constructed through the command,

ConjS[na_, L_] := Module[{poty, dimy},

poty = Pots[na, L];

dimy = Dimensions[poty][[1]];

Table[Perm[na, poty[[i]]], {i, 1, dimy}]]

which makes use of the function Perm [27], that builds the appropriate per-
manent, and of Pots[N,L], which constructs the set of indexes ℓ1, . . . ℓN for a
given N and L, represented by na and L in the code,
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cc[0] = 0;

tab[n_, l_] :=

Table[{cc[i], cc[i - 1],

If[i == 1, l, (l - Sum[cc[j], {j, 0, i - 1}])/2]},

{i, 1, n - 1}];

Pots[na_, L_] := If[na == 2, Table[{i, L - i}, {i, 0, L/2}],

Module[{pat},

Clear[pat];

pat[na] = Join[Table[

cc[i], {i, 1, na - 1}], {L - Sum[cc[i], {i, 1, na - 1}]}];

pat[a_] := Table[pat[a + 1], Evaluate[tab[na, L][[a]]]];

Flatten[pat[1], na - 2]]]

For instance, for N = 4 and L = 2 we have 1,

Pots[4,2]={{0,0,0,2},{0,0,1,1}}

and correspondingly,

ConjS[4, 2]=

{6 z[1]^2+6 z[2]^2+6 z[3]^2+6 z[4]^2,

4 z[1] z[2]+4 z[1] z[3]+4 z[2] z[3]

+4 z[1] z[4]+4 z[2] z[4]+4 z[3] z[4]}

As can be seen in this example, due to multiple occupation of the same single-
particle state, some of the permutations contributing to the symmetrized wave-
function are described by the same monomials which thus have prefactors given
by the factorial of the number of permutations. These factors need to be taken
into account to correctly normalize the many-body states, and can be obtained
through, nami[N, L], which gives a table with the same ordering as Pots or
ConjS, for our previous example, nami[4,2]={6,4}, as could be inferred from
the obtained expressions.

nami[na_, L_] := Module[{potty, pp, inde, ta},

potty = Pots[na, L];

pp = Dimensions[potty][[1]];

inde = Table[Complement[potty[[i]]], {i, 1, pp}];

ta = Table[Table[Count[potty[[i]], inde[[i, j]]],

{j, 1, Dimensions[inde[[i]]][[1]]}], {i, 1, pp}];

Table[ Product[ta[[i, j]]!,

{j, 1, Dimensions[ta[[i]]][[1]]}] , {i, 1, pp}]]

Once these factors are known it is easy to build the normalization coefficient
by looking into the prefactors in the Fock-Darwin states Eq. (9), 1/

√
πℓ!. The

function tip[N, L] gives the normalization coefficients. Their explicit coding is,

1Note that the state {1, 1, 0, 0} is equivalent to {0, 0, 1, 1} due to the symmetrization of the
states.
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tip[na_, L_] := Module[{potty, nimy},

potty = Pots[na, L];

nimy = nami[na, L];

Table[Sqrt[nimy[[i]]]Sqrt[Product[Pi Gamma[potty[[i, jj]]+1],

{jj, 1, na}] ], {i, 1, Dimensions[nimy][[1]]}]]

4. Decomposition of the states

All states described in Sect. 2, are, up to the common exponential factor,
polynomials in the z variables. To write down the states in terms of the many-
body ones, we can suppress the exponential and work out the decomposition
of the polynomial in terms of the permanents. While the Laughlin and the
Pfaffian state have a definite total angular momentum, for the quasi-hole and
quasi-particle states this is only true if we fix the position of the quasi-particle to
the origin ξ = 0. Otherwise, we must first sort the polynomial by the different
contributions with a definite order in z, and can then proceed, for each con-
tribution separately, in the way described here, where we assume an analytical
state, Ψ(z1, z2, . . . , zN ) with fixed N and L. We are looking for an expansion of
the form,

Ψ(z1, z2, . . . , zN) =

nD
∑

j=1

Cj{ℓ1,j, ℓ2,j, . . . , ℓN,j} (14)

where nD is the total size of the many-body basis, which can be computed as
nD = Dimensions[PotsN[N,L]][[1]]. To get a feeling of how this grows with N
and L the dimension of these spaces for the L corresponding to the Laughlin
wave functions are, nD = 7, 34, 192, 1206, 8033, 55974 for N = 3, 4, 5, 6, 7 and 8,
respectively.

To decompose a polynomial into these states, we have to find the monomials
which correspond to a given Fock state and read out their coefficients. Since we
know that the polynomial is symmetric (antisymmetric) under exchange of two
coordinates, it is sufficient to find only one monomial contributing to a given
Fock state, as all the others must have the same coefficient (up to a sign in the
antisymmetric case). This can be achieved by taking derivatives:

∂ℓ1,j
z1 · · · ∂ℓN,j

zN Ψ(z1, z2, . . . , zN)|z1=0,··· ,zN=0 = cj, (15)

where cj is not yet the coefficient Cj in Eq. (14), but is directly related to it
through the normalization procedure described in the previous section. Hereby,
we have to take into account that an additional factor

∏N
i=1 ℓi,j ! occurs through

the derivatives. Thus we obtain

Cj = cj

(

P
N
∏

i=1

ℓi,j ! π

)−1/2

≡ αjcj , (16)

where the P is the factorial of permutations leading to the same expression,
obtained by nami[N,L]. We thus see that αj equals the inverse of the jth com-
ponent of tip[N,L]. The decomposition of, for instance, the Laughlin wave-
function can therefore be obtained by the following piece of code:
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DDecoLaug[na_,nu_] :=

Module[{Lmin, Lmax, state, base, dim, factors, d, prf, outp},

Lmin = na (na - 1);

Lmax = na (na - 1);

state = Laughlin[na,nu];

base = Flatten[Table[Pots[na, i], {i, Lmin, Lmax}], 1];

dim = Dimensions[base][[1]];

factors = Flatten[Table[tip[na, i], {i, Lmin, Lmax}], 1];

d[0] = state;

prf = Table[

For[i = 1, i < na + 1, i++,

d[na] = 0;

d[i] = D[d[i - 1], {z[i], base[[j, i]]}];

d[i] = d[i] /. z[i] -> 0;

If[d[i] == 0, Break[]]

];

d[na]/factors[[j]],

{j, 1, dim}];

outp = prf/Sqrt[prf.prf]]

Here, Laughlin[N,nu] describes the Laughlin wavefunction for N particles at
filling ν. For even 1/ν, this is a symmetric function describing bosons, while
odd values yield an antisymmetric function for fermionic systems. In principle,
we can use the code for both the symmetric and the antisymmetric case. In the
latter, however, it is convenient to exclude states with multiple occupied single-
particle levels from the basis, as they obviously make no contribution. This
can be done by replacing Pots[N,L] by its fermionic analogue PotsF[N,L]
defined in the code file. Consequently, we will also have to replace tip[N,L] by
tipF[N,L].

An alternative way to achieve the decomposition is by means of a particular,
built-in Mathematica function, PolynomialReduce. This function provides
the decomposition of a given multivariate polynomial in terms of a set of poly-
nomials. The code for decomposing the bosonic Laughlin state then reads

LaugDeco[na_,nu_]:=Module[{state, base, symb, laur, prf, outp},

state = Laughlin[na,nu];

base = ConjS[na, na (na - 1)];

symb = Table[z[i], {i, 1, na}];

laur = PolynomialReduce[state, base, symb];

If[laur[[2]] != 0, Print["Problem in reduction"]];

prf = laur[[1]] tip[na, na (na - 1)];

outp = prf/Sqrt[prf.prf];

outp]

For most states that we have considered, the decomposition by means of deriva-
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tives is faster. However, making use of PolynomialReduce turns out to be
quicker for the fermionic Laughlin state as well as for quasiparticle excitations.

In figure 1, a snapshot of the code for the decomposition of the Laughlin
state is provided for N = 3, N = 4 and N = 5. The code has been tested for
N ≤ 7 on a laptop running on linux with 1Gb of RAM memory. A listing of the
different commands defined in Strongdeco.nb is provided in the Appendix.
The notebook is provided with some examples built-in inside.

Figure 1: Snapshot of the code where the decomposition of the Laughlin state with ν = 1/2
is obtained for N = 3, N = 4 and N = 5.

5. Applications

Finally, we make use of the presented decomposition scheme, and consider
as examples three problems which might be tackled with the given code.

5.1. Wave-function overlaps

The decomposition achieved by our code turns out to be very useful if the
state, e.g. the eigenstates of a certain problem or the evolved state at a given
time, of a system is known in the many-body basis. This is the case if a system
is studied via exact diagonalization [3, 6, 13, 14]. It is then customary to ask
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ℓ = 0 1 2 3 4 5 6 7 8 9

m = 2 257
553

264
553

303
553

446
553

447
553

330
553

165
553 0 0 0

m = 3 185
706

185
706

209
706

321
706

417
706

465
706

455
706

339
706

186
706

62
706

Table 1: Angular-momentum distribution for Laughlin states of N = 4 particles for bosons
(m = 2) and fermions (m = 3).

whether, and to which degree, the obtained state resembles one of the well-
known strongly correlated states described in Sect. 2. To answer this question
one has to calculate the overlap between both states, which can either be done
by straightforwardly expressing the many-body state in first quantization and
then evaluating the overlap integrals. For reasonable system sizes of N ≥ 3,
the latter is a very lengthy task. The second possibility consists of finding
an expression of the analytic wave function in terms of the many-body basis,
which then reduces the overlap calculation to a simple scalar multiplication of
two vectors. In this case, the first step is the non-trivial one, but it is directly
achieved by the code we have presented here.

5.2. Angular-momentum distribution

As a second application, one can consider a system which is known to have
eigenstates of the form given by Eq. (1). Many of the properties of such states
are better computed by first transforming it into the independent motion basis.
A clear example is the calculation of the angular momentum distribution of the
state, from which one also gains insight into its one-body density matrix and
other correlation functions. For the fermionic Laughlin state this problem has
been considered in Ref. [21], where exact results are obtained by calculating the
density and then extracting the angular momentum distribution. This method,
however, fails for systems larger than N = 3, for which MonteCarlo methods
have been applied. By means of our code, we are able to reproduce these
results by decomposing the Laughlin state into a basis from which the angular
momentum of each particle can be directly read off. It is straightforward to go
beyond the analytical results of Ref. [21]. As an example, we give in Table 1
the angular momentum distributions for the fermionic Laughlin state at m = 3
and the bosonic Laughlin state at m = 2 of a system with N = 4 particles.

5.3. Fractional charge of excitations

Another useful application is the calculation of the normalization factor for
a state of the form (1). As explained in Ref. [28], the normalization factors
Nqh(ξ, ξ

∗) and Nqp(ξ, ξ
∗) of the quasi-particle in Eq. (7) and the quasi-hole

state in Eq. (8), contain information about the Berry phase a · dx which these
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excitations acquire during an adiabatic movement:

aξ ≡ i

2
∂ξlnN (ξ, ξ∗), (17)

with ∂ξ ≡ 1
2 (∂x − i∂y) and aξ ≡ 1

2 (ax − iay). With this expression one may
consider the phase picked up by the quasi-particle when it is moved adiabatically
around a closed loop, which is given by Ia ≡

∮

dx · a. Comparing this with the
phase a moving particle acquires in the system, IA ≡

∮

dx · A, where A is
the external gauge potential, one is able to deduce the fractional charge and
fractional statistics of the quasi-particles. If both loop integrals are equal, i.e.
η ≡ Ia/IA = 1, the quasi-particle behaves like a normal particle, while the
mismatch by a fractional factor, i.e. η = 1/p with p an integer, allows to
interpret the quasi-particle as a “fractional”particle.

The difficulty of this analysis lies in the calculation of the normalization
factors. For the Laughlin state one usually circumvents this by applying the
Plasma analogy [7, 26] to determine the normalization factor of the correspond-
ing quasi-holes and quasi-particles, avoiding the explicit calculation. It is found
that p = m, i.e. the fractional behavior of the excitation follows from the frac-
tional filling of the lowest Landau level. The plasma analogy, however, is not
applicable to all the relevant states, which exhibit such anyonic excitations, but
are different from the Laughlin. Calculating the normalization factors by direct
integration is much too complicated, even for systems of only a few particles.
However, by transforming the corresponding quasi-hole or quasi-particle state
into the many-body basis by means of our code, the normalization factors are
obtained by simply taking the scalar product of the decomposition vector.

As an example, we calculate ηqh and ηqp for quasi-holes and quasi-particles in
small Laughlin systems. First, we notice that the polynomial in Eqs. (7) and (8)
contains terms of different order in z. It is therefore necessary to separate the N
contributions with fixed angular momentum, and then apply the decomposition
explained in Sect. 4 to each of them. Then we can write the normalization factor
as a polynomial in ξ and ξ∗. For instance, a the wavefunction of a quasi-hole
in the m = 2 Laughlin state of N = 5 bosons, is found to have the following
normalization factor:

C ∝ 1 + 0.477|ξ|2 + 0.117|ξ|4 + 0.0211|ξ|6 + 0.00334|ξ|8 + 0.000668|ξ|10, (18)

which, even in high orders of ξ, agrees reasonably well with the prediction by
the plasma analogy, according to which C ∝ exp( 1

m |ξ|2).
However, from Table 2 showing the results for different numbers of particles,

we find that, especially for the quasi-particle excitation, significant deviations
occur for very small systems (N = 4). For N = 6, the mismatch is almost
cured, and the agreement with the plasma analogy prediction is better than 3%
for both quasi-holes and quasi-particles.
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N ηqh ηqp
4 0.473 0.354
5 0.477 0.438
6 0.487 0.501

Table 2: Fractional charge of quasi-holes and quasi-particles in a bosonic Laughlin system at
filling ν = 1/2 for different number of particles N .

6. Conclusion

We have presented a code which, by means of the symbolic package Mathe-
matica, analytically decomposes relevant analytical, strongly-correlated many-
body states into the many-body basis built up by single-particle angular momen-
tum eigenstates. This basis is commonly used to describe 2D quantum systems
subjected to gauge fields, and thus the described decomposition is a useful tool
for calculating the overlap of different states with famous test states like the
Laughlin state, the Pfaffian state and many others. It also allows for studying
the angular-momentum distribution of strongly correlated states, which can be
related to the ground-state density of the system, or normalization constants
of the states. The latter has been shown to provide insights into the fractional
character of quasiparticle excitations.
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Appendix A. List of routines in Strongdeco.nb

We provide a brief description of the routines,
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Command Name Brief Description

Many-body states
Pots[N, L] Many-body states for N bosons of fixed total L
ConjS[N,L] Permanents for N bosons of fixed total L
PotsF[N,L] Many-body states for N fermions of fixed total L
ConjSF[N,L] Slaters for N fermions of fixed total L

Sample states
Laughlin[N,ν] Laughlin state of N atoms and filling ν.
Pfaffian[N,ν] Pfaffian state of N atoms using a Laughlin of filling ν
Conje[N] Pfaffian state for N atoms, filling 1/2
deltaL2[N,I] Generalized Laughlin state [13]
deltaL4[N,I] Generalized Laughlin state [13]
qh[N,ν,ξ] Laughlin quasi-hole state at position ξ
quah[N,ν] Laughlin quasi-hole state at the center
qp[N,ν,ξ] Laughlin quasi-particle state at position ξ
quap[N] Laughlin quasi-particle state at the center (ν =1/2)
deltaQP2[N,i] Generazlied Laughlin quasi-particle
edge[N] Laughlin (ν = 1/2) edge excitation
deltaP2[N,i] Generalized Pfaffian
deltaP4[N,i] Generalized Pfaffian

Normalizations
nami[N,L] Repeated terms, bosons
tip[N,L] Normalization coefficient, bosons
tipF[N,L] Normalization coefficient, fermions

Decomposition of states
Bosons
LaugDeco[N,ν] Laughlin decomposition
DDecoLaug[N,ν] Laughlin decomposition using Eq. (15)
EdgeDeco[N] Laughlin edge state
Laug2Deco[N] Generalized Laughlin
Laug4Deco[N] Generalized Laughlin
QuasiHDeco[N] Quasihole
DDecoQuah[N] Quasihole using Eq. (15)
NormQh[N] Quasihole norm
QuasiPDeco[N] Laughlin quasiparticle
DDecoQuap[N] Laughlin quasiparticle using Eq. (15)
QuasiP2Deco[N] Generalized Laughlin quasiparticle
PfaffDeco[N] Pfaffian
ConjeDeco[N] Pfaffian using Eq. (6)
DDecoConje[N] Pfaffian using Eq. (6) and Eq. (15)
Pfaff2Deco[N] Generalized Pfaffian
Fermions
LaugDecoF[N,ν] Laughlin
DDecoLaugF[N, ν] Laughlin using Eq. (15)
QuasiHDecoF[N,ν] Laughlin quasi hole

Table A.3: List of commands provided in Strongdeco.nb.
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[11] G. Juzeliūnas and P. Öhberg, Phys. Rev. Lett. 93, 033602 (2004).

[12] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, in press Reviews of
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