Computational wave optics library for43-: CWO++ library
Tomoyoshi Shimobalig, Jian Tong Weng) Takahiro Sakurdj Naohisa Okadk Takashi Nishitsufi, Naoki Takad®, Atsushi
ShirakF, Nobuyuki Masud3 Tomoyoshi It@

aDepartment of Artificial Systems, Graduate School of Ereging, Chiba University, 1-33 Yayoi-cho, Inage-ku, ChiGajba 263-8522, Japan
bDepartment of Informatics and Media Technology, Shohokie@® 428 Nurumizu, Atsugi, Kanagawa, 243-8501 Japan
CDepartment of Imformation and Computer Engineering, KagarNational College of Technology, Kiyomi-dai Higashi®24], Kisarazu, Chiba, 292-0041 Japan

—i
—i

o
o\ Abstract

~— Diffraction calculations, such as the angular spectrum mettratiFresnel diractions, are used for calculating scalar light prop-
agation. The calculations are used in wide-ranging optelddi for example, computer generated holograms (CGHgitatli
holography, diractive optical elements, microscopy, image encryptich @ecryption, three-dimensional analysis for optical de-
vices and so on. However, increasing demands made by laede difraction calculations have rendered the computational powe
N of recent computers inflicient. We have already developed a numerical library fératition calculations using a graphic pro-
~——Cessing unit (GPU), which was named the GWO library. Howetves GWO library is not user-friendly, since it is based on C
() language and was also run only on a GPU. In this paper, weaeaatew G-+ class library for difraction and CGH calculations,

9 which is referred as to a CWE library, running on a CPU and GPU. We also describe the stracperformance, and usage
"aexamples of the CW®+ library.

Q Keywords:
(/) Diftraction, Digital holography, Digital holographic micragwy, Graphics processing unit, GPGPU, GPU computing, Hajoigy,
O Real-time holography, Scalar light propagation

n

_C 1. Introduction |E]. To reconstruct 3D object information from a hologramain

Q. computer, we need to calculatefdaction calculations. Appli-
p pp

' Scalar light propagation is calculated using severifati- cations of digital holography include Digital Holographti-
— tion calculations. These calculations, e.g. the angulectspm croscopy (DHM) [14 15], Digital Holographic Particle Tiac
method and Fresnelftliactions, are used in wide-ranging op- ing Velocimetry (DHPIV) [16] 177] and so forth.
tics fields Iﬂ*_DZ]’_ ultrz_isonle[S], X-ray.[4] and so on. In 0p- "~ phase retrieval algorithm retrieves phase informatiomof a
tics, its applications include Computer Generated Hologra gpyiect Jight from intensity patterns captured by CCD camera
L() (CGH), digital holography, phase retrieval, image endoipt |, optics, Gerchberg-Saxton (GS) algorittm! [18] and modifie
L) and decryption, steganography, three-dimensional (3Blyan 5gorithms, e.g. Fresnel ping-pongl[19] and Yang-Gli [2gbal
l\. sis for optical devices, Miractive Optical Elements (DOE), and rithms, are widely used for phase retrieval. The algoritianes
o Seon o o _ based on iterative optimization: namely, they graduallsieee
_ InCGH and digital holography, firaction calculations are phase information by calculating fifiaction calculations be-
vital. CGH are generated by calculating dfdiction calcula- yyeen certain intensity patterns (normally more than twhijev
-+ tion from a 3D object to & hologram plane on a computer. If e piact to amplitude and phase constraints. The applitatb
>2 apply CGttH tot_a 3t|):) display tECh”'quEtB’ 6], tTe t‘icz:'qﬁggthe orithms include, for example, wavefront reconstonc
comes attractive because a wavefront reconstructed fro 5[k ic projectioh [24. c
E is almost equivalent to an object light. However, the coraput E(’)]' holographic projection a.1251 2e] b7 28, asy
tional time required for the diraction calculation involved in Diffraction based encryption and decryptionl [3, [31, 32,
CGH hampers the realization of a practical 3D display using,nq steganograpHy [33] were proposedffittion-based tech-
CGH. Many methods have thus been proposed for acceleratingqyes have an interesting feature, and handle not only 2D bu
the computational time[7] 8/ 8,110,/11]. also 3D images.

Digital holography is a well-known method for electroni- | 3p analysis for optical devices, such as optical Micro
cally recording existing 3D object information on a hola®ra gjectro Mechanical Systems (MEMS), DOE and so on, we can
which s captured by a Charge Coupled Device (CCD) and Comypytain 3D light distribution to stack multiple two-dimensal
plementary Metal Oxide Semiconductor (CMOS) cameras [12¢2D) diffraction calculations along depth-directibnl[34]. For ex-

ample, several research works have analyzed the opticacha

“Corresponding author teristics of a Digital Micro-mirror Device (DMD), which isre
Email addressshimobaba@faculty.chiba-u.jp (Tomoyoshi of the MEMS devices, using Fresnefidaction and the angular
Shimobaba)

Preprint submitted to Elsevier July 29, 2011

http://arxiv.org/abs/1107.5578v1

spectrum metho@EBG]. In this paper, we develop a+G class library for computa-
As mentioned, dfraction calculations are practically used tional wave optics involved in éraction and CGH calculations,
in wide-ranging optics fields. The former can also accederatwhich is referred to as a CW&- library, running on CPU and
computational time using the Fast Fourier Transform (FHT) a GPU. The CWGQ-+ library, unlike the GWO library, is devel-
gorithm; however, if we wish to realize real-time 3D recon- oped using @+ and its structure, performance, and usage ex-
struction from holograms in digital holography, generadrge- amples are described.
area CGH, and obtain 3D light field from an optical device, re- In Section 2, we describeftliaction calculations, the struc-
cent computers lack flicient computational power. ture of the CWQ+ library, the class “CWQ” for diraction
Using hardware is anféective means to further boost com- calculations, and the subclass “cwoPLS” for Point Light igeu
putational speed for CGH andffiaction calculations. In fact, (PLS)-based diraction and CGH calculations on a CPU. In
we showed dramatically increased computational power to deéSection 3, we describe the “GWQO” and “gwoPLS” classes for
sign and build special-purpose computers for CGH targeting diffraction and CGH calculations on a GPU. In Section 4, we
3D display and named HOlographic ReconstructioN (HORN) describe the implementation of the “CWO” and “GWO” classes.
in order to overcome the computational cost of CGH. The HORM Section 5, we describe field types which are held in the
computers designed by pipeline architecture can calcliggte classes. In section 6, we show the performance fifadition
intensities on CGH at high speéd [37] 88, 139,(40) 41, 42]. Thand CGH calculations on a CPU and GPU. In Section 7, we
HORN computers were implemented on a Field Programmablshow the applications of the CW@- library to holography. In
Gate Array (FPGA) board, except HORN-1 and -2. To date, weSection 8, we conclude this work.
have constructed six HORN computers, which have been able
to attain several thousand times the computational spesgt of 5 petail of the CWO++ library
cent computers. Researchers also developed a specialsgurp
computer, FFT-HORN, in order to accelerate Fresnéatition The CWOr+ library mainly consists of two €+ classes:
in DHPIV [16,[43]. The FFT-HORN was able to reconstruct CWO and GWO. The CWO class calculateffrdiction calcu-
256 x 256 images from holograms, which were captured by dations on a CPU, has auxiliary functions and allows us te cal
DHPIV optical system, at a rate of 30 frames per second. Théulate the following diractions:

FPGA-based approaches for both CGH anfiraction calcu- 1. Fresnel diraction(Convolution form)
lations showed excellent computational speed, but areestbj 2. Fresnel diraction(Fourier form)
to the following restrictions: the high cost of developirgt 3. Shifted Fresnel diraction

FPGA board, long development term, long compilation of the 4. Angular spectrum method
hardware description language and mapping to FPGA times, 5. Shifted angular spectrum method
and technical know-how required for the FPGA technology. 6. 3D difraction calculation

Conversely, recent GPUs allow us to use as a highly paralthe first to fifth difractions are primary éraction calculations,
lel processor, because the GPUs have many simple processagh which the sixth dfraction calculation is based. The above
which can process 32- or 64-bit floating-point addition, tiaul diffraction calculations can also be calculated on a GPU using
plication and multiply-add instructions. The approachafed- the GWO class.
erating numerical simulations using a GPU chip is referoeskst Table[1 shows the structure of the CW® library. The
General-Purpose computation on GPU (GPGPU) or GPU contiass “CWO” is the top class of the CW@ library, while the
puting. The merits of GPGPU include its high computationalpther classes, which are “GWO”, “cwoPLS” and “gwoPLS”,
power, the low cost of the GPU board, short compilation time gre inherited from “CWO”. The “cwoPLS” and “gwoPLS”
and the short development term. classes are for PLS-basedftiction and CGH calculations on

We have already developed a numerical library fdirde- 5 cPU and GPU, respectively.
tion calculations using a GPU, which was named the GWO “cwoComplex” and “cwoObjPoint” are data structures and
library [44]. The purpose of the GWO library is to facilitate their auxiliary functions for complex number and objectnisi

access to GPU calculation power for optics engineers and rgor PLS, respectively and are distributed as open-sourde<o
searchers lacking GPGPU. The GWO library has already been

distributed via the Internet and used to report some papers. 2.1. Dijffraction calculation

example, we reported on a real-time DHM syst% [45frdc- Figurell shows a €iraction calculation by monochromatic
tion calculations in a computer-aided design tool for depel wave, whose wavelength ils between a source plane (aperture
ing a holographic display [46], a fast CGH calculatibn 4%] 4 function)usy(x4, y1) and a destination plane(x,, y»).

and a DHM observable in multi-view and multi-resolution[49 The CWOr+ library allows us to calculate FFT-basedftic-
Moreover, researchers studied Airy beams generation ad th tion calculations. In addition, ffraction calculations are cate-
propagation feature in the simulation using the GWO librarygorized into convolution and Fourier forms. The former cat-
[@, é]. However, the GWO library is not user-friendly be- egory includes Fresnel filiaction (convolution form), Shifted
cause it is based on C language, e.qg. the library user must maRresnel difraction, Angular spectrum method and Shifted an-
age the CPU and GPU memory allocation personally and sgular spectrum method. The latter category includes Ftesne
on. In addition, the library is run on only a GPU, namely thediffraction (Fourier form). In the following subsections, we de
diffraction and CGH calculations are not calculated on a CPU scribe these diractions.

2

Table 1: Classes of the CW@Q library. They are distributed as open-source codes.

Class Role Parent class Related source files
Diffraction calculation cwo.h
cwo on CPU None Ccwo.pp
Diftraction calculation gwo.h
gwo on GPU cwo gwo.cpp
PLS-based diraction
and CGH calculationg cwoPLS.h
cwoPLS on CPU cwo cwoPLS.cpp
PLS-based diraction
and CGH calculationg gwoPLS.h
gwoPLS on GPU gwo gwoPLS.cpp
cwoComplex| Complex number None cwo.h
cwoObjPoint PLS None cwo.h
cwoVect Vector operations None cwo.h

Destination plane y,
u, (x 2,V 2)

Wave
Source plane length
A

i
ul(xl,yl

A

Figure 1: Difraction calculation by monochromatic wave, whose waveteigy
A, between a source plane (aperture functiorfX;, y1) and a destination plane
u2(X2, Y2)-

2.1.1. Fresnel giraction (convolution form)
The convolution form of Fresnelfiliaction is expressed by:

exp(&2) oo
Uz(X2, Y2) = T; ff U1(X1, y1)

exp(-((xz = x0)” + (¥2 = y2)))xadys

1)

The above equation is the convolution form, and can be ex-

pressed relative to the following equation according tovoen
lution theorem:

%?ﬂz)rl[f[u(xb Y1)]7: [hp (¥a. yl)” (2)

where, the operatorg[-] and ¥ ~![-] indicate Fourier and in-
verse Fourier transforms, respectivaty(x,y) is the impulse
response function (also known as the point spread functibn)
Eqg. (@) as follows,

Uz(X2, Y2) =

he(x.) = exp(- (< +) ®3)

In the numerical implementation, we need to discretize each
spatial variable and use FFT instead of Fourier transforsns a
follows: The discretizing space variables axg 1) = (M AXq,
n1Ay;), whereAx; andAy; are the sampling pitches ang, n;
are integer indices on the source plane. The discretiziagesp
variables arexy, y2) = (MpAXz, N2AY,), whereAx, andAy, are
the sampling pitches and,, n, are integer indices on the desti-
nation plane. The ranges of integer indices are as follows:

N N
<My < - -1

2 2
Dmm <X (4)
2~ 2

where, Ny and Ny are the numbers of horizontal and vertical
pixels on the source and destination planes, respectively.

The discretized Fresnelfttiaction of the convolution form
is as follows:

21
Uz(mp, Np) = w FFT’l[F FT[u(ml, ml)]
i1z (5)
FFT[hF (ml, ml)H
he(m.) = exp(- ((MAX)? + (NAY1)?)) (6)

Note that the sampling pitches on the destination planes
are the same as those on the source plane after fiinaation,
namelyAx, = Ax; andAy, = Ayj.

2.1.2. The Fresnel giraction (Fourier form)

We can obtain the Fourier form of the Fresnefidiction to
expand the quadratic term in Eg] (1). The formis expressed by
exp(%2)

i1z

+00 27_[
[vty exptiZ v + yoxdys

Uk o) = exp(08 +¥3)

(7)

whereu’ (X, y1) is defined as, 2.1.4. Angular spectrum method
5 o The angular spectrum method can be devised from the Helm-
(x{ +y1) . e e
U (X1, Y1) = U(Xe, Y1) explim——22). (8) holtz equation and is suitable for computingfdiction at short
Az distance, which is impossible for Fresnel and Shifted Feksn
This form is rewritten by the Fourier transform. The dis- diffractions. The angular spectrum method is expressed by:
cretized Fourier form of Fresnelftfiaction is expressed by:

exp(%2)
u(my, nz) :T;

F FT[u’(ml, nl)]

+00
U(X, y) = ff A(va fy» O)HA(fX7 fy)
expl 2n(fxx + fyy))dfid iy,

exp(S((MeA%,)? + (N22)%) (15)

where, fx and f, are spatial frequenciegy(fy, fy, 0) is defined
Note that the sampling spacing on the destination plane iBY A(fx, fy,0) = F[u(x1,y1)l, and Ha(fx, fy) is the transfer
scaled toAx; = Ax/(12) andAy, = Ay;/(42). function,

2.1.3. Shifted Fresnel iaction Ha(fx, fy) = exp(z \/k? — 4n%(12 + 12)) (16)
Shifted-Fresnel diraction @Z] enables arbitrary sampling

pitches to be set on the source and destination planes as wilherek = 2/ is the wave-number.

as a shift away from the propagation axis, which is refereed a The discretizing frequencies aré(fy) = (A fy, niAfy),

to off-axis propagation. The equation is derived from a comwhereAf, andAf, are the sampling pitches on the frequency

bination of Fourier form Fresnel fiiaction and scaled Fourier domain. Therefore, the discretized angular spectrum naetho

transform|[5B]. The same methods were proposed in somewhegkpressed by:

different areas [54, 55]. The discretized shifted Fresrféred:

tion is expressed by the following equations: u(mn) = FFTfl[F FT[u(m, n)]HA(ml, nl)]. (17)

UMy, np] = CSFFT‘l[FFT[u’l[ml, nl]]FFT[hS[ml, nl]H 2.1.5. Shifted angular spectrum method
(10) The angular spectrum method calculates the exact solution
in scalar light propagation because it is derived from thiertteltz
equation without using any approximation, but only calteda
light propagation when close to a source plane due to the-alia
exp(ikz) T, ing problem. In addition, the angular spectrum method doés n
STz exp(,l_z(xl +¥D) calculate df-axis propagation.
or _ 5 The shifted angular spectrum meth@[SG] method enables
exp-i—— (Oxo Pro X1 + Oy PyoYa)) EXPL-in (Sxmi+Syn)) off-axis propagation by applying a band-limited function ta Eq
(11) (@8). In addition, although the angular spectrum method, as
mentioned, triggers an aliasing error when calculatingrey lo
propagation distancﬁb?], the shifted angular spectruthate

Cs

uy[me, nq] = ug[mg, n] equl(xé +Y2)) overcomes the aliasing problem, making it an excellent mean
. Az 12 of performing difraction calculations. The discretized shifted
exp(-i2m(MeSxOy, + NoSy0y,)) (12) " angular spectrum method is expressed by:

exp(-in(Symg + Synp))
u(mg, ny) = FFT’l[F FT[u(ml, nl)]Hs Ay, ng)

18
h{m, n] = exp(r(Sxn? + S,n?)) (13) Rect™ ™ %)Rect ng — Cy)] (18)
Wy Wy
where, Ox,, Oy,) and Oy, Oy,) are the shift distances away)))
as follows:
Hs a(my, 1) = Ha(my, ny) exp(2r(Oxmy A fy + OymAfy))
S, = pxopxl S, = pYOp)ﬁ
X iz 7T az ” (19)
Xo = MoPxy + Oxes Yo = NoPy, + Oy, (14) Two rectangle functions are band-limit functions with hori
X1 = MPx, + Oy, Y1 =n1py +Oy,. zontal and vertical band-widths of,, wy and shift amounts of

Cy, Cy. See Ref.|[56] for the determination of these parameters.
For more details, see ReE[SZ]. a lE] P

2.1.6. Summary of glifaction calculation where, the operatommax-} andmin{-} take the maximum and
As mentioned, many numericalfftiaction calculations have minimum values in the argument. Finally, we save the intgnsi
been proposed to date, a classification of which is shown-in Tdield with 256 steps as a bitmap file “lena512x&i#ract.omp”.
ble[Z. Each diraction must be used in terms of the number of Of course, we can also save the intensity field in other image
FFTs (namely, which is proportional to the calculation jme formats. FiguréR (b) shows thefffacted image.
required memory, propagation distance, sampling pitcihes a Note that the sample code does not explicitly indicate the
on- or af-axis propagation. For example, if we calculate thewavelength and sampling pitches on the source and destina-
diffraction calculation with dierent sampling pitches on source tion planes. The default wavelength and sampling ratesz8e 6
and destination planes, we must use Shifted Fresfiehdiion. nm and 1@mx 10um. If we change the wavelength and sam-
Note that, in the dfraction calculations of the convolution pling pitch, we can use the CWO member functions “SetWave-
form, the area of the source and destination planes must-be ekength” and “SetPitch”.
panded fromNy x Ny to 2Ny x 2N, during the calculation, be-
cause we avoid aliasing by circular convolution. After tla¢ c
culation, we extract the exactfttacted area on the destination
plane with the size oNy x Ny. Therefore, we need FFTs and
memories of size 8, x 2Ny during the calculation.

2.2. CWO class: Simple example using the G\W@brary of
the Fresnel dfraction calculation on the CPU
The CWO class providesfiiiaction calculations and auxil-
iary functions. We used the FFTW Iibra&[58] in thefdaction
calculations in the CWO class.
We show the following source-code of the Fresndirdc-
tion calculation on a CPU using the CW@ library:

Listing 1: Fresnel diraction calculation on a CPU using the CWO class. ~ Figure 2: (&) Original image with 512 512 pixels. (b) Difracted image with

the wavelength of 633 nm and the sampling pitches @i& 10um on the

1 CWOc; source and destination planes.

> C.Load('lena512x512.bmp");

s c.Diffract(0.2, CWQFRESNELCONV);

4 c.Intensity(); 2.3. Three-dimensionalgiiaction calculations

s C.Scale(255); Certain methods for calculating a scalar 3D field were pro-
s C.Save(lena512x512_diffract.bmp"); posed [[34] 59]. In Ref.[[59], the method can calculate a 3D

In line 1, we define the instance “c” of the CWO class. Indlﬁractlon calculation in a low numerical aperture (NA) system

the next line, using the member function of “Load” in the CWO using once 3D-FFT, so that the method fieetive in terms of

class, we store an original image (Elg.2(a)) of a bitmap ﬁlecomputatlonal cost and memory amount. In the GWQli-

“lena512 x512.bmp” with 518512 pixels into the instance “c”. brary, we provide a cf'ilculation O.f a scalar 3Qfmctiqn field
“Load” can also read jpegffiformats, and so forth. See more bY sta_ckm 2D df_racuon calculations as me”"of‘eq na depth
details infAppendix_B. In line 3, the CWO member function direction [34]. Figurdl3 shows a scalar 3Dffdiction field
“Diffract” calculates the dfiraction calculation according to the by staclgng 2D diraction <_:a|cu|at|ons_. Unllke_2D ffracnon_
first and second arguments of the function, which are thegsrop cglculatl_ons, the 3D_¢Iiraf:t|on calculation requires a sampling
gation distance and type offtliaction calculation, respectively. p|tch_Az in a depth direction. . .

Here, we select the propagation distance of 0.2 m and Fresnel L'S.tlz shows the 3[.) diraction calculation from a hologram,
diffraction of the convolution form (CWGRESNELCONYV). on which two small circles are recorded by the angular spec-
The calculation results in a complex amplitude field. trum method. In the calculation, the conditions are as ¥adto

To observe the light intensity field of the complex amplitudethe number of pixels in 3D #racted field is 51 512x 512,

field as image data, the initial step involves the CWO mem-the horizontal and vertical sampling pitches argrO< 10Qum,

ber function “Intensity” calculating the absolute squaféhe the sampling pitch in a depth directi@z is 1cm, the distance

complex amplitude field in line 4. Namely, the calculation is betweep the two small C|r.cles and the hologram isr@nd
expressed by: the radii of the two small circles are 2ii®. We need to set the

large sampling pitch in a depth direction compared with thie h
(Mg, n2) = |ua(my, no)[%. (20) izontal and vertical sampling pitches because the optystiém
has a low NA.

In line 1, we prepare two instances “c1” and “c2” because
we need to maintain a hologram and a 3frdicted field, in-
dividually. In line 2, we load the hologram to the instance cl
I (mp, n2) — min{l (Mg, ny)} In line 3, we allocate the memory of 522512 x 512 pixels

: 25 21
Imc’:v(l(lmz,nz)}—mm{l(mz,nz)}>< 3 (@)

In the next, the CWO member function “Scale” converts
the intensity field with a large dynamic range into that wif62
steps.

[256(Mp, N2) =

Table 2: Classification of éiraction calculation. In the ffraction calculations of the convolution form, the area & #ource and destination planes must be
expanded fronNy x Ny to 2Ny x 2Ny during the calculation, because we avoid aliasing by arcobnvolution. After the calculation, we extract the exdiffracted
area on the destination plane with the sizé\gfx N,. Therefore, we need FFTs and memories of sidg 2 2Ny during the calculation.

Sampling| Sampling
_ pitchon | Pitchon Number
Propagation | ‘source | destination| Off-axis of Required
Diffraction distance plane plane calculation| FFTs | memory
Fresnel
diffraction
(Convolution form) Fresnel AX X Ay AX X Ay N.A. 3 2N x 2N
Fresnel
diffraction A
(Fourier form) Fresnel AX X Ay 2x Y N.A. 1 N x N
Shifted
Fresnel
diffraction Fresnel Arbitrary | Arbitrary | Available 3 2N x 2N
Angular
spectrum
method Short distancg Ax x Ay AX X Ay N.A. 2 2N x 2N
Shifted
angular
spectrum method All AX X Ay AX X Ay Available 2 2N x 2N

for the 3D difraction field. In line 4, we set horizontal, verti-
cal and depth-direction sampling pitches, respectivatylinie

5, the 3D difraction field is calculated by the member funcH
tion “Diffract3D”. The first argument is set to the instance o
the CWO class maintaining the hologram. The second arg
ment is the distanceas shown in Fig.]3 between the hologram
and 3D ditracted field. The third argument concerns the typ
of diffraction calculation. In line 6, we save the calculated 3L

diffraction field as a cwo file, which includes the 3Dfdiction

field in complex amplitude in binary form. Figuté 4 shows the
volume rendering from the cwo file. In the left figure, we can
see the two circles reconstructed head-on in the voluméeln t

right figure, we can see aftirent view of the reconstructed

two circles.

Source plane
u (xl.yl)

Destination planes

”z(%,)ﬁ)

Figure 3: Scalar 3D diraction field by stacking 2D éiraction calculations.

Listing 2: 3D dffraction calculation based on the stack of 2Brdicted planes.

1 CWOcl,c2;

» cl.Load(hologram.bmp");

s c2.Create(512, 512, 512);

4 C2.SetPitch(10e6, 10e-6, 0.01);

s c2.Diffract3D(al-0.1, CWQANGULAR);
s C2.Save(sd.cwo");

Figure 4: Volume rendering of the 3Dftfiaction calculation by Lidfl2.

2.4. Calculations of a complex amplitude field and a computer
generated hologram from point light sources

Current CGH calculations are mainly categorized into two
approaches: polygon-based|[10, 64] and Point Light Sources
(PLSs) approachesl[7, 9,/61]. Polygon-based approaches are
based on diraction calculations using FFTs. In the subsection,
we focus on the PLS approach, which treats a 3D object as a
composite of multiple PLSs, and generates a CGH from a 3D
object more flexibly than polygon-based approaches.

The class “cwoPLS” calculates a complex amplitude field
and CGH from PLSs. In Fid.]5, the calculations assume that a
3D object is composed of PLSs with a numbeiof

3D object consisting of CGH and a 3D object of 0.2 m. In line 7, the 3D object data of
PLSs the dinosaur is read, while in the next line, the coordinafes
the 3D object are normalized from -4 mm (-1000 pixels) to 4
mm (1000 pixels). In line 9, the CGH is calculated by Hql (23),
(x.,y.,z)) and in the next line, the calculated CGH pattern is normdlize
R to 256 steps by EqL(21).
Figure[®(a) and (b) show the CGH generated by[List.3 and
7 the reconstructed image from (a) using the CWO class.

Listing 3: CGH generation using the class “cwoPLS".

CWOPLS c;

float p=4e-6;

float z=0.2;
c.Create(2048,2048);
c.SetDstPitch(p,p);
c.SetQrset(2500p, —512«p, 2);
c.Load{tyranno_000.3df");
c.ScalePoint(pl000);
c.PLS(CWQPLS FRESNELCGH);
Figure 5: PLS-based fiiaction and CGH calculations. 10 C.Scale(255);

1 C.Savefcgh.bmp");

u(x y)orI(x y)

Destination plane
(Complex amplitude field N
or CGH) y

N

X

© ® N o o A W N e

We can calculate the complex amplitude field or CGH to
superimpose PLS distributions from one PLS to the destinati
plane. The complex amplitude fielgx, y) from PLSs by Fres- 3. GWO and gwoPLS classes: Mraction and CGH calcu-
nel diffraction is expressed as, lations on GPU

The current CW@+ library provides ditraction and CGH
exp(%z) N on (X - Xj)Z +(y— yj)Z calculations on NVIDIA GPU chips by the GWO and gwoPLS
ucx,y) = — ZAieXP(T(>) classes. In this subsection, we briefly describe an NVIDIA
i ' GPU, and subsequently show the source code of Fredtreldi
(22) tion and CGH calculations on a GPU using the GWO and gwoP
LS classes.
Although initially GPU chips were mainly used for render-
ing 3D computer graphics, recent GPU chips have also been

where, & y) and (;, y;,z;) are coordinates on the destination
plane and a 3D objecA; is the light intensity of the 3D object.
A CGH calculation based on Fresneffdaction is expressed as

] used for numerical computation. In 2007, NVIDIA released a
’ new GPU architecture and its software development environ-
N 2 2 ifi i i
(X=X))*+(y-Yj) ment, Compute Unified Device Architecture (CUDA). CUDA
1Y) = Z A]’COS%(2z) (23) can be used to facilitate the programming of numerical compu
i

tations more than software previously developed, such & KL
where,l(x,y) is the CGH pattern. The computational complex- Cg language and so forth. Since its release, many papers usin
ity of the above formulas are ®(\«Ny), whereN, andN, are NVIDIA GPU and CUDA have been published in optics. In
the horizontal and vertical pixel numbers of the CGH. particular, calculations of CGl‘EbEdJSﬁ@ 65| 66] and reco
List @ shows CGH generation using the class “cwoPLS”.struction in digital holography [44, 45,149 |67] 68| B9, 76y
We generate a,D48x 2, 048 pixels CGH from the 3D object of successfully accelerated these calculations.
a dinosaur with 11,646 points. The sampling pitch onthe CGH, FigurelT shows the structure of an NVIDIA GPU, featuring
wavelength (default value) and distance between the CGH ar@PU chips with some Multi-Processors (MP). Moreover, the
the 3D object is gm x 4um, 633 mand 0.2 m, respectively. MP includes Stream Processors (SP), where the number of SPs
The class treats the 3D object as the source and the CGH as ther MP difers depending on the version of the NVIDIA GPU
destination plane. chip. One SP can operate 32- or 64-bit floating-point addjtio
In line 4 of List[3, the member function “Create” allocates multiplication and multiply-add instructions. SPs in an B
the required memory of the CGH. In line 5, the member func-erate the same instruction in parallel, and procesreint data.
tion “SetDstPitch” is set to the sampling pitches on theidast Namely, an MP is a Single Instruction Multiple Data (SIMD)
tion plane, namely the CGH. In line 6, the first and second-argufashion processor. In addition, each multiprocessor canaie
ments of the member function “Seff®et” are set to theffsets the same or dierent processing, thus allowing the GPU chip to
of the 3D object, namely horizontal and verticiisets of 1 cm be used as a highly parallel processor. The specificatiotieof
(2500 pixels) and -2 mm (-512 pixels) from the origin, respec GPUs used in this paper are shown in Table 3.
tively. In addition, the third argument sets the distandsveen

(@) (b)

Figure 6: (2) CGH generated by the class cwoPLS. (b) Reeatstt image from (a) using the class CWO.

Table 3: Specifications of the GPUs used in this paper.

NVIDIA Geforce GTX 460M | GeForce GTX295 (1 chip) GeForce GTX 580
CUDA processors 192 240 512
Memory amout (GBytes) 15 0.896 1.53
Core clock(GHz) 1.35 1.24 1.54
Memory clock (GHz) 1.25 1 2
Memory band width (GBytésec) 60 223.8 192.4

The host computer controls the GPU board and the commuitly execute the following steps, which are hidden to CWO
nication between the host computer and the GPU board via thérary users:
PCl-express bus. The host computer can also directly access
the device memory on the GPU board, which is used for stor-
ing input data, namely the location of the source plane or 3D
object, and the destination plane as computed by the GPU. The
multiprocessor has a shared memory, which is limited, hut lo
latency and faster than the device memory. In the classese th
memories are used for fast calculation. tude field or CGH on the destination plane) is stored in
The CUDA compiler compiles a C-like language source the allocated device memory.
code for the instruction set of the GPU chip, which is reférre 4. Receiving the result from the allocated device memory.
to as a “Kernel”. We download this “Kernel” to the GPU chip 5. Releasing the allocated device memories.
via the PCl-express bus. The kernel codes in the GW@®-
brary are collected in the form of a library and DLL files on 3.1. Fresnel dfraction and CGH calculations on a GPU using

1. Allocating the required memories for calculation on the
device memory.

2. Sending the input data (source plane or 3D object data)
to the allocated device memory.

3. Executing kernel functions. The result (complex ampli-

Windows OS, named “gwtib.lib” and “gwo_lib.dll”. When the GWO and gwoPLS classes
we use the GWO or gwoPLS classes, we need to link these files We show the source-code of a Fresndfrdiction calcula-
to our program. See more detail§in Appendik A. tion on a GPU using the GWO class. This example is the same

The difraction calculations, as mentioned, require someas Sectio 2]2 except using GPU, but somewhgeint in
FFT operations. The CUDA compiler allows us to acceleratezomparison to Lidfll.
the FFT algorithm on an NVIDIA GPU chip, which is named
CUFFT. It is similar to the FFTW library [58], and we use
CUFFT for the GWO and gwoPLS classes. 1 CWOc;

When the GWO and gwoPLS classes are used, they impli = GWO g;
3 C.Load('lena512x512.bmp");

Listing 4: Fresnel diraction calculation on a GPU using class GWO.

s C.Load('tyranno_000.3df");

s g.ScalePoint(pl000);

10 g.Send(c);

1u g.PLS(CWQPLS FRESNELCGH);
12 g.Scale(255);

s g.Recv(c)

12 C.Savefcgh.bmp");

Host Computer

PCI-Express Bus

GPU Board

GPU Chip
Multi-processor | | Multi-processor Multi-processor
'”St{J“rﬁtt'ﬂ '”Stﬁ’:ﬂ nstriction 4. Implementations of the CWO and GWO classes
EE [|(EE EE Now, we describe the implementations of the CWO and
A = || 58] [ER] GWO classes. For simplicity, we select the implementatains
. . the Fresnel diraction (Eq. [(b)) on the CWO and GWO classes
. . as an example.
E = |E | Figure[8 shows the implementations. Figle 8(a) shows a
f‘/l';f;‘;‘r‘y fﬂ';f;gdw portion of the CWO member function “Bract”, the functions
in which are defined as virtual functions o#&. The functions

“FFT”, “FresnelConvProp”, “Mult”, “IFFT” and “FresnelCon
Figure 7: Structure of NVIDIA GPU chip. vCodT” calculate FFT, the impulse response of Eg. (3), com-
plex multiplication, inverse FFT and the dfieient of Eq. [b).
When the function “Difract” in the CWO class is called,

4+ g.Send(c); the virtual functions defined in the CWO class are called.(Fig
s g.Diffract(0.2, CWQFRESNELCONV); B(b)). Moreover, these functions also call the functionfindel

s g.Intensity(); in the library and DLL files of “cwalib” (Fig. Bld)), which are

7 g.Scale(255); activated on a CPU.

s g.Recv(c); Conversely, when the function “Bract” in the GWO class

s C.Save(lenab12x512_diffract.bmp"); is called, the virtual functions defined in the GWO class are

called (Fid.8(c)). Moreover, these functions call thosérnel

GWAOS tlhe in_iti"’ll_l chzange, r\]/ve defing tEe instaﬁce "g” of tlheinthelibraryand DLL files of “gwadlib” (Fig.Ble)). These func-
class, inline 2. As the second change, the source plan ons are activated on a GPU. Therefore, the functiorffBct”

namely F'@(?‘)’ Is sent to a GPU by using the GWO cl_as§n the GWO class calculates the Fresndlirdiction on a GPU.
member function “Send”. When calling the member function The classes shown in the Talile 1 are distributed as open-
“S(_end”, the_ first step involves the automatic allocathri"f?a‘mg- source code, while the functions in the library and DLL files
quired device memory on the GPU to the instance *g”, via theof “cwo_lib” and “gwo_lib”, which are closed source code, are
CUDA API function “cudaMalloc”. Subsequently, the source distributed as binary files, '

plane on the host memory is sent to the device memory on the The current CW@+ library is compatible with Intel and

GPU using the CUDA API function “cudaMemcpy”. _AMD x86 CPUs and NVIDIA GPUs. If we port the CWO-

. In lines 5 to 7 of LisC4, we change fh? Instance names Ir]ibrary to other hardware, we need to inherit the CWO class to

lines 3 to 5 of LisC1 from the instance "c” of the CWO class , ey clags indicating the new hardware, then re-definealirtu

to the instance “g” of the GWO class. Therefore, these funcfunctions and write functions corresponding to “giily.

tions calculate the dfiraction, intensity and normalization on For instance. new GPUs of the HD5000 and HD6000 series

the GPU. Finally, we receive the calculation result from themade by AMD \;vere released. These GPUs have new archi-

GPU to the hostin fine 8, . tecture and software environment, Open Computing Language
Nex'g, we show the source.-code of C.GH calculation on AOpenCL). The architectures alsafeér from NVIDIA GPUs.

GPU using thg GWO class. This example is the same as Secti e have already reported the CGH calculation of EgG) (23) [71]

2.4 except using GPU. There are also some changes as COlKd Fresnel diraction calculation[[72]. Although we do not

pared with Lis{3. implement the CW®+ library on the AMD GPUs, we will

Listing 5: CGH calculation on a GPU using class gwoPLS. make a new class for AMD GPUs using the above mentioned
1 cwoPLSc; method.
> gwWoPLS g;
s float p=4e-6; 5. Field type
4+ float z=0.2;
s c.Create(2048,2048); The classes in the CW& library, namely the CWO, GWO,
s C.SetDstPitch(p,p); cwoPLS and gwoPLS classes, have field types indicating cur-
7 C.SetQfset(2500p, —512+p, 2); rent fields. There are three field types: complex amplitude

Open source

Closed source

class CWO cwo_lib
virtual void __ FFT(...); > cwWoFFT(.....);
virtual void __FresnelConvProp(...); » cwoFresnelConvProp(.....);
virtual void __FFT(...); > cWoFFT(.....);
. . " virtual void __Mul(...); > cwoMultComplex(.....);
Member function “Diffract” virtual void __IFFT(...); > cwolFFT(.....);
in class CWO virtual void __FresnelConvCoeff{(...); » cwoFresnelConvCoeff(.....);
_ FFT(a,a,CWO_C2C);
__FresnelConvProp(b); ®) @
~_FFT(b,b,GWO_C2C);
_ Mul(a, b, a);
__IFFT(a,a); .
" FresnelConvCoeff(a); class GWO gwo_lib
(a) void __FFT(...); » gwoFFT(.....);
void __FresnelConvProp(...); > gwoFresnelConvProp(.....);
void __FFT(...); » gWoFFT(.....);
void __Mult(...); » gwoMultComplex(.....);
void __IFFT(...); > gwolFFT(.....);
void __FresnelConvCoeff(...); » gwoFresnelConvCoeff(.....);
(© (e)
Figure 8: Implementations of Fesnetigaction in CWO and GWO.
field (the predefined macro: CWBLD_COMPLEX), inten- IF:ne(())
sity field (the predefined macro: CWELD_INTENSITY) and Amp()
phase field (the predefined macro: CWDD_PHASE). Intensity ()
X and so on
The above classes hold the fieig, y) for the source or des- _
tination plane. If the field type is CW®LD_COMPLEX, the (cwolnFtiBS“lKlf'rzﬂlis)
field u(x, y) maintains a complex amplitude field as a complex Complex () =

number array,

u(xy) =rex,y) +iim(x,y) (24)
where rek,y) and imf,y) indicate real and imaginary com-
ponents of the complex value or,§). Because the current
CWO++ library has single floating point precisions for the real
and imaginary components, the memory amount for the field
u(x,y) is 8NxNy bytes whereN, andNy are the number of pix-
els in the field.

If the field type is CWQFLD_PHASE, the class maintains
the phase field(x,y) as a real number array,

. 2.
0(x,y) = tant im(x,)
' re(x,y)

If the field type is CWQFLD_INTENSITY, the class main-
tains a real number arra{x, y) except the phase field. The real 3.
number arrays include, for example, image data, amplitede,
or imaginary, only part of the complex amplitude field and so
on. The memory required for the intensity and phase fields is
4NyN, bytes.

Figure[® shows each field type and mutual conversions be-
tween each field. We briefly describe the mutual conversisnsa 4-
follows:

(25)

1. If we use the member functions “Re()” when the current
field type is a complex amplitude field, the field is con-
verted from this to a real part only and the field type is
set to CWQFLD_INTENSITY. 5

10

Complex

amplitude field
(CWO_FLD_COMPLEX)

— Complex (CWO &a, CWO &b)

Complex ()

Phase field
(CWO_FLD_PHASE)

Phase ()

Figure 9: Field types and mutual conversions between eddh fie

If we use member functions “Phase()” when the current
field type is a complex amplitude field, the field is con-
verted from this to an argument of the same and the field
type is set to CWCOFLD_PHASE.

If we use member functions “Complex()” when the cur-
rent field type is an intensity field, the field is converted
from this to a complex amplitude field accordingi, y)

= re(X,y) + i im(x,y), where rek,y) = a(xy) is the in-
tensity field and imx, y) is zero and the field type is set
to CWO.FLD_COMPLEX.

If we use member functions “Complex()” when the cur-
rent field type is a phase field, the field is converted from
this to a complex amplitude field accordingufx,y) =
re(x, y)+iim(x, y), where rex, y) = cos@(x, y)) and im, y)

= sin(@(x, y)) and the field type is set to CWBLD_COM
PLEX.

. If we use member functions “Complex(CWO &a, CWO

&b)” when the current field types of classes “a” and “b”

are the intensity and phase fields respectively, the fiel(zo c.Phase();
are converted to a complex amplitude field according t|» c.Scale(255);
u(x,y) = a(x y)cos@(x,y)) + i a(x y)sin(e(x,y)), where |2 c.Save(phase.bmp");
“a” and “b” hold a(x,y) andé(x, y), respectively and the |2
field type is set to CWQ-LD_COMPLEX. u b=a;
6. If we use member functions “Complex(CWO &a, CWQj|zs C=3a,
&b)” when the current field types of classes “a” and “b”|zs b.Amp();
are both intensity fields, the fields are converted to a conzr c.Phase();
plex amplitude field according ta(x, y) = re(x, y) 2 a.Complex(b,c);
+iim(x,y), where reg, y) and imf, y) are the fields of “a” |2 a.Diffract(-0.1,CWQANGULAR);
and “b”, respectively and the field type is setto CWWOD [» a.Re();
_COMPLEX. a a.Scale(255);
3 a.Save(complex.bmp");

List[d and Fid.ID show examples of mutual conversions b
tween each field type and their results, respectively. [€igir
(a) is an original image. We calculate théfhcted light of the
figure in lines 2 and 3 of Lisfl6 because we observe the red)- Performance
part, imaginary part, amplitude and phase of th&racted field
respectively.

The real part of the diracted light (Fid.I0(b)) is obtained
in lines 8 to 10, and, the imaginary part of théfidicted light
(Fig.[10(c)) is obtained in lines 11 to 13. The amplitude

In this section, we show the calculation times of eadfralt-
tion calculation and CGH calculation on an Intel CPU and NVID
IA GPUs. We used an Intel CPU, which was a Core i7 740
QM (with CPU clock frequency of 1.7GHz), and three GPUs,
namely NVIDIA GeForce GTX 460M, GerForce GTX 295 and

GeForce GTX580. The GPU specifications are shown in Table
Jre(y)? + im(x,y)? g

))))) o In the difraction calculations, the impulse response and trans-
of the difracted light (Fid.10(d)) is obtained in lines 17 to 19, tg fynctions of each diraction are only sflicient to calculate

and, the phase of thefttiacted light (FigLI0(e)) is obtained i {hem once when the parameters, which are the propagation dis
lines 20 to 22. In lines 26 to 28, we show the generation of thg;nce the sampling pitches, wavelengtfisets and so on, are
complex amplitude field from the instances "a” and *b”, which nchanged. Of course, we need to re-calculate the impuise re
hold amplitude (CWOFLD-INTENSITY) and phase (CWGFL g0nse and transfer functions when the parameters areethang
D_PHASE) respectively. In lines 29 to 32, we show the resulirperefore, we evaluated the calculation times of eadinad

of the back propagation result (figl10(f)) from the positaf jon in both cases of re-calculation and once-calculation.

the complex amplitude field to that of the original image.Ha t For the evaluation, we used Liis 1 did 4 and changed the
result, although we observe afdaction gfect to some extent jmage size and diraction type. Tablgl4 shows the calculation
at the edges of the figure, the result is almost the same as & es of ditraction calculations on the CPU and GPUs with
Fig[I0(a). recalculation of the impulse and transfer functions. TéBle

Listing 6: Example of mutual conversions of field types. shows the calculation times offffiaction calculations on the

CWO a.b.c: CPU and GPUs with the once-calculation of the impulse and

.) transfer functions. In the table, except for thé&diction type

2 EoLomul el) _ CWO_FRESNELFOURIER, we expand the area of the source
e and destination planes frofd, x Ny to 2N, x 2Ny during the

! be calculation and avoid aliasing by circular convolution. the

° —a: CPU calculations, we measured the time in line 3 of Cst 1. In
s & the GPU calculations, we measured the time in lines 4 and 5 of
! b.Re(): List@.

8 o 5 . . .

. b.Scale(255); Table[® shows the calculation times of CGH calculations on

the CPU and GPUs. For the evaluation, we used Cists 3and 5
and changed the number of PLSs. In the CPU calculations, we
measured the time in line 9 of List 3. In the GPU calculations,
we measured the time in lines 10 and 11 of [st 5.

The calculation times of each ffiaction calculation and
CGH calculation on the GPUs were much faster than those of
the CPU.

b.Save(re.bmp");
c.Im();
c.Scale(255);
c.Savefim.bmp");

=
o

N
[

N
N

N
w

N
&

N
o

b=a;

c=a;

b.Amp();
b.Scale(255);
b.Save(amp . bmp");

N
=Y

N
=

N
©

N
©

11

Table 4: Calculation times of eachfiilaction calculation on the CPU and GPUs with the re-calmnanf the impulse and transfer functions.

Resolution CPU (ms) GPU (ms)
Intel Core i7 740QM| GeForce GTX 460M| GeForce GTX295 (1 chip) GeForce GTX580

Fresnel difraction convolution form (CWO-RESNELCONYV)
512x 512 248 15 5 3
1024x 1024 1.24x 10° 47 15 10
2048x 2048 6.12x 10° 177 67 38

Fresnel difraction Fourier form (CWGFRESNELFRESNEL)
512x 512 51.7 2.4 1 1
1024x 1024 227 6 2 2
2048x 2048 984 19 9 8

Shifted Fresnel diraction (CWQSHIFTED.FRESNEL)
512x 512 477 15 5 3
1024x 1024 207x10° 48 16 10
2048x 2048 9.48x 10° 186 71 40
Angular spectrum method (CWANGULAR)

512x 512 260 12 3 2
1024x 1024 117x 10° 36 11 8
2048x 2048 5.56x 10° 135 47 29

Shifted angular spectrum method (CWEHIFTED-ANGULAR)
512x 512 269 15 4 3
1024x 1024 1.23x10° 44 14 9
2048x 2048 5.66x 10° 157 58 35

Table 5: Calculation times of eachfidlaction calculation on the CPU and GPUs with the once-calimr of the impulse and transfer functions.

Resolution CPU (ms) GPU (ms)
Intel Core i7 740QM| GeForce GTX 460M| GeForce GTX295 (1 chip) GeForce GTX580
Fresnel difraction convolution form (CWO-RESNELCONYV)
512x 512 117 10 3 2
1024x 1024 620 29 11 6
2048x 2048 3.30x10° 104 48 26
Fresnel difraction Fourier form (CWCOFRESNELFRESNEL)
512x 512 52 2 1 1
1024x 1024 229 5.4 2 2
2048x 2048 993 19 9 8
Shifted Fresnel diraction (CWQSHIFTED.FRESNEL)
512x 512 346 10 3 2
1024x 1024 1.50x 10° 30 11 7
2048x 2048 6.91x 10° 110 51 28
Angular spectrum method (CWANGULAR)
512x 512 121 9.5 3 2
1024x 1024 624 26 10 6
2048x 2048 3.30x 10° 97 44 24
Shifted angular spectrum method (CWEHIFTED-ANGULAR)
512x 512 128 10 3 2
1024x 1024 665 31 12 7
2048x 2048 351x10° 119 54 29

12

(b)

(d) (e)

Figure 10: Resluts of mutual conversions between each f{eldoriginal image (b) real part of thefttiacted light (c) imaginary part of theftliacted light (d)
amplitude of the diracted light (e) phase of theftfiacted light and (f) back propagation from the complex amagé of (d) and (e).

()

Table 6: Calculation times of CGH calculation on the CPU aUG

CPU (ms) GPU (ms)
Number of PLSs| Intel Core i7 740QM| GeForce GTX 460M| GeForce GTX295 (1 chip) GeForce GTX580
248 13x10° 87 67 31
4596 22x10° 650 562 230
11646 59x 10° 1.7x10° 1.43x 10° 579

7. Applications to holography

and GPUs.

7.1. Inline phase-only CGH (Kinoform)

to the complex amplitude field (CWOGLD_COMPLEX). In

lines 8 to 11, we calculate the reconstructed image from the

In this section. we show some applications to holographyinoform using the back propagation relative to the positi
using the CW@-+ library and its performances on the CPU tne original image. Figurg11 (a) and (b) show the kinoform
pattern and the reconstructed image from the kinoform.

Listing 7: Inline phase-only CGH

In this subsection, we show an example of generating &
inline phase-only CGH, also known as kinoform. A kinoform
is calculated only by extracting the phase of &rdited light
onto the kinoform plane. Lidfl7 shows the generation of a
inline phase-only CGH with 512 512 pixels from the original
image (Fig[2 (a)).

Inline 3, we add a random phase to the original image usin
the function “SetRandPhase()” to spread the light. Thetfonc
automatically sets to the complex amplitude field (CWOD_C
OMPLEX). The random phase is generated by Xorshift RNG

algorithm EfB]. In lines 4 and 5, we calculate the kinoform by

© ® N o g AN w N P

N
15}

N
=

CWO c;
c.Load('1ena512x512 . bmp");
c.SetRandPhase();

c.Diffract(0.1, CWQFRESNELCONV);

c.Phase();

c.Complex();

c.Diffract(-0.1, CWQFRESNELCONYV);

c.Intensity();
c.Scale(255);
c.Savefkinoform_reconst . bmp");

diffracting the original image at the propagation distance bf 0.

m, and subsequently extract the phase only from tffeadied
light, which is the kinoform.

13

7.2. GS algorithm

In the subsection, we implement the GS algorithm on the
After line 7, these codes are for reconstruction from the ki-cPyU and GPUs using the CW@ library and show the per-
noform. Inline 7, we convertthe phase field (CWKDD_PHASE) formances of the algorithm on the CPU and GPUs. Although

In lines 15 and 16, we recalculate a new kinoform from the

new complex amplitude generated by line 13. Repeating the
above processes, the GS algorithms gradually improve thle qu
ity of the reconstructed images. In lines 19 to 23, we cateula
a final reconstructed image from the kinoform.

Listing 8: GS algorithm on CPU.

(@) (b)

Figure 11: (a) Kinoform and (b) reconstructed image fromkineform.

it is possible to obtain a complete reconstructed image fom| ¢
complex amplitude field, unfortunately, we lack an appropri o
ate electric device to display the amplitude and phase of th
complex amplitude field simultaneously. Therefore, we rteed |12
select either the amplitude or the phase components of the cq 3
plex amplitude field, which will cause the reconstructeddgma |
to deteriorate due to lack of information on the complex ams
plitude field. We employ the GS algorithm as an iterative al s
gorithm [18,/19] in order to improve the deterioration of thg 7
reconstructed image. 18

Figure[12 shows typical a GS algorithm. In the GS algo|
rithm for Fourier holograms, Fourier and inverse Fourianf- |2
forms correspond to reconstructions from a hologram anak-hol| 22
gram generation, respectively. In the subsection, instéad |22
Fourier and inverse Fourier transforms, we use the angogars |22

CWO al,az;

al.Load(1ena2048x2048.bmp");

al.Sqrt();

az=al;

a2.SetRandPhase();

a2.Diffract(0.1,CWQANGULAR);

a2.Phase();

for (int i=0;i<ite_num;H+){
a2.Complex();
a2.Diffract-0.1,CWQANGULAR);
a2.Phase();

a2.Complex(al,a2);

a2.Diffract(0.1,CWQANGULAR);
a2.Phase();

}

a2.Complex();
a2.Diffract(-0.1,CWQANGULAR);
a2.Intensity();

a2.Scale(255);
a2.Save(gs_on_cpu.bmp");

trum method and the back propagation of the same.
We start the iteration by adding a random phase to an input
image, and calculate thefftiaction calculation from the latter.
We extract only the phase components (“Phase constramts” i
Fig[12) from the difracted lights to generate a kinoform. The
kinoforms are reconstructed by inverséidiction calculation.

List @ shows an example of the GS algorithm on a GPU.

The example is almost the same as to List 8. The iteration of
lines 11 to 20 is executed on a GPU, so that the example will be
calculated faster than the CPU version of List 8.

Listing 9: GS algorithm on GPU.

We replace the amplitude of the reconstructed light with th
original input image (“Amplitude constraint” in F[g.112). eR
peating the above processes, the GS algorithms gradually i
prove the quality of the reconstructed images.

List[8 shows an example of the GS algorithm on a CPU. |
lines 1to 7, we load an inputimage, calculate its square sett
arandom phase to it, calculate thédicted light to a kinoform
plane, and subsequently generate a kinoform only by ektiact
the phase of the firacted light. The information of the original
image is maintained in the instance “al”, while instance a2
used for the forward and back propagations.

In lines 8 to 17, we execute the iteration, the number d°
which is decided by “itenum”. In lines 9 and 11, we calculate |
the reconstructed image by the back propagation of the angu
spectrum method at a propagation distance of -0.1 m ancogxtr
only the phase information of the reconstructed light. freli
13, we replace the amplitude of the reconstructed light thi¢h
original input image (“Amplitude constraint” in FIQ.]12) here
instances “al” and “a2” hold the field type of CWELD_INTE
NSITY and CWQFLD_PHASE, respectively.

14

CWO cl1,c2;

GWO g1,92;

cl.Load('1ena2048x2048 . bmp");

cl.Sqrt();

c2=cl;

c2.SetRandPhase();

gl.Send(cl);

g2.Send(c2);

g2.Diffract0.1,CWQANGULAR);

g2.Phase();

for (int i=0;i<ite_num;H+){
g2.Complex();
g2.Diffract-0.1,CWQANGULAR);
g2.Phase();

g2.Complex(g1,92);

g2.Diffract(0.1,CWQANGULAR);
g2.Phase();

Input image

Forward diffraction
calculation

Final phase
hologram

Random
phase Inverse diffraction
Reconstructed calculation Phase-only
Image hologram
(Kinoform)

Figure 12: GS algorithm in Fresnel region in order to imprthedeterioration of a reconstructed image.

21

g2.Complex();
g2.Diffract-0.1,CWQANGULAR);
g2.Intensity();

g2.Scale(255);

g2.Recv(cl);
cl.Save(gs_on_gpu.bmp");

22
23
2
25
26 [1]

27

[2]
Changing the resolution of the input image and the iteration[s]
number, we compare the calculation times of the GS algorithm
on the CPU and GPUs, which are shown in Téble 7. In the CPU[4]
calculations, we measured the time in lines 3 to 22 offisn8. |
the GPU calculations, we measured the time in lines 4 to 26 of®
List@. The calculation times on GPUs were much faster thang
those on the CPU. [7
FiguredIB (a), (b) and (c) show the reconstructed images
when the resolution of the original image wa$28x 2,048

8
pixels and the iteration numbers were 5, 20, and 40 reshgtiv]
: [0l

8. Conclusion
We developed the CW©k library using the G+ class li- 101

brary to calculate the 2D and 3Dfffaction and CGH calcu-
lations on CPU and GPU. Our previous C-language based li-
brary, GWO, was not user-friendly because, for example, GWQ11]
library users have to manage the CPU and GPU memory al-
location by themselves and so on. The CWoOlibrary re-
mains user-friendly by concealing troublesome prograngmin
within classes and the GPU calculation power while unawarg13]
of the GPGPU technique. Applications capable of applyirg th
CWO++ library cover a wide range of optics, ultrasonic and
X-ray fields and so on. In this paper, applications to holegra
phy are shown. The CW®r library will be distributed from
http://brains.te.chiba-u. jp/~shimo/cwo/.

(14]

[15]

[16]
Acknowledgments
This research was partially supported by Japan Society fo[r1 g

the Promotion of Science (JSPS), Grant-in-Aid for Young Sci
entists (B), 23700103, 2011, and, the Ministry of Intern&l A

15

fairs and Communications, Strategic Information and Commu
nications R&D Promotion Programme (SCOPE)(09150542)9200

References

J.W.Goodman, “Introduction to Fourier Optics (3rd ¢diobert & Com-

pany (2005).

Okan K. Ersoy, “Ditraction, Fourier Optics And Imaging,” Wiley-
Interscience (2006).

E. G. Williams, “Fourier Acoustics — Sound Radiation aNearfield

Acoustical Holography,” Academic Press (1999).

D.M. Paganin, “Coherent X-Ray Optics,” Oxford UniveysiPress
(2006).

] C. Slinger, C. Cameron, M. Stanley, M, “Computer-GetedaHologra-

phy as a Generic Display Technology,” Compl28r 46-53 (2005).

S. A. Benton et al., “Holographic Imaging,” Wiley-Intience (2008).
S.C. Kim and E.S. Kim, “Hective generation of digital holograms of
three-dimensional objects using a novel look-up table othAppl.
Opt. 47, D55-D62 (2008) .

H. Sakata and Y. Sakamoto, “Fast computation method Faeanel holo-
gram using three-dimensiondiiae transformations in real space,” Appl.
Opt. 48, H212-H221 (2009).

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-Ti@eneration
of Full color Image Hologram with Compact Distance Look-wghle,”
OSA Topical Meeting on Digital Holography and Three-Dimiensl
Imaging 2009, DWC4 (2009).

K. Matsushima and S. Nakahara, “Extremely high-dabnifull-parallax
computer-generated hologram created by the polygon-bassttiod,”
Appl. Opt.48, H54—-H63 (2009).

Y. Liu, J. Dong, Y. Pu, H. He, B. Chen, H. Wang, H. Zheng afidru,
“Fraunhofer computer-generated hologram fdfudied 3D scene in Fres-
nel region,” Opt. Lett36, 2128-2130 (2011).

12] U.Schnars and W. Juptner, “Direct recording of hologsaby a CCD

target and numerical Reconstruction,” Appl.O88,2, 179-181 (1994).
U.Schnars and W.Jueptner, “Digital Holography - DagjitHolo-
gram Recording, Numerical Reconstruction, and Relatedhrigoes,”
Springer (2005).

M. K. Kim, “Principles and techniques of digital holagrhic mi-
croscopy,” SPIE Reviews, 018005 (2010).

M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Petierd Egel-
berg, and T. Lenart, “High-resolution digital transmigsimicroscopy:
a Fourier holography approach,” Opt. Lasers Eij.553-563 (2004).
N. Masuda, T. Ito, K. Kayama, H. Kono, S. Satake, T. Kurargl Kazuho
Sato, “Special purpose computer for digital holographidigle tracking
velocimetry,” Opt. Expres4, 587-592 (2006).

S. Satake, H. Kanamori, T. Kunugi, K. Sato, T. Ito, and¥&mamoto,
“Parallel computing of a digital hologram and particle shang for
microdigital-holographic particle-tracking velocimgtr Appl. Opt. 46,
538-543 (2007).

http://brains.te.chiba-u.jp/~shimo/cwo/

Table 7: Calculation times of the GS algorithm on the CPU aRU&

Number of iterationg CPU (ms) GPU (ms)
Intel Core i7 740QM| GeForce GTX 460M| GeForce GTX295 (1 chip) GeForce GTX58(
Resolution of Input image : 512512
5 3.60x 10° 173 236 188
10 6.53x 10° 285 273 210
20 1.22x 10 516 384 253
40 2.36x 10 984 482 338
Resolution of Input image :,024x 1,024
5 1.59x 10 539 920 731
10 2.88x 10% 883 1.06x 10° 797
20 556x 10* 159x 10° 1.36x 10° 930
40 107x10° 3.02x 10° 1.73x 10° 1.19x 10°
Resolution of Inputimage :,D48x 2,048
5 7.30x 10% 2.03x 10° 3.85x 10° 291x 10°
10 1.33x 10° 3.36x 10° 4.25x 10° 3.16x 10°
20 253x 10° 6.01x 10° 5.29x 10° 3.65x 10°
40 498x 10° 1.12x 10 717x 10° 4.65x 10°

(a)

(b)

(c)

Figure 13: the reconstructed images when the resolutioneobtiginal image is 048x 2,048 pixels and the numbers of iteration are 5, 20, and 40 ctgply.

(18]

[19]

[20]

[21]

[22]

(23]

[24]
(25]

(26]

J. R. Fienup, “ Phase retrieval algorithms: a comparis@ppl. Opt. 21,
2758-2769 (1982).

R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresniedgpong algo-
rithm for two-plane computer-generated hologram displadppl. Opt.
33,869-875 (1994).

G. Yang, B. Dong, B. Gu, J. Zhuang, and O. K. Ersoy, “Gesig-Saxton
and Yang-Gu algorithms for phase retrieval in a nonuniteagdform sys-
tem: a comparison, ” Appl. Op83, 209-218 (1994).

G. Pedrini, W. Osten, and Y. Zhang, “Wave-front recomstion from a
sequence of interferograms recorded détedent planes, ” Opt. LetB0,
833-835 (2005).

D. Zheng, Y. Zhang, J. Shen, C. Zhang and G. Pedrini, “&\eld recon-
struction from a hologram sequence, "Opt. Communicat#&73-77
(2005).

A. Grjasnow, A. Wuttig and R. Riesenberg, “ Phase resglvnicroscopy
by multi-plane difraction detection, ” J. Microscopp3l, 115-123
(2008).

E. Buckley, “Holographic Laser Projection, ” J. Displ&echnol.99, 1-6
(2010).

E. Buckley, “Holographic projector using one lens, "tOlpett. 35, 3399—
3401 (2010).

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorfuleconstruc-
tions from a thin multi-plane phase hologram, ” Opt. Expre8sl1618—
11623 (2008).

16

(27]

(28]

[29]

(30]
(31]
(32]
(33]
(34]

(35]

(36]

M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion,Suszek, and A.
Kolodziejczyk, “Experimental evaluation of a full-coloompact lensless
holographic display, " Opt. Expreds, 20840-20846 (2009).

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Nucaé study of
color holographic projection using space-division meth@pt. Express
19, 10287-10292 (2011) .

T. Shimobaba, A. Gotchev, N. Masuda and T. Ito, “Propo$aoomable
holographic projection method without zoom lens,” IDW’'IThe 18th
international Display Workshop) (to be appeared in Dec1201

0. Matoba and B. Javidi, “Encrypted optical memory systusing three-
dimensional keys in the Fresnel domain, ” Opt. L2#. 762—764 (1999).
E. Tajahuerce and B. Javidi, “Encrypting three-dimenal information
with digital holography, ” Appl. Opt39, 6595-6601 (2000).

B. Javidi and Takanori Nomura, “Securing information use of digital
holography, ” Opt. Lett25, 28-30 (2000).

H. Hamam, “Digital holography-based steganographypt. Lett. 35,
4175-4177 (2010).

R. Piestunand and J. Shamir, “Synthesis of three-daoaal light fields
and applications,” Proc. IEE®D, 222—244 (2002).

T. P. Kurzweg, S. P. Levitan, P. J. Marchand, J. A. MazinK. R.
Prough, D. M. Chiarulli, “A CAD Tool for Optical MEMS, " Pro86th
ACM/IEEE conf. on Design automation, 879—884 (1999).

T. P. Kurzweg, S. P. Levitan, J. A. Martinez, M. Kahrs, . Chiarulli,
“An Efficient Optical Propagation Technique for Optical MEM Simula

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

[52]
(53]
[54]

[55]

[56]

[57]

[58]
[59]

(60]

tion, ” Fifth International Conference on Modeling and Slation of Mi-
crosystems (MSM2002), 352—-355 (2002).

T. Ito, T. Yabe, M. Okazaki and M. Yanagi, “Special-paoge computer
HORN-1 for reconstruction of virtual image in three dimems,” Com-
put.Phys.Commur82, 104-110 (1994).

T. Ito, H. Eldeib, K. Yoshida, S. Takahashi,
Kunugi, “Special-Purpose Computer for Holography HORNQom-
put.Phys.Commur@3, 13-20 (1996).

T.Shimobaba, N.Masuda, T.Sugie, S.Hosono, S.Tsulkd a.lto,
“Special-Purpose Computer for Holography HORN-3 with PEebtnol-
ogy,” Comput. Phys. commui30, pp. 75-82, (2000).

T. Shimobaba, S. Hishinuma and T.Ito, “Special-Puep@mputer for
Holography HORN-4 with recurrence algorithm,” Comput. Bhom-
mun.148 160-170 (2002).

T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimolaaénd T. Sugie,
“A special-purpose computer HORN-5 for a real-time eldatiography,”
Opt. Expres431923-1932 (2005).

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. ShimiodaA. Shiraki
and T. Sugie, “HORN-6 special-purpose clustered compugyrsgem for
electroholography,” Opt. Expreds, 13895-13903 (2009).

Y. Abe, N. Masuda, H. Wakabayashi, Y. Kazo, T. Ito, S&&et T. Kunugi
and K. Sato, “Special purpose computer system for flow vizagdn
using holography technology,” Opt. Exprek& 76867692 (2008).

T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, Rakayama,
N. Takada, A.Shiraki and T. Sugie, “Numerical calculatidordry for
diffraction integrals using the graphic processing unit: théJ®Bsed
wave optics library,” Journal of Optics A: Pure and Applie@tios, 10,
075308, 5pp, (2008).

T.Shimobaba, Y.Sato, J.Miura, M.Takenouchi, ando[.IReal-time dig-
ital holographic microscopy using the graphic processinig"uOpt. Ex-
press 16, 11776-11781 (2008)

T.Shimobaba, J.Miura and T.Ito, “A computer aided dasiool for de-
veloping an electroholographic display,” Journal of Opti: Pure and
Applied Optics, 11, 085408 (5pp) (2009)

T. Shimobaba, N. Masuda and T. Ito, “Simple and fastlo&dton algo-
rithm for computer-generated hologram with wavefront rdow plane,”
Opt. Lett.34, 3133-3135 (2009).

T. Shimobaba, H. Nakayama, N. Masuda and T. Ito, “Raittida-
tion of Fresnel computer-generated-hologram using lgokable and
wavefront-recording plane methods for three-dimensiatisplay,” Op-
tics Express, 18, 19, 19504-19509 (2010).

T. Shimobaba, N. Masuda, Y. Ichihashi and T. Ito, “Reéale digital holo-
graphic microscopy observable in multi-view and multielegion,” Jour-
nal of Optics, 12, 065402 (4pp) (2010)

H. T. Dai, X. W. Sun, D. Luo, and Y. J. Liu, “Airy beams geated by
a binary phase element made of polymer-dispersed liquistals;” Opt.
Express 17, 19365-19370 (2009)

D. Luoa, H.T . Dai, X. W. Sun, and H. V. Demira, “Electriaswitch-
able finite energy Airy beams generated by a liquid crystkivaeh pat-
terned electrode,” Optics Communications, 283, 3846-32030).

R. P. Mufoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnetdiction
for computational holography,” Opt. Expre§, 5631-5640 (2007).

D. H. Bailey and P. N. Swarztrauber, “The Fractional FeuTransform
and Applications,” SIAM Reviev83, 389-404 (1991).

M. Leutenegger, R. Rao, R. A. Leitgeb, and T. LasserstFacus field
calculations,” Opt. Express4, 11277-11291 (2006).

J. F. Restrepo and J. Garcia-Sucerquia, “Magnifiednstraction of digi-
tally recorded holograms by Fresnel Bluestein transfosppl. Opt. 49,
64306435 (2010).

K. Matsushima, “Shifted angular spectrum method firaxis numerical
propagation,” Opt. ExpreskS, 18453-18463 (2010).

K. Matsushima and T. Shimobaba, “Band-limited angugectrum
method for numerical simulation of free-space propagatidar and near
fields,” Opt. Expresd7, 19662—-19673 (2009).

FFTW Home Pagehttp://www.fftw.org/|

J. Lin, X.-C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rpdiz-Herrera
and J. C. Dainty, “Direct calculation of a three-dimensioddtracted
field,” Opt. Lett.36, 1341-1343 (2011).

L. Ahrenberg, P. Benzie, M. Magnor and J. Watson, “Cotapgenerated
holograms from three dimensional meshes using an anaigtit trans-
port model,” Appl. Opt47, 1567-1574 (2008).

17

T. Yabe and T

[61]
(62]

(63]

(64]

(65]

(66]

[67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]
[75]

M. Lucente, “Interactive Computation of hologramsngsa Look-up Ta-
ble,” J. Electron. Imagin@, 28-34 (1993).

M. Lucente and T. A. Galyean, “Rendering Interactivel¢gwaphic Im-
ages,” Proc. of SIGGRAPH 95 387-394 (1995).

N. Masuda, T. Ito, T. Tanaka, A. Shiraki and T. Sugie, hgauter gen-
erated holography using a graphics processing unit,” Oppréssl14,
587-592 (2006).

L. Ahrenberg, P. Benzie, M. Magnor, J. Watson, “Compgenerated
holography using parallel commodity graphics hardwargyt. &xpress
14,7636-7641 (2006).

H. Kang, F. Yaras, and L. Onural, “Graphics processing accelerated
computation of digital holograms,” Appl. Opt8, H137-H143 (2009).
Y. Pan, X. Xu, S. Solanki, X. Liang, R. Bin A. Tanjung, Caf, and T. C.
Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Expte,
18543-18555 (2009).

L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDona#thd T. J.
Naughton, “Using Commodity Graphics Hardware for Real-dibigital
Hologram View-Reconstruction,” J. Display Techn®|.111-119 (2009).
D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Hofler, “dtiwave-
length digital holography with autocalibration of phasétstand artificial
wavelengths,” Appl. Opt#48, H1-H8 (2009).

N. Pandey, D. P. Kelly, T. J. Naughton and B. M. Hennelt{apeed up of
Fresnel transforms for digital holography using pre-cotaedwchirp and
GPU processing,” Proc. SPIE142 744205 (2009).

C. Trujillo, John F. Restrepo and J. Garcia-Sucergtizeal time nu-
merical reconstruction of digitally recorded hologramdigital in-line
holographic microscopy by using a graphics processing”Wlitotonics
Letters of Polan@, 177-179 (2010).

T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N.dd# “Fast cal-
culation of computer-generated-hologram on AMD HD5000eseGPU
and OpenCL,” Opt. ExpreskS, 9955-9960 (2010).

T. Nishitsuji, T. Shimobaba, T. Sakurai, N. Takada, Nasvida, and T. Ito,
“Fast calculation of Fresnel fiiaction calculation using AMD GPU and
OpenCL,” in Digital Holography and Three-Dimensional Iy OSA
Techinal Digest (CD) (Optical Society of America, 2011)ppaDWC20.
G. Marsaglia, “Xorshift RNGs,” Journal of Statistic8loftware8, 1-6
(2003).

Clmg homepagéhttp://cimg.sourceforge.net/

ImageMagik homepagattp://www.imagemagick.org/script/index.php

Appendix A. System requirements and installation

System requirements for the CW® library are as follows:
1. OS: for Windows XP (3264 bit), 7

2. CUDA : CUDA 4.0 (32 bit version) (if the GWO class or

gwoPLS is used)

The installation of the CW®+ library involves the follow-

ing steps:

1. Create a project file of Visual+-.

2. Ensure the following dll and library files are placed in

your project directory:
(&) cwo.dll, cwo.lib, likftw3f-3.dll (libfftw3f-3.dll can
be download from Refl [58])
(b) gwo.dll, gwo.lib (if you use GPU version of the
CWO++ library)

3. Set library files (*.lib) to your VISUAL G-+ project.
4. Set the following G+ and header files to your project:

(&) cwo.h, cwo.cpp, cwdib.h
(b) gwo.h, gwo.cpp, gwdib.h (if you use the GPU ver-
sion of the CWO library)

http://www.fftw.org/
http://cimg.sourceforge.net/
http://www.imagemagick.org/script/index.php

Appendix B. Image formats

Using Clmag library[[74], CWO library allows us to read
and write image data in the following formats:

1. Bitmap
2. Jpeg
3. Png
4. Tiff

If you read and write image formats other than bitmap format,
you must install ImageMagil@S] on your computer.

18

	1 Introduction
	2 Detail of the CWO++ library
	2.1 Diffraction calculation
	2.1.1 Fresnel diffraction (convolution form)
	2.1.2 The Fresnel diffraction (Fourier form)
	2.1.3 Shifted Fresnel diffraction
	2.1.4 Angular spectrum method
	2.1.5 Shifted angular spectrum method
	2.1.6 Summary of diffraction calculation

	2.2 CWO class: Simple example using the CWO++ library of the Fresnel diffraction calculation on the CPU
	2.3 Three-dimensional diffraction calculations
	2.4 Calculations of a complex amplitude field and a computer generated hologram from point light sources

	3 GWO and gwoPLS classes: Diffraction and CGH calculations on GPU
	3.1 Fresnel diffraction and CGH calculations on a GPU using the GWO and gwoPLS classes

	4 Implementations of the CWO and GWO classes
	5 Field type
	6 Performance
	7 Applications to holography
	7.1 Inline phase-only CGH (Kinoform)
	7.2 GS algorithm

	8 Conclusion
	Appendix A System requirements and installation
	Appendix B Image formats

