
ar
X

iv
:1

10
7.

55
78

v1
 [

ph
ys

ic
s.

op
tic

s]
 2

7
Ju

l 2
01

1

Computational wave optics library for C++: CWO++ library

Tomoyoshi Shimobabaa,∗, Jian Tong Wenga, Takahiro Sakuraia, Naohisa Okadaa, Takashi Nishitsujia, Naoki Takadab, Atsushi
Shirakic, Nobuyuki Masudaa, Tomoyoshi Itoa

aDepartment of Artificial Systems, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba,Chiba 263-8522, Japan
bDepartment of Informatics and Media Technology, Shohoku College, 428 Nurumizu, Atsugi, Kanagawa, 243–8501 Japan

cDepartment of Imformation and Computer Engineering, Kisarazu National College of Technology, Kiyomi-dai Higashi 2-11-1, Kisarazu, Chiba, 292-0041 Japan

Abstract

Diffraction calculations, such as the angular spectrum method,and Fresnel diffractions, are used for calculating scalar light prop-
agation. The calculations are used in wide-ranging optics fields: for example, computer generated holograms (CGHs), digital
holography, diffractive optical elements, microscopy, image encryption and decryption, three-dimensional analysis for optical de-
vices and so on. However, increasing demands made by large-scale diffraction calculations have rendered the computational power
of recent computers insufficient. We have already developed a numerical library for diffraction calculations using a graphic pro-
cessing unit (GPU), which was named the GWO library. However, this GWO library is not user-friendly, since it is based on C
language and was also run only on a GPU. In this paper, we develop a new C++ class library for diffraction and CGH calculations,
which is referred as to a CWO++ library, running on a CPU and GPU. We also describe the structure, performance, and usage
examples of the CWO++ library.

Keywords:
Diffraction, Digital holography, Digital holographic microscopy, Graphics processing unit, GPGPU, GPU computing, Holography,
Real-time holography, Scalar light propagation

1. Introduction

Scalar light propagation is calculated using several diffrac-
tion calculations. These calculations, e.g. the angular spectrum
method and Fresnel diffractions, are used in wide-ranging op-
tics fields [1, 2], ultrasonic [3], X-ray [4] and so on. In op-
tics, its applications include Computer Generated Holograms
(CGH), digital holography, phase retrieval, image encryption
and decryption, steganography, three-dimensional (3D) analy-
sis for optical devices, Diffractive Optical Elements (DOE), and
so on.

In CGH and digital holography, diffraction calculations are
vital. CGH are generated by calculating a diffraction calcula-
tion from a 3D object to a hologram plane on a computer. If we
apply CGH to a 3D display technique [5, 6], the technique be-
comes attractive because a wavefront reconstructed from CGH
is almost equivalent to an object light. However, the computa-
tional time required for the diffraction calculation involved in
CGH hampers the realization of a practical 3D display using
CGH. Many methods have thus been proposed for accelerating
the computational time [7, 8, 9, 10, 11].

Digital holography is a well-known method for electroni-
cally recording existing 3D object information on a hologram,
which is captured by a Charge Coupled Device (CCD) and Com-
plementary Metal Oxide Semiconductor (CMOS) cameras [12,

∗Corresponding author
Email address:shimobaba@faculty.chiba-u.jp (Tomoyoshi

Shimobaba)

13]. To reconstruct 3D object information from a hologram ina
computer, we need to calculate diffraction calculations. Appli-
cations of digital holography include Digital HolographicMi-
croscopy (DHM) [14, 15], Digital Holographic Particle Track-
ing Velocimetry (DHPIV) [16, 17] and so forth.

Phase retrieval algorithm retrieves phase information of an
object light from intensity patterns captured by CCD camera.
In optics, Gerchberg-Saxton (GS) algorithm [18] and modified
algorithms, e.g. Fresnel ping-pong [19] and Yang-Gu [20] algo-
rithms, are widely used for phase retrieval. The algorithmsare
based on iterative optimization: namely, they gradually retrieve
phase information by calculating diffraction calculations be-
tween certain intensity patterns (normally more than two) while
subject to amplitude and phase constraints. The applications of
the algorithms include, for example, wavefront reconstruction
[21, 22, 23], holographic projection [24, 25, 26, 27, 28, 29]and
so on.

Diffraction based encryption and decryption [30, 31, 32],
and steganography [33] were proposed . Diffraction-based tech-
niques have an interesting feature, and handle not only 2D but
also 3D images.

In 3D analysis for optical devices, such as optical Micro
Electro Mechanical Systems (MEMS), DOE and so on, we can
obtain 3D light distribution to stack multiple two-dimensional
(2D) diffraction calculations along depth-direction [34]. For ex-
ample, several research works have analyzed the optical charac-
teristics of a Digital Micro-mirror Device (DMD), which is one
of the MEMS devices, using Fresnel diffraction and the angular

Preprint submitted to Elsevier July 29, 2011

http://arxiv.org/abs/1107.5578v1

spectrum method [35, 36].
As mentioned, diffraction calculations are practically used

in wide-ranging optics fields. The former can also accelerate
computational time using the Fast Fourier Transform (FFT) al-
gorithm; however, if we wish to realize real-time 3D recon-
struction from holograms in digital holography,generate alarge-
area CGH, and obtain 3D light field from an optical device, re-
cent computers lack sufficient computational power.

Using hardware is an effective means to further boost com-
putational speed for CGH and diffraction calculations. In fact,
we showed dramatically increased computational power to de-
sign and build special-purpose computers for CGH targetinga
3D display and named HOlographic ReconstructioN (HORN),
in order to overcome the computational cost of CGH. The HORN
computers designed by pipeline architecture can calculatelight
intensities on CGH at high speed [37, 38, 39, 40, 41, 42]. The
HORN computers were implemented on a Field Programmable
Gate Array (FPGA) board, except HORN-1 and -2. To date, we
have constructed six HORN computers, which have been able
to attain several thousand times the computational speed ofre-
cent computers. Researchers also developed a special-purpose
computer, FFT-HORN, in order to accelerate Fresnel diffraction
in DHPIV [16, 43]. The FFT-HORN was able to reconstruct
256× 256 images from holograms, which were captured by a
DHPIV optical system, at a rate of 30 frames per second. The
FPGA-based approaches for both CGH and diffraction calcu-
lations showed excellent computational speed, but are subject
to the following restrictions: the high cost of developing the
FPGA board, long development term, long compilation of the
hardware description language and mapping to FPGA times,
and technical know-how required for the FPGA technology.

Conversely, recent GPUs allow us to use as a highly paral-
lel processor, because the GPUs have many simple processors,
which can process 32- or 64-bit floating-point addition, multi-
plication and multiply-add instructions. The approach of accel-
erating numerical simulations using a GPU chip is referred to as
General-Purpose computation on GPU (GPGPU) or GPU com-
puting. The merits of GPGPU include its high computational
power, the low cost of the GPU board, short compilation time,
and the short development term.

We have already developed a numerical library for diffrac-
tion calculations using a GPU, which was named the GWO
library [44]. The purpose of the GWO library is to facilitate
access to GPU calculation power for optics engineers and re-
searchers lacking GPGPU. The GWO library has already been
distributed via the Internet and used to report some papers.For
example, we reported on a real-time DHM system [45], diffrac-
tion calculations in a computer-aided design tool for develop-
ing a holographic display [46], a fast CGH calculation [47, 48]
and a DHM observable in multi-view and multi-resolution [49].
Moreover, researchers studied Airy beams generation and their
propagation feature in the simulation using the GWO library
[50, 51]. However, the GWO library is not user-friendly be-
cause it is based on C language, e.g. the library user must man-
age the CPU and GPU memory allocation personally and so
on. In addition, the library is run on only a GPU, namely the
diffraction and CGH calculations are not calculated on a CPU.

In this paper, we develop a C++ class library for computa-
tional wave optics involved in diffraction and CGH calculations,
which is referred to as a CWO++ library, running on CPU and
GPU. The CWO++ library, unlike the GWO library, is devel-
oped using C++ and its structure, performance, and usage ex-
amples are described.

In Section 2, we describe diffraction calculations, the struc-
ture of the CWO++ library, the class “CWO” for diffraction
calculations, and the subclass “cwoPLS” for Point Light Source
(PLS)-based diffraction and CGH calculations on a CPU. In
Section 3, we describe the “GWO” and “gwoPLS” classes for
diffraction and CGH calculations on a GPU. In Section 4, we
describe the implementation of the “CWO” and “GWO” classes.
In Section 5, we describe field types which are held in the
classes. In section 6, we show the performance of diffraction
and CGH calculations on a CPU and GPU. In Section 7, we
show the applications of the CWO++ library to holography. In
Section 8, we conclude this work.

2. Detail of the CWO++ library

The CWO++ library mainly consists of two C++ classes:
CWO and GWO. The CWO class calculates diffraction calcu-
lations on a CPU, has auxiliary functions and allows us to cal-
culate the following diffractions:

1. Fresnel diffraction(Convolution form)
2. Fresnel diffraction(Fourier form)
3. Shifted Fresnel diffraction
4. Angular spectrum method
5. Shifted angular spectrum method
6. 3D diffraction calculation

The first to fifth diffractions are primary diffraction calculations,
on which the sixth diffraction calculation is based. The above
diffraction calculations can also be calculated on a GPU using
the GWO class.

Table 1 shows the structure of the CWO++ library. The
class “CWO” is the top class of the CWO++ library, while the
other classes, which are “GWO”, “cwoPLS” and “gwoPLS”,
are inherited from “CWO”. The “cwoPLS” and “gwoPLS”
classes are for PLS-based diffraction and CGH calculations on
a CPU and GPU, respectively.

“cwoComplex” and “cwoObjPoint” are data structures and
their auxiliary functions for complex number and object points
for PLS, respectively and are distributed as open-source codes.

2.1. Diffraction calculation
Figure 1 shows a diffraction calculation by monochromatic

wave, whose wavelength isλ, between a source plane (aperture
function)u1(x1, y1) and a destination planeu2(x2, y2).

The CWO++ library allows us to calculate FFT-based diffrac-
tion calculations. In addition, diffraction calculations are cate-
gorized into convolution and Fourier forms. The former cat-
egory includes Fresnel diffraction (convolution form), Shifted
Fresnel diffraction, Angular spectrum method and Shifted an-
gular spectrum method. The latter category includes Fresnel
diffraction (Fourier form). In the following subsections, we de-
scribe these diffractions.

2

Table 1: Classes of the CWO++ library. They are distributed as open-source codes.

Class Role Parent class Related source files

cwo
Diffraction calculation

on CPU None
cwo.h
cwo.pp

gwo
Diffraction calculation

on GPU cwo
gwo.h

gwo.cpp

cwoPLS

PLS-based diffraction
and CGH calculations

on CPU cwo
cwoPLS.h

cwoPLS.cpp

gwoPLS

PLS-based diffraction
and CGH calculations

on GPU gwo
gwoPLS.h

gwoPLS.cpp
cwoComplex Complex number None cwo.h
cwoObjPoint PLS None cwo.h

cwoVect Vector operations None cwo.h

Figure 1: Diffraction calculation by monochromatic wave, whose wavelength is
λ, between a source plane (aperture function)u1(x1, y1) and a destination plane
u2(x2, y2).

2.1.1. Fresnel diffraction (convolution form)
The convolution form of Fresnel diffraction is expressed by:

u2(x2, y2) =
exp(i 2π

λ
z)

iλz

∫ ∫ +∞

−∞

u1(x1, y1)

exp(i
π

λz
((x2 − x1)2 + (y2 − y1)2))dx1dy1

(1)

The above equation is the convolution form, and can be ex-
pressed relative to the following equation according to convo-
lution theorem:

u2(x2, y2) =
exp(i 2π

λ
z)

iλz
F −1
[

F

[

u(x1, y1)
]

F

[

hF(x1, y1)
]]

(2)

where, the operatorsF [·] andF −1[·] indicate Fourier and in-
verse Fourier transforms, respectively,hF(x, y) is the impulse
response function (also known as the point spread function)of
Eq. (1) as follows,

hF(x, y) = exp(i
π

λz
(x2 + y2)) (3)

In the numerical implementation, we need to discretize each
spatial variable and use FFT instead of Fourier transforms as
follows: The discretizing space variables are (x1, y1) = (m1∆x1,

n1∆y1), where∆x1 and∆y1 are the sampling pitches andm1, n1

are integer indices on the source plane. The discretizing space
variables are (x2, y2) = (m2∆x2, n2∆y2), where∆x2 and∆y2 are
the sampling pitches andm2, n2 are integer indices on the desti-
nation plane. The ranges of integer indices are as follows:

−
Nx

2
≤ m1,m2 < −

Nx

2
− 1,

−
Ny

2
≤ m1,m2 < −

Ny

2
− 1 (4)

where,Nx and Ny are the numbers of horizontal and vertical
pixels on the source and destination planes, respectively.

The discretized Fresnel diffraction of the convolution form
is as follows:

u2(m2, n2) =
exp(i 2π

λ
z)

iλz
FFT−1

[

FFT
[

u(m1,m1)
]

FFT
[

hF(m1,m1)
]]

(5)

hF(m, n) = exp(i
π

λz
((m∆x1)2 + (n∆y1)2)) (6)

Note that the sampling pitches on the destination planes
are the same as those on the source plane after the diffraction,
namely∆x2 = ∆x1 and∆y2 = ∆y1.

2.1.2. The Fresnel diffraction (Fourier form)
We can obtain the Fourier form of the Fresnel diffraction to

expand the quadratic term in Eq. (1). The form is expressed by:

u(x2, y2) =
exp(i 2π

λ
z)

iλz
exp(i

π

λz
(x2

2 + y2
2))

∫ ∫ +∞

−∞

u′(x1, y1) exp(−i
2π
λz

(x2x1 + y2x1))dx1dy1,

(7)

3

whereu′(x1, y1) is defined as,

u′(x1, y1) = u(x1, y1) exp(iπ
(x2

1 + y2
1)

λz
). (8)

This form is rewritten by the Fourier transform. The dis-
cretized Fourier form of Fresnel diffraction is expressed by:

u(m2, n2) =
exp(i 2π

λ
z)

iλz
exp(i

π

λz
((m2∆x2)2 + (n2∆y2)2))

FFT
[

u′(m1, n1)
]

(9)

Note that the sampling spacing on the destination plane is
scaled to∆x2 = ∆x1/(λz) and∆y2 = ∆y1/(λz).

2.1.3. Shifted Fresnel diffraction
Shifted-Fresnel diffraction [52] enables arbitrary sampling

pitches to be set on the source and destination planes as well
as a shift away from the propagation axis, which is referred as
to off-axis propagation. The equation is derived from a com-
bination of Fourier form Fresnel diffraction and scaled Fourier
transform [53]. The same methods were proposed in somewhat
different areas [54, 55]. The discretized shifted Fresnel diffrac-
tion is expressed by the following equations:

u2[m2, n2] = CSFFT−1
[

FFT
[

u′1[m1, n1]
]

FFT
[

hS[m1, n1]
]]

(10)

CS =
exp(ikz)

iλz
exp(i

π

λz
(x2

1 + y2
1))

exp(−i
2π
λz

(Ox0 px0 x1 +Oy0 py0y1)) exp(−iπ(Sxm
2
1 + Syn

2
1))

(11)

u′1[m1, n1] = u1[m1, n1] exp(i
π

λz
(x2

0 + y2
0))

exp(−i2π(m0SxOx1 + n0SyOy1))

exp(−iπ(Sxm
2
0 + Syn

2
0))

(12)

h[m, n] = exp(iπ(Sxm
2 + Syn

2)) (13)

where, (Ox0, Oy0) and (Ox1, Oy1) are the shift distances away
from the propagation axis andSx,Sy, x0, y0, x1, y1 are defined
as follows:

Sx =
px0 px1

λz
, Sy =

py0 py1

λz
,

x0 = m0px0 +Ox0, y0 = n0py0 +Oy0,

x1 = m1px1 +Ox1, y1 = n1py1 +Oy1.

(14)

For more details, see Ref. [52].

2.1.4. Angular spectrum method
The angular spectrum method can be devised from the Helm-

holtz equation and is suitable for computing diffraction at short
distance, which is impossible for Fresnel and Shifted Fresnel
diffractions. The angular spectrum method is expressed by:

u(x, y) =
∫ ∫ +∞

−∞

A(fx, fy, 0)HA(fx, fy)

exp(i 2π(fxx+ fyy))d fxd fy,
(15)

where, fx and fy are spatial frequencies,A(fx, fy, 0) is defined
by A(fx, fy, 0) = F [u(x1, y1)], and HA(fx, fy) is the transfer
function,

HA(fx, fy) = exp(iz
√

k2 − 4π2(f 2
x + f 2

y)) (16)

where,k = 2π/λ is the wave-number.
The discretizing frequencies are (fx, fy) = (m1∆ fx, n1∆ fy),

where∆ fx and∆ fy are the sampling pitches on the frequency
domain. Therefore, the discretized angular spectrum method is
expressed by:

u(m, n) = FFT−1
[

FFT
[

u(m, n)
]

HA(m1, n1)
]

. (17)

2.1.5. Shifted angular spectrum method
The angular spectrum method calculates the exact solution

in scalar light propagation because it is derived from the Helmholtz
equation without using any approximation, but only calculates
light propagation when close to a source plane due to the alias-
ing problem. In addition, the angular spectrum method does not
calculate off-axis propagation.

The shifted angular spectrum method [56] method enables
off-axis propagation by applying a band-limited function to Eq.
(16). In addition, although the angular spectrum method, as
mentioned, triggers an aliasing error when calculating a long
propagation distance [57], the shifted angular spectrum method
overcomes the aliasing problem, making it an excellent means
of performing diffraction calculations. The discretized shifted
angular spectrum method is expressed by:

u(m2, n2) = FFT−1
[

FFT
[

u(m1, n1)
]

HS A(m1, n1)

Rect(
m1 − cx

wx
)Rect(

n1 − cy

wy
)
] (18)

where,HS A is the shifted transfer function of the same,

HS A(m1, n1) = HA(m1, n1) exp(2π(Oxm1∆ fx +Oyn1∆ fy))

(19)

Two rectangle functions are band-limit functions with hori-
zontal and vertical band-widths ofwx,wy and shift amounts of
cx, cy. See Ref. [56] for the determination of these parameters.

4

2.1.6. Summary of diffraction calculation
As mentioned, many numerical diffraction calculations have

been proposed to date, a classification of which is shown in Ta-
ble 2. Each diffraction must be used in terms of the number of
FFTs (namely, which is proportional to the calculation time),
required memory, propagation distance, sampling pitches and
on- or off-axis propagation. For example, if we calculate the
diffraction calculation with different sampling pitches on source
and destination planes, we must use Shifted Fresnel diffraction.

Note that, in the diffraction calculations of the convolution
form, the area of the source and destination planes must be ex-
panded fromNx × Ny to 2Nx × 2Ny during the calculation, be-
cause we avoid aliasing by circular convolution. After the cal-
culation, we extract the exact diffracted area on the destination
plane with the size ofNx × Ny. Therefore, we need FFTs and
memories of size 2Nx × 2Ny during the calculation.

2.2. CWO class: Simple example using the CWO++ library of
the Fresnel diffraction calculation on the CPU

The CWO class provides diffraction calculations and auxil-
iary functions. We used the FFTW library [58] in the diffraction
calculations in the CWO class.

We show the following source-code of the Fresnel diffrac-
tion calculation on a CPU using the CWO++ library:

Listing 1: Fresnel diffraction calculation on a CPU using the CWO class.

1 CWO c;
2 c.Load("lena512x512.bmp");
3 c.Diffract(0.2, CWOFRESNELCONV);
4 c.Intensity();
5 c.Scale(255);
6 c.Save("lena512x512_diffract.bmp");

In line 1, we define the instance “c” of the CWO class. In
the next line, using the member function of “Load” in the CWO
class, we store an original image (Fig.2(a)) of a bitmap file
“lena512 x512.bmp” with 512×512 pixels into the instance “c”.
“Load” can also read jpeg tiff formats, and so forth. See more
details in Appendix B. In line 3, the CWO member function
“Diffract” calculates the diffraction calculation according to the
first and second arguments of the function, which are the propa-
gation distance and type of diffraction calculation, respectively.
Here, we select the propagation distance of 0.2 m and Fresnel
diffraction of the convolution form (CWOFRESNELCONV).
The calculation results in a complex amplitude field.

To observe the light intensity field of the complex amplitude
field as image data, the initial step involves the CWO mem-
ber function “Intensity” calculating the absolute square of the
complex amplitude field in line 4. Namely, the calculation is
expressed by:

I (m2, n2) = |u2(m2, n2)|2. (20)

In the next, the CWO member function “Scale” converts
the intensity field with a large dynamic range into that with 256
steps.

I256(m2, n2) =
I (m2, n2) −min{I (m2, n2)}

max{I (m2, n2)} −min{I (m2, n2)}
× 255, (21)

where, the operatorsmax{·} andmin{·} take the maximum and
minimum values in the argument. Finally, we save the intensity
field with 256 steps as a bitmap file “lena512x512diffract.bmp”.
Of course, we can also save the intensity field in other image
formats. Figure 2 (b) shows the diffracted image.

Note that the sample code does not explicitly indicate the
wavelength and sampling pitches on the source and destina-
tion planes. The default wavelength and sampling rates are 633
nm and 10µm× 10µm. If we change the wavelength and sam-
pling pitch, we can use the CWO member functions “SetWave-
Length” and “SetPitch”.

Figure 2: (a) Original image with 512× 512 pixels. (b) Diffracted image with
the wavelength of 633 nm and the sampling pitches of 10µm× 10µm on the
source and destination planes.

2.3. Three-dimensional diffraction calculations

Certain methods for calculating a scalar 3D field were pro-
posed [34, 59]. In Ref. [59], the method can calculate a 3D
diffraction calculation in a low numerical aperture (NA) system
using once 3D-FFT, so that the method is effective in terms of
computational cost and memory amount. In the CWO++ li-
brary, we provide a calculation of a scalar 3D diffraction field
by stacking 2D diffraction calculations as mentioned in a depth
direction [34]. Figure 3 shows a scalar 3D diffraction field
by stacking 2D diffraction calculations. Unlike 2D diffraction
calculations, the 3D diffraction calculation requires a sampling
pitch∆z in a depth direction.

List 2 shows the 3D diffraction calculation from a hologram,
on which two small circles are recorded by the angular spec-
trum method. In the calculation, the conditions are as follows:
the number of pixels in 3D diffracted field is 512× 512× 512,
the horizontal and vertical sampling pitches are 10µm× 10µm,
the sampling pitch in a depth direction∆z is 1cm, the distance
between the two small circles and the hologram is 10cm and
the radii of the two small circles are 270µm. We need to set the
large sampling pitch in a depth direction compared with the hor-
izontal and vertical sampling pitches because the optical system
has a low NA.

In line 1, we prepare two instances “c1” and “c2” because
we need to maintain a hologram and a 3D diffracted field, in-
dividually. In line 2, we load the hologram to the instance c1.
In line 3, we allocate the memory of 512× 512× 512 pixels

5

Table 2: Classification of diffraction calculation. In the diffraction calculations of the convolution form, the area of the source and destination planes must be
expanded fromNx ×Ny to 2Nx ×2Ny during the calculation, because we avoid aliasing by circular convolution. After the calculation, we extract the exactdiffracted
area on the destination plane with the size ofNx × Ny. Therefore, we need FFTs and memories of size 2Nx × 2Ny during the calculation.

Diffraction
Propagation

distance

Sampling
pitch on
source
plane

Sampling
pitch on

destination
plane

Off-axis
calculation

Number
of

FFTs
Required
memory

Fresnel
diffraction

(Convolution form) Fresnel ∆x× ∆y ∆x× ∆y N.A. 3 2N × 2N
Fresnel

diffraction
(Fourier form) Fresnel ∆x× ∆y ∆x

λz ×
∆y
λz N.A. 1 N × N

Shifted
Fresnel

diffraction Fresnel Arbitrary Arbitrary Available 3 2N × 2N
Angular
spectrum
method Short distance ∆x× ∆y ∆x× ∆y N.A. 2 2N × 2N
Shifted
angular

spectrum method All ∆x× ∆y ∆x× ∆y Available 2 2N × 2N

for the 3D diffraction field. In line 4, we set horizontal, verti-
cal and depth-direction sampling pitches, respectively. In line
5, the 3D diffraction field is calculated by the member func-
tion “Diffract3D”. The first argument is set to the instance of
the CWO class maintaining the hologram. The second argu-
ment is the distancezas shown in Fig. 3 between the hologram
and 3D diffracted field. The third argument concerns the type
of diffraction calculation. In line 6, we save the calculated 3D
diffraction field as a cwo file, which includes the 3D diffraction
field in complex amplitude in binary form. Figure 4 shows the
volume rendering from the cwo file. In the left figure, we can
see the two circles reconstructed head-on in the volume. In the
right figure, we can see a different view of the reconstructed
two circles.

Figure 3: Scalar 3D diffraction field by stacking 2D diffraction calculations.

Listing 2: 3D diffraction calculation based on the stack of 2D diffracted planes.

1 CWO c1,c2;
2 c1.Load("hologram.bmp");
3 c2.Create(512, 512, 512);
4 c2.SetPitch(10e−6, 10e−6, 0.01);
5 c2.Diffract3D(a1,−0.1, CWOANGULAR);
6 c2.Save("3d.cwo");

Figure 4: Volume rendering of the 3D diffraction calculation by List 2.

2.4. Calculations of a complex amplitude field and a computer
generated hologram from point light sources

Current CGH calculations are mainly categorized into two
approaches: polygon-based [10, 64] and Point Light Sources
(PLSs) approaches [7, 9, 61]. Polygon-based approaches are
based on diffraction calculations using FFTs. In the subsection,
we focus on the PLS approach, which treats a 3D object as a
composite of multiple PLSs, and generates a CGH from a 3D
object more flexibly than polygon-based approaches.

The class “cwoPLS” calculates a complex amplitude field
and CGH from PLSs. In Fig. 5, the calculations assume that a
3D object is composed of PLSs with a number ofN.

6

Figure 5: PLS-based diffraction and CGH calculations.

We can calculate the complex amplitude field or CGH to
superimpose PLS distributions from one PLS to the destination
plane. The complex amplitude fieldu(x, y) from PLSs by Fres-
nel diffraction is expressed as,

u(x, y) =
exp(i 2π

λ
z)

iλz

N
∑

j

A jexp(
2π
λ

(
(x− x j)2 + (y− y j)2

2zj
))

(22)

where, (x, y) and (x j, y j , zj) are coordinates on the destination
plane and a 3D object,A j is the light intensity of the 3D object.
A CGH calculation based on Fresnel diffraction is expressed as
[61],

I (x, y) =
N
∑

j

A jcos(
2π
λ

(
(x− x j)2 + (y− y j)2

2zj
)) (23)

where,I (x, y) is the CGH pattern. The computational complex-
ity of the above formulas are O(NNxNy), whereNx andNy are
the horizontal and vertical pixel numbers of the CGH.

List 3 shows CGH generation using the class “cwoPLS”.
We generate a 2, 048×2, 048 pixels CGH from the 3D object of
a dinosaur with 11,646 points. The sampling pitch on the CGH,
wavelength (default value) and distance between the CGH and
the 3D object is 4µm× 4µm, 633nm and 0.2 m, respectively.
The class treats the 3D object as the source and the CGH as the
destination plane.

In line 4 of List 3, the member function “Create” allocates
the required memory of the CGH. In line 5, the member func-
tion “SetDstPitch” is set to the sampling pitches on the destina-
tion plane, namely the CGH. In line 6, the first and second argu-
ments of the member function “SetOffset” are set to the offsets
of the 3D object, namely horizontal and vertical offsets of 1 cm
(2500 pixels) and -2 mm (-512 pixels) from the origin, respec-
tively. In addition, the third argument sets the distance between

CGH and a 3D object of 0.2 m. In line 7, the 3D object data of
the dinosaur is read, while in the next line, the coordinatesof
the 3D object are normalized from -4 mm (-1000 pixels) to 4
mm (1000 pixels). In line 9, the CGH is calculated by Eq. (23),
and in the next line, the calculated CGH pattern is normalized
to 256 steps by Eq. (21).

Figure 5(a) and (b) show the CGH generated by List.3 and
the reconstructed image from (a) using the CWO class.

Listing 3: CGH generation using the class “cwoPLS”.

1 cwoPLS c;
2 float p=4e−6;
3 float z=0.2;
4 c.Create(2048,2048);
5 c.SetDstPitch(p,p);
6 c.SetOffset(2500∗p,−512∗p, z);
7 c.Load("tyranno_000.3df");
8 c.ScalePoint(p∗1000);
9 c.PLS(CWOPLS FRESNELCGH);

10 c.Scale(255);
11 c.Save("cgh.bmp");

3. GWO and gwoPLS classes: Diffraction and CGH calcu-
lations on GPU

The current CWO++ library provides diffraction and CGH
calculations on NVIDIA GPU chips by the GWO and gwoPLS
classes. In this subsection, we briefly describe an NVIDIA
GPU, and subsequently show the source code of Fresnel diffrac-
tion and CGH calculations on a GPU using the GWO and gwoP
LS classes.

Although initially GPU chips were mainly used for render-
ing 3D computer graphics, recent GPU chips have also been
used for numerical computation. In 2007, NVIDIA released a
new GPU architecture and its software development environ-
ment, Compute Unified Device Architecture (CUDA). CUDA
can be used to facilitate the programming of numerical compu-
tations more than software previously developed, such as HLSL,
Cg language and so forth. Since its release, many papers using
NVIDIA GPU and CUDA have been published in optics. In
particular, calculations of CGH [62, 63, 64, 65, 66] and recon-
struction in digital holography [44, 45, 49, 67, 68, 69, 70] have
successfully accelerated these calculations.

Figure 7 shows the structure of an NVIDIA GPU, featuring
GPU chips with some Multi-Processors (MP). Moreover, the
MP includes Stream Processors (SP), where the number of SPs
per MP differs depending on the version of the NVIDIA GPU
chip. One SP can operate 32- or 64-bit floating-point addition,
multiplication and multiply-add instructions. SPs in an MPop-
erate the same instruction in parallel, and process different data.
Namely, an MP is a Single Instruction Multiple Data (SIMD)
fashion processor. In addition, each multiprocessor can operate
the same or different processing, thus allowing the GPU chip to
be used as a highly parallel processor. The specifications ofthe
GPUs used in this paper are shown in Table 3.

7

Figure 6: (a) CGH generated by the class cwoPLS. (b) Reconstructed image from (a) using the class CWO.

Table 3: Specifications of the GPUs used in this paper.

NVIDIA Geforce GTX 460M GeForce GTX295 (1 chip) GeForce GTX 580
CUDA processors 192 240 512
Memory amout (GBytes) 1.5 0.896 1.53
Core clock(GHz) 1.35 1.24 1.54
Memory clock (GHz) 1.25 1 2
Memory band width (GByte/sec) 60 223.8 192.4

The host computer controls the GPU board and the commu-
nication between the host computer and the GPU board via the
PCI-express bus. The host computer can also directly access
the device memory on the GPU board, which is used for stor-
ing input data, namely the location of the source plane or 3D
object, and the destination plane as computed by the GPU. The
multiprocessor has a shared memory, which is limited, but low
latency and faster than the device memory. In the classes, these
memories are used for fast calculation.

The CUDA compiler compiles a C-like language source
code for the instruction set of the GPU chip, which is referred
to as a “Kernel”. We download this “Kernel” to the GPU chip
via the PCI-express bus. The kernel codes in the CWO++ li-
brary are collected in the form of a library and DLL files on
Windows OS, named “gwolib.lib” and “gwo lib.dll”. When
we use the GWO or gwoPLS classes, we need to link these files
to our program. See more details in Appendix A.

The diffraction calculations, as mentioned, require some
FFT operations. The CUDA compiler allows us to accelerate
the FFT algorithm on an NVIDIA GPU chip, which is named
CUFFT. It is similar to the FFTW library [58], and we use
CUFFT for the GWO and gwoPLS classes.

When the GWO and gwoPLS classes are used, they implic-

itly execute the following steps, which are hidden to CWO++
library users:

1. Allocating the required memories for calculation on the
device memory.

2. Sending the input data (source plane or 3D object data)
to the allocated device memory.

3. Executing kernel functions. The result (complex ampli-
tude field or CGH on the destination plane) is stored in
the allocated device memory.

4. Receiving the result from the allocated device memory.
5. Releasing the allocated device memories.

3.1. Fresnel diffraction and CGH calculations on a GPU using
the GWO and gwoPLS classes

We show the source-code of a Fresnel diffraction calcula-
tion on a GPU using the GWO class. This example is the same
as Section 2.2 except using GPU, but somewhat different in
comparison to List 1.

Listing 4: Fresnel diffraction calculation on a GPU using class GWO.

1 CWO c;
2 GWO g;
3 c.Load("lena512x512.bmp");

8

Figure 7: Structure of NVIDIA GPU chip.

4 g.Send(c);
5 g.Diffract(0.2, CWOFRESNELCONV);
6 g.Intensity();
7 g.Scale(255);
8 g.Recv(c);
9 c.Save("lena512x512_diffract.bmp");

As the initial change, we define the instance “g” of the
GWO class, in line 2. As the second change, the source plane,
namely Fig.2(a), is sent to a GPU by using the GWO class
member function “Send”. When calling the member function
“Send”, the first step involves the automatic allocation of the re-
quired device memory on the GPU to the instance “g”, via the
CUDA API function “cudaMalloc”. Subsequently, the source
plane on the host memory is sent to the device memory on the
GPU using the CUDA API function “cudaMemcpy”.

In lines 5 to 7 of List 4, we change the instance names in
lines 3 to 5 of List 1 from the instance “c” of the CWO class
to the instance “g” of the GWO class. Therefore, these func-
tions calculate the diffraction, intensity and normalization on
the GPU. Finally, we receive the calculation result from the
GPU to the host in line 8.

Next, we show the source-code of CGH calculation on a
GPU using the GWO class. This example is the same as Section
2.4 except using GPU. There are also some changes as com-
pared with List 3.

Listing 5: CGH calculation on a GPU using class gwoPLS.

1 cwoPLS c;
2 gwoPLS g;
3 float p=4e−6;
4 float z=0.2;
5 c.Create(2048,2048);
6 c.SetDstPitch(p,p);
7 c.SetOffset(2500∗p,−512∗p, z);

8 c.Load("tyranno_000.3df");
9 g.ScalePoint(p∗1000);

10 g.Send(c);
11 g.PLS(CWOPLS FRESNELCGH);
12 g.Scale(255);
13 g.Recv(c);
14 c.Save("cgh.bmp");

4. Implementations of the CWO and GWO classes

Now, we describe the implementations of the CWO and
GWO classes. For simplicity, we select the implementationsof
the Fresnel diffraction (Eq. (5)) on the CWO and GWO classes
as an example.

Figure 8 shows the implementations. Figure 8(a) shows a
portion of the CWO member function “Diffract”, the functions
in which are defined as virtual functions of C++. The functions
“FFT”, “FresnelConvProp”, “Mult”, “IFFT” and “FresnelCon-
vCoeff” calculate FFT, the impulse response of Eq. (3), com-
plex multiplication, inverse FFT and the coefficient of Eq. (5).

When the function “Diffract” in the CWO class is called,
the virtual functions defined in the CWO class are called (Fig.
8(b)). Moreover, these functions also call the functions defined
in the library and DLL files of “cwolib” (Fig. 8(d)), which are
activated on a CPU.

Conversely, when the function “Diffract” in the GWO class
is called, the virtual functions defined in the GWO class are
called (Fig.8(c)). Moreover, these functions call those defined
in the library and DLL files of “gwolib” (Fig.8(e)). These func-
tions are activated on a GPU. Therefore, the function “Diffract”
in the GWO class calculates the Fresnel diffraction on a GPU.

The classes shown in the Table 1 are distributed as open-
source code, while the functions in the library and DLL files
of “cwo lib” and “gwo lib”, which are closed source code, are
distributed as binary files.

The current CWO++ library is compatible with Intel and
AMD x86 CPUs and NVIDIA GPUs. If we port the CWO++
library to other hardware, we need to inherit the CWO class to
a new class indicating the new hardware, then re-define virtual
functions and write functions corresponding to “gwolib”.

For instance, new GPUs of the HD5000 and HD6000 series
made by AMD were released. These GPUs have new archi-
tecture and software environment, Open Computing Language
(OpenCL). The architectures also differ from NVIDIA GPUs.
We have already reported the CGH calculation of Eq. (23) [71]
and Fresnel diffraction calculation [72]. Although we do not
implement the CWO++ library on the AMD GPUs, we will
make a new class for AMD GPUs using the above mentioned
method.

5. Field type

The classes in the CWO++ library, namely the CWO, GWO,
cwoPLS and gwoPLS classes, have field types indicating cur-
rent fields. There are three field types: complex amplitude

9

Figure 8: Implementations of Fesnel diffraction in CWO and GWO.

field (the predefined macro: CWOFLD COMPLEX), inten-
sity field (the predefined macro: CWOFLD INTENSITY) and
phase field (the predefined macro: CWOFLD PHASE).

The above classes hold the fieldu(x, y) for the source or des-
tination plane. If the field type is CWOFLD COMPLEX, the
field u(x, y) maintains a complex amplitude field as a complex
number array,

u(x, y) = re(x, y) + i im(x, y) (24)

where re(x, y) and im(x, y) indicate real and imaginary com-
ponents of the complex value on (x, y). Because the current
CWO++ library has single floating point precisions for the real
and imaginary components, the memory amount for the field
u(x, y) is 8NxNy bytes whereNx andNy are the number of pix-
els in the field.

If the field type is CWOFLD PHASE, the class maintains
the phase fieldθ(x, y) as a real number array,

θ(x, y) = tan−1 im(x, y)
re(x, y)

(25)

If the field type is CWOFLD INTENSITY, the class main-
tains a real number arraya(x, y) except the phase field. The real
number arrays include, for example, image data, amplitude,real
or imaginary, only part of the complex amplitude field and so
on. The memory required for the intensity and phase fields is
4NxNy bytes.

Figure 9 shows each field type and mutual conversions be-
tween each field. We briefly describe the mutual conversions as
follows:

1. If we use the member functions “Re()” when the current
field type is a complex amplitude field, the field is con-
verted from this to a real part only and the field type is
set to CWOFLD INTENSITY.

Figure 9: Field types and mutual conversions between each field.

2. If we use member functions “Phase()” when the current
field type is a complex amplitude field, the field is con-
verted from this to an argument of the same and the field
type is set to CWOFLD PHASE.

3. If we use member functions “Complex()” when the cur-
rent field type is an intensity field, the field is converted
from this to a complex amplitude field according tou(x, y)
= re(x, y) + i im(x, y), where re(x, y) = a(x, y) is the in-
tensity field and im(x, y) is zero and the field type is set
to CWO FLD COMPLEX.

4. If we use member functions “Complex()” when the cur-
rent field type is a phase field, the field is converted from
this to a complex amplitude field according tou(x, y) =
re(x, y)+i im(x, y), where re(x, y) = cos(θ(x, y)) and im(x, y)
= sin(θ(x, y)) and the field type is set to CWOFLD COM
PLEX.

5. If we use member functions “Complex(CWO &a, CWO
&b)” when the current field types of classes “a” and “b”

10

are the intensity and phase fields respectively, the fields
are converted to a complex amplitude field according to
u(x, y) = a(x, y)cos(θ(x, y)) + i a(x, y)sin(θ(x, y)), where
“a” and “b” hold a(x, y) andθ(x, y), respectively and the
field type is set to CWOFLD COMPLEX.

6. If we use member functions “Complex(CWO &a, CWO
&b)” when the current field types of classes “a” and “b”
are both intensity fields, the fields are converted to a com-
plex amplitude field according tou(x, y) = re(x, y)
+i im(x, y), where re(x, y) and im(x, y) are the fields of “a”
and “b”, respectively and the field type is set to CWOFLD
COMPLEX.

List 6 and Fig.10 show examples of mutual conversions be-
tween each field type and their results, respectively. Figure 10
(a) is an original image. We calculate the diffracted light of the
figure in lines 2 and 3 of List 6 because we observe the real
part, imaginary part, amplitude and phase of the diffracted field
respectively.

The real part of the diffracted light (Fig.10(b)) is obtained
in lines 8 to 10, and, the imaginary part of the diffracted light
(Fig. 10(c)) is obtained in lines 11 to 13. The amplitude

√

re(x, y)2 + im(x, y)2

of the diffracted light (Fig.10(d)) is obtained in lines 17 to 19,
and, the phase of the diffracted light (Fig. 10(e)) is obtained in
lines 20 to 22. In lines 26 to 28, we show the generation of the
complex amplitude field from the instances “a” and “b”, which
hold amplitude (CWOFLD INTENSITY) and phase (CWOFL
D PHASE) respectively. In lines 29 to 32, we show the result
of the back propagation result (Fig.10(f)) from the position of
the complex amplitude field to that of the original image. In the
result, although we observe a diffraction effect to some extent
at the edges of the figure, the result is almost the same as the
Fig.10(a).

Listing 6: Example of mutual conversions of field types.

1 CWO a,b,c;
2 a.Load("lena512x512.bmp");
3 a.Diffract(0.1,CWOANGULAR);
4

5 b=a;
6 c=a;
7

8 b.Re();
9 b.Scale(255);

10 b.Save("re.bmp");
11 c.Im();
12 c.Scale(255);
13 c.Save("im.bmp");
14

15 b=a;
16 c=a;
17 b.Amp();
18 b.Scale(255);
19 b.Save("amp.bmp");

20 c.Phase();
21 c.Scale(255);
22 c.Save("phase.bmp");
23

24 b=a;
25 c=a;
26 b.Amp();
27 c.Phase();
28 a.Complex(b,c);
29 a.Diffract(−0.1,CWOANGULAR);
30 a.Re();
31 a.Scale(255);
32 a.Save("complex.bmp");

6. Performance

In this section, we show the calculation times of each diffrac-
tion calculation and CGH calculation on an Intel CPU and NVID
IA GPUs. We used an Intel CPU, which was a Core i7 740
QM (with CPU clock frequency of 1.7GHz), and three GPUs,
namely NVIDIA GeForce GTX 460M, GerForce GTX 295 and
GeForce GTX580. The GPU specifications are shown in Table
3.

In the diffraction calculations, the impulse response and trans-
fer functions of each diffraction are only sufficient to calculate
them once when the parameters, which are the propagation dis-
tance, the sampling pitches, wavelength, offsets and so on, are
unchanged. Of course, we need to re-calculate the impulse re-
sponse and transfer functions when the parameters are changed.
Therefore, we evaluated the calculation times of each diffrac-
tion in both cases of re-calculation and once-calculation.

For the evaluation, we used Lists 1 and 4 and changed the
image size and diffraction type. Table 4 shows the calculation
times of diffraction calculations on the CPU and GPUs with
recalculation of the impulse and transfer functions. Table5
shows the calculation times of diffraction calculations on the
CPU and GPUs with the once-calculation of the impulse and
transfer functions. In the table, except for the diffraction type
CWO FRESNELFOURIER, we expand the area of the source
and destination planes fromNx × Ny to 2Nx × 2Ny during the
calculation and avoid aliasing by circular convolution. Inthe
CPU calculations, we measured the time in line 3 of List 1. In
the GPU calculations, we measured the time in lines 4 and 5 of
List 4.

Table 6 shows the calculation times of CGH calculations on
the CPU and GPUs. For the evaluation, we used Lists 3 and 5
and changed the number of PLSs. In the CPU calculations, we
measured the time in line 9 of List 3. In the GPU calculations,
we measured the time in lines 10 and 11 of List 5.

The calculation times of each diffraction calculation and
CGH calculation on the GPUs were much faster than those of
the CPU.

11

Table 4: Calculation times of each diffraction calculation on the CPU and GPUs with the re-calculation of the impulse and transfer functions.

Resolution CPU (ms) GPU (ms)
Intel Core i7 740QM GeForce GTX 460M GeForce GTX295 (1 chip) GeForce GTX580

Fresnel diffraction convolution form (CWOFRESNELCONV)
512× 512 248 15 5 3

1024× 1024 1.24× 103 47 15 10
2048× 2048 6.12× 103 177 67 38

Fresnel diffraction Fourier form (CWOFRESNELFRESNEL)
512× 512 51.7 2.4 1 1

1024× 1024 227 6 2 2
2048× 2048 984 19 9 8

Shifted Fresnel diffraction (CWOSHIFTED FRESNEL)
512× 512 477 15 5 3

1024× 1024 2.07× 103 48 16 10
2048× 2048 9.48× 103 186 71 40

Angular spectrum method (CWOANGULAR)
512× 512 260 12 3 2

1024× 1024 1.17× 103 36 11 8
2048× 2048 5.56× 103 135 47 29

Shifted angular spectrum method (CWOSHIFTED ANGULAR)
512× 512 269 15 4 3

1024× 1024 1.23× 103 44 14 9
2048× 2048 5.66× 103 157 58 35

Table 5: Calculation times of each diffraction calculation on the CPU and GPUs with the once-calculation of the impulse and transfer functions.

Resolution CPU (ms) GPU (ms)
Intel Core i7 740QM GeForce GTX 460M GeForce GTX295 (1 chip) GeForce GTX580

Fresnel diffraction convolution form (CWOFRESNELCONV)
512× 512 117 10 3 2

1024× 1024 620 29 11 6
2048× 2048 3.30× 103 104 48 26

Fresnel diffraction Fourier form (CWOFRESNELFRESNEL)
512× 512 52 2 1 1

1024× 1024 229 5.4 2 2
2048× 2048 993 19 9 8

Shifted Fresnel diffraction (CWOSHIFTED FRESNEL)
512× 512 346 10 3 2

1024× 1024 1.50× 103 30 11 7
2048× 2048 6.91× 103 110 51 28

Angular spectrum method (CWOANGULAR)
512× 512 121 9.5 3 2

1024× 1024 624 26 10 6
2048× 2048 3.30× 103 97 44 24

Shifted angular spectrum method (CWOSHIFTED ANGULAR)
512× 512 128 10 3 2

1024× 1024 665 31 12 7
2048× 2048 3.51× 103 119 54 29

12

Figure 10: Resluts of mutual conversions between each field.(a) original image (b) real part of the diffracted light (c) imaginary part of the diffracted light (d)
amplitude of the diffracted light (e) phase of the diffracted light and (f) back propagation from the complex amplitude of (d) and (e).

Table 6: Calculation times of CGH calculation on the CPU and GPUs

CPU (ms) GPU (ms)
Number of PLSs Intel Core i7 740QM GeForce GTX 460M GeForce GTX295 (1 chip) GeForce GTX580

248 1.3× 104 87 67 31
4596 2.2× 105 650 562 230
11646 5.9× 105 1.7× 103 1.43× 103 579

7. Applications to holography

In this section. we show some applications to holography
using the CWO++ library and its performances on the CPU
and GPUs.

7.1. Inline phase-only CGH (Kinoform)

In this subsection, we show an example of generating an
inline phase-only CGH, also known as kinoform. A kinoform
is calculated only by extracting the phase of a diffracted light
onto the kinoform plane. List 7 shows the generation of an
inline phase-only CGH with 512× 512 pixels from the original
image (Fig. 2 (a)).

In line 3, we add a random phase to the original image using
the function “SetRandPhase()” to spread the light. The function
automatically sets to the complex amplitude field (CWOFLD C
OMPLEX). The random phase is generated by Xorshift RNGs
algorithm [73]. In lines 4 and 5, we calculate the kinoform by
diffracting the original image at the propagation distance of 0.1
m, and subsequently extract the phase only from the diffracted
light, which is the kinoform.

After line 7, these codes are for reconstruction from the ki-
noform. In line 7, we convert the phase field (CWOFLD PHASE)

to the complex amplitude field (CWOFLD COMPLEX). In
lines 8 to 11, we calculate the reconstructed image from the
kinoform using the back propagation relative to the position of
the original image. Figure 11 (a) and (b) show the kinoform
pattern and the reconstructed image from the kinoform.

Listing 7: Inline phase-only CGH

1 CWO c;
2 c.Load("lena512x512.bmp");
3 c.SetRandPhase();
4 c.Diffract(0.1, CWOFRESNELCONV);
5 c.Phase();
6

7 c.Complex();
8 c.Diffract(−0.1, CWOFRESNELCONV);
9 c.Intensity();

10 c.Scale(255);
11 c.Save("kinoform_reconst.bmp");

7.2. GS algorithm
In the subsection, we implement the GS algorithm on the

CPU and GPUs using the CWO++ library and show the per-
formances of the algorithm on the CPU and GPUs. Although

13

Figure 11: (a) Kinoform and (b) reconstructed image from thekinoform.

it is possible to obtain a complete reconstructed image froma
complex amplitude field, unfortunately, we lack an appropri-
ate electric device to display the amplitude and phase of the
complex amplitude field simultaneously. Therefore, we needto
select either the amplitude or the phase components of the com-
plex amplitude field, which will cause the reconstructed image
to deteriorate due to lack of information on the complex am-
plitude field. We employ the GS algorithm as an iterative al-
gorithm [18, 19] in order to improve the deterioration of the
reconstructed image.

Figure 12 shows typical a GS algorithm. In the GS algo-
rithm for Fourier holograms, Fourier and inverse Fourier trans-
forms correspond to reconstructions from a hologram and holo-
gram generation, respectively. In the subsection, insteadof
Fourier and inverse Fourier transforms, we use the angular spec-
trum method and the back propagation of the same.

We start the iteration by adding a random phase to an input
image, and calculate the diffraction calculation from the latter.
We extract only the phase components (“Phase constraints” in
Fig.12) from the diffracted lights to generate a kinoform. The
kinoforms are reconstructed by inverse diffraction calculation.
We replace the amplitude of the reconstructed light with the
original input image (“Amplitude constraint” in Fig.12). Re-
peating the above processes, the GS algorithms gradually im-
prove the quality of the reconstructed images.

List 8 shows an example of the GS algorithm on a CPU. In
lines 1 to 7, we load an input image, calculate its square root, set
a random phase to it, calculate the diffracted light to a kinoform
plane, and subsequently generate a kinoform only by extracting
the phase of the diffracted light. The information of the original
image is maintained in the instance “a1”, while instance “a2” is
used for the forward and back propagations.

In lines 8 to 17, we execute the iteration, the number of
which is decided by “itenum”. In lines 9 and 11, we calculate
the reconstructed image by the back propagation of the angular
spectrum method at a propagation distance of -0.1 m and extract
only the phase information of the reconstructed light. In line
13, we replace the amplitude of the reconstructed light withthe
original input image (“Amplitude constraint” in Fig.12), where
instances “a1” and “a2” hold the field type of CWOFLD INTE
NSITY and CWOFLD PHASE, respectively.

In lines 15 and 16, we recalculate a new kinoform from the
new complex amplitude generated by line 13. Repeating the
above processes, the GS algorithms gradually improve the qual-
ity of the reconstructed images. In lines 19 to 23, we calculate
a final reconstructed image from the kinoform.

Listing 8: GS algorithm on CPU.

1 CWO a1,a2;
2 a1.Load("lena2048x2048.bmp");
3 a1.Sqrt();
4 a2=a1;
5 a2.SetRandPhase();
6 a2.Diffract(0.1,CWOANGULAR);
7 a2.Phase();
8 for (int i=0;i<ite num;i++){
9 a2.Complex();

10 a2.Diffract(−0.1,CWOANGULAR);
11 a2.Phase();
12

13 a2.Complex(a1,a2);
14

15 a2.Diffract(0.1,CWOANGULAR);
16 a2.Phase();
17 }

18

19 a2.Complex();
20 a2.Diffract(−0.1,CWOANGULAR);
21 a2.Intensity();
22 a2.Scale(255);
23 a2.Save("gs_on_cpu.bmp");

List 9 shows an example of the GS algorithm on a GPU.
The example is almost the same as to List 8. The iteration of
lines 11 to 20 is executed on a GPU, so that the example will be
calculated faster than the CPU version of List 8.

Listing 9: GS algorithm on GPU.

1 CWO c1,c2;
2 GWO g1,g2;
3 c1.Load("lena2048x2048.bmp");
4 c1.Sqrt();
5 c2=c1;
6 c2.SetRandPhase();
7 g1.Send(c1);
8 g2.Send(c2);
9 g2.Diffract0.1,CWOANGULAR);

10 g2.Phase();
11 for (int i=0;i<ite num;i++){
12 g2.Complex();
13 g2.Diffract(−0.1,CWOANGULAR);
14 g2.Phase();
15

16 g2.Complex(g1,g2);
17

18 g2.Diffract(0.1,CWOANGULAR);
19 g2.Phase();
20 }

14

Figure 12: GS algorithm in Fresnel region in order to improvethe deterioration of a reconstructed image.

21

22 g2.Complex();
23 g2.Diffract(−0.1,CWOANGULAR);
24 g2.Intensity();
25 g2.Scale(255);
26 g2.Recv(c1);
27 c1.Save("gs_on_gpu.bmp");

Changing the resolution of the input image and the iteration
number, we compare the calculation times of the GS algorithm
on the CPU and GPUs, which are shown in Table 7. In the CPU
calculations, we measured the time in lines 3 to 22 of List 8. In
the GPU calculations, we measured the time in lines 4 to 26 of
List 9. The calculation times on GPUs were much faster than
those on the CPU.

Figures 13 (a), (b) and (c) show the reconstructed images
when the resolution of the original image was 2, 048× 2, 048
pixels and the iteration numbers were 5, 20, and 40 respectively.

8. Conclusion

We developed the CWO++ library using the C++ class li-
brary to calculate the 2D and 3D diffraction and CGH calcu-
lations on CPU and GPU. Our previous C-language based li-
brary, GWO, was not user-friendly because, for example, GWO
library users have to manage the CPU and GPU memory al-
location by themselves and so on. The CWO++ library re-
mains user-friendly by concealing troublesome programming
within classes and the GPU calculation power while unaware
of the GPGPU technique. Applications capable of applying the
CWO++ library cover a wide range of optics, ultrasonic and
X-ray fields and so on. In this paper, applications to hologra-
phy are shown. The CWO++ library will be distributed from
http://brains.te.chiba-u.jp/~shimo/cwo/.

Acknowledgments

This research was partially supported by Japan Society for
the Promotion of Science (JSPS), Grant-in-Aid for Young Sci-
entists (B), 23700103, 2011, and, the Ministry of Internal Af-

fairs and Communications, Strategic Information and Commu-
nications R&D Promotion Programme (SCOPE)(09150542),2009.

References

[1] J.W.Goodman, “Introduction to Fourier Optics (3rd ed.),” Robert & Com-
pany (2005).

[2] Okan K. Ersoy, “Diffraction, Fourier Optics And Imaging,” Wiley-
Interscience (2006).

[3] E. G. Williams, “Fourier Acoustics – Sound Radiation andNearfield
Acoustical Holography,” Academic Press (1999).

[4] D.M. Paganin, “Coherent X-Ray Optics,” Oxford University Press
(2006).

[5] C. Slinger, C. Cameron, M. Stanley, M, “Computer-Generated Hologra-
phy as a Generic Display Technology,” Computer38, 46–53 (2005).

[6] S. A. Benton et al., “Holographic Imaging,” Wiley-Interscience (2008).
[7] S.C. Kim and E.S. Kim, “Effective generation of digital holograms of

three-dimensional objects using a novel look-up table method,” Appl.
Opt.47, D55–D62 (2008) .

[8] H. Sakata and Y. Sakamoto, “Fast computation method for aFresnel holo-
gram using three-dimensional affine transformations in real space,” Appl.
Opt.48, H212–H221 (2009).

[9] H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-TimeGeneration
of Full color Image Hologram with Compact Distance Look-up Table,”
OSA Topical Meeting on Digital Holography and Three-Dimensional
Imaging 2009, DWC4 (2009).

[10] K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax
computer-generated hologram created by the polygon-basedmethod,”
Appl. Opt.48, H54–H63 (2009).

[11] Y. Liu, J. Dong, Y. Pu, H. He, B. Chen, H. Wang, H. Zheng andY. Yu,
“Fraunhofer computer-generated hologram for diffused 3D scene in Fres-
nel region,” Opt. Lett.36, 2128–2130 (2011).

[12] U.Schnars and W. Juptner, “Direct recording of holograms by a CCD
target and numerical Reconstruction,” Appl.Opt.,33,2, 179–181 (1994).

[13] U.Schnars and W.Jueptner, “Digital Holography - Digital Holo-
gram Recording, Numerical Reconstruction, and Related Techniques,”
Springer (2005).

[14] M. K. Kim, “Principles and techniques of digital holographic mi-
croscopy,” SPIE Reviews1, 018005 (2010).

[15] M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egel-
berg, and T. Lenart, “High-resolution digital transmission microscopy:
a Fourier holography approach,” Opt. Lasers Eng.41, 553–563 (2004).

[16] N. Masuda, T. Ito, K. Kayama, H. Kono, S. Satake, T. Kunugi and Kazuho
Sato, “Special purpose computer for digital holographic particle tracking
velocimetry,” Opt. Express14, 587–592 (2006).

[17] S. Satake, H. Kanamori, T. Kunugi, K. Sato, T. Ito, and K.Yamamoto,
“Parallel computing of a digital hologram and particle searching for
microdigital-holographic particle-tracking velocimetry,” Appl. Opt. 46,
538–543 (2007).

15

http://brains.te.chiba-u.jp/~shimo/cwo/

Table 7: Calculation times of the GS algorithm on the CPU and GPUs.

Number of iterations CPU (ms) GPU (ms)
Intel Core i7 740QM GeForce GTX 460M GeForce GTX295 (1 chip) GeForce GTX580

Resolution of Input image : 512× 512
5 3.60× 103 173 236 188
10 6.53× 103 285 273 210
20 1.22× 104 516 384 253
40 2.36× 104 984 482 338

Resolution of Input image : 1, 024× 1, 024
5 1.59× 104 539 920 731
10 2.88× 104 883 1.06× 103 797
20 5.56× 104 1.59× 103 1.36× 103 930
40 1.07× 105 3.02× 103 1.73× 103 1.19× 103

Resolution of Input image : 2, 048× 2, 048
5 7.30× 104 2.03× 103 3.85× 103 2.91× 103

10 1.33× 105 3.36× 103 4.25× 103 3.16× 103

20 2.53× 105 6.01× 103 5.29× 103 3.65× 103

40 4.98× 105 1.12× 104 7.17× 103 4.65× 103

Figure 13: the reconstructed images when the resolution of the original image is 2, 048× 2, 048 pixels and the numbers of iteration are 5, 20, and 40 respectively.

[18] J. R. Fienup, “ Phase retrieval algorithms: a comparison, ” Appl. Opt.21,
2758–2769 (1982).

[19] R. G. Dorsch, A. W. Lohmann, and S. Sinzinger, “Fresnel ping-pong algo-
rithm for two-plane computer-generated hologram display,” Appl. Opt.
33, 869–875 (1994).

[20] G. Yang, B. Dong, B. Gu, J. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton
and Yang-Gu algorithms for phase retrieval in a nonunitary transform sys-
tem: a comparison, ” Appl. Opt.33, 209–218 (1994).

[21] G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a
sequence of interferograms recorded at different planes, ” Opt. Lett.30,
833–835 (2005).

[22] D. Zheng, Y. Zhang, J. Shen, C. Zhang and G. Pedrini, “ Wave field recon-
struction from a hologram sequence, ”Opt. Communications249 73–77
(2005).

[23] A. Grjasnow, A. Wuttig and R. Riesenberg, “ Phase resolving microscopy
by multi-plane diffraction detection, ” J. Microscopy231, 115–123
(2008).

[24] E. Buckley, “Holographic Laser Projection, ” J. Display Technol.99, 1–6
(2010).

[25] E. Buckley, “Holographic projector using one lens, ” Opt. Lett.35, 3399–
3401 (2010).

[26] M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorfulreconstruc-
tions from a thin multi-plane phase hologram, ” Opt. Express16, 11618–
11623 (2008).

[27] M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J.Suszek, and A.
Kolodziejczyk, “Experimental evaluation of a full-color compact lensless
holographic display, ” Opt. Express17, 20840–20846 (2009).

[28] T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of
color holographic projection using space-division method,” Opt. Express
19, 10287-10292 (2011) .

[29] T. Shimobaba, A. Gotchev, N. Masuda and T. Ito, “Proposal of zoomable
holographic projection method without zoom lens,” IDW’11 (The 18th
international Display Workshop) (to be appeared in Dec. 2011).

[30] O. Matoba and B. Javidi, “Encrypted optical memory system using three-
dimensional keys in the Fresnel domain, ” Opt. Lett.24, 762–764 (1999).

[31] E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information
with digital holography, ” Appl. Opt.39, 6595–6601 (2000).

[32] B. Javidi and Takanori Nomura, “Securing information by use of digital
holography, ” Opt. Lett.25, 28–30 (2000).

[33] H. Hamam, “Digital holography-based steganography, ”Opt. Lett. 35,
4175–4177 (2010).

[34] R. Piestunand and J. Shamir, “Synthesis of three-dimensional light fields
and applications,” Proc. IEEE90, 222–244 (2002).

[35] T. P. Kurzweg, S. P. Levitan, P. J. Marchand, J. A. Martinez, K. R.
Prough, D. M. Chiarulli, “A CAD Tool for Optical MEMS, ” Proc.36th
ACM/IEEE conf. on Design automation, 879–884 (1999).

[36] T. P. Kurzweg, S. P. Levitan, J. A. Martinez, M. Kahrs, D.M. Chiarulli,
“An Efficient Optical Propagation Technique for Optical MEM Simula-

16

tion, ” Fifth International Conference on Modeling and Simulation of Mi-
crosystems (MSM2002), 352–355 (2002).

[37] T. Ito, T. Yabe, M. Okazaki and M. Yanagi, “Special-purpose computer
HORN-1 for reconstruction of virtual image in three dimensions,” Com-
put.Phys.Commun.82, 104–110 (1994).

[38] T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe and T.
Kunugi, “Special-Purpose Computer for Holography HORN-2,” Com-
put.Phys.Commun.93, 13–20 (1996).

[39] T.Shimobaba, N.Masuda, T.Sugie, S.Hosono, S.Tsukui and T.Ito,
“Special-Purpose Computer for Holography HORN-3 with PLD technol-
ogy,” Comput. Phys. commun.130, pp. 75–82, (2000).

[40] T. Shimobaba, S. Hishinuma and T.Ito, “Special-Purpose Computer for
Holography HORN-4 with recurrence algorithm,” Comput. Phys. Com-
mun.148, 160–170 (2002).

[41] T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba and T. Sugie,
“A special-purpose computer HORN-5 for a real-time electroholography,”
Opt. Express13 1923-1932 (2005).

[42] Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki
and T. Sugie, “HORN-6 special-purpose clustered computingsystem for
electroholography,” Opt. Express17, 13895–13903 (2009).

[43] Y. Abe, N. Masuda, H. Wakabayashi, Y. Kazo, T. Ito, S. Satake, T. Kunugi
and K. Sato, “Special purpose computer system for flow visualization
using holography technology,” Opt. Express16, 7686–7692 (2008).

[44] T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H.Nakayama,
N. Takada, A.Shiraki and T. Sugie, “Numerical calculation library for
diffraction integrals using the graphic processing unit: the GPU-based
wave optics library,” Journal of Optics A: Pure and Applied Optics, 10,
075308, 5pp, (2008).

[45] T.Shimobaba, Y.Sato, J.Miura, M.Takenouchi, and T.Ito, “Real-time dig-
ital holographic microscopy using the graphic processing unit,” Opt. Ex-
press 16, 11776-11781 (2008)

[46] T.Shimobaba, J.Miura and T.Ito, “A computer aided design tool for de-
veloping an electroholographic display,” Journal of Optics A: Pure and
Applied Optics, 11, 085408 (5pp) (2009)

[47] T. Shimobaba, N. Masuda and T. Ito, “Simple and fast calclulation algo-
rithm for computer-generated hologram with wavefront recording plane,”
Opt. Lett.34, 3133–3135 (2009).

[48] T. Shimobaba, H. Nakayama, N. Masuda and T. Ito, “Rapid calcula-
tion of Fresnel computer-generated-hologram using look-up table and
wavefront-recording plane methods for three-dimensionaldisplay,” Op-
tics Express, 18, 19, 19504-19509 (2010).

[49] T. Shimobaba, N. Masuda, Y. Ichihashi and T. Ito, “Real-time digital holo-
graphic microscopy observable in multi-view and multi-resolution,” Jour-
nal of Optics, 12, 065402 (4pp) (2010)

[50] H. T. Dai, X. W. Sun, D. Luo, and Y. J. Liu, “Airy beams generated by
a binary phase element made of polymer-dispersed liquid crystals,” Opt.
Express 17, 19365-19370 (2009)

[51] D. Luoa, H.T . Dai , X. W. Sun, and H. V. Demira, “Electrically switch-
able finite energy Airy beams generated by a liquid crystal cell with pat-
terned electrode,” Optics Communications, 283, 3846-3849(2010).

[52] R. P. Muffoletto, J. M. Tyler, and J. E. Tohline, “Shifted Fresnel diffraction
for computational holography,” Opt. Express15, 5631–5640 (2007).

[53] D. H. Bailey and P. N. Swarztrauber, “The Fractional Fourier Transform
and Applications,” SIAM Review33, 389–404 (1991).

[54] M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field
calculations,” Opt. Express14, 11277–11291 (2006).

[55] J. F. Restrepo and J. Garcia-Sucerquia, “Magnified reconstruction of digi-
tally recorded holograms by Fresnel Bluestein transform,”Appl. Opt.49,
6430–6435 (2010).

[56] K. Matsushima, “Shifted angular spectrum method for off-axis numerical
propagation,” Opt. Express18, 18453–18463 (2010).

[57] K. Matsushima and T. Shimobaba, “Band-limited angularspectrum
method for numerical simulation of free-space propagationin far and near
fields,” Opt. Express17, 19662–19673 (2009).

[58] FFTW Home Page,http://www.fftw.org/.
[59] J. Lin, X.-C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodriguez-Herrera

and J. C. Dainty, “Direct calculation of a three-dimensional diffracted
field,” Opt. Lett.36, 1341–1343 (2011).

[60] L. Ahrenberg, P. Benzie, M. Magnor and J. Watson, “Computer generated
holograms from three dimensional meshes using an analytic light trans-
port model,” Appl. Opt.47, 1567–1574 (2008).

[61] M. Lucente, “Interactive Computation of holograms using a Look-up Ta-
ble,” J. Electron. Imaging2, 28–34 (1993).

[62] M. Lucente and T. A. Galyean, “Rendering Interactive Holographic Im-
ages,” Proc. of SIGGRAPH 95 387–394 (1995).

[63] N. Masuda, T. Ito, T. Tanaka, A. Shiraki and T. Sugie, “Computer gen-
erated holography using a graphics processing unit,” Opt. Express14,
587–592 (2006).

[64] L. Ahrenberg, P. Benzie, M. Magnor, J. Watson, “Computer generated
holography using parallel commodity graphics hardware,” Opt. Express
14,7636–7641 (2006).

[65] H. Kang, F. Yaras, and L. Onural, “Graphics processing unit accelerated
computation of digital holograms,” Appl. Opt.48, H137–H143 (2009).

[66] Y. Pan, X. Xu, S. Solanki, X. Liang, R. Bin A. Tanjung, C. Tan, and T. C.
Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express17,
18543–18555 (2009).

[67] L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald,and T. J.
Naughton, “Using Commodity Graphics Hardware for Real-Time Digital
Hologram View-Reconstruction,” J. Display Technol.5, 111–119 (2009).

[68] D. Carl, M. Fratz, M. Pfeifer, D. M. Giel, and H. Hofler, “Multiwave-
length digital holography with autocalibration of phase shifts and artificial
wavelengths,” Appl. Opt.48, H1–H8 (2009).

[69] N. Pandey, D. P. Kelly, T. J. Naughton and B. M. Hennellyr, “Speed up of
Fresnel transforms for digital holography using pre-computed chirp and
GPU processing,” Proc. SPIE7442, 744205 (2009).

[70] C. Trujillo, John F. Restrepo and J. Garcia-Sucerquia,“Real time nu-
merical reconstruction of digitally recorded holograms indigital in-line
holographic microscopy by using a graphics processing unit,” Photonics
Letters of Poland2, 177–179 (2010).

[71] T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast cal-
culation of computer-generated-hologram on AMD HD5000 series GPU
and OpenCL,” Opt. Express18, 9955–9960 (2010).

[72] T. Nishitsuji, T. Shimobaba, T. Sakurai, N. Takada, N. Masuda, and T. Ito,
“Fast calculation of Fresnel diffraction calculation using AMD GPU and
OpenCL,” in Digital Holography and Three-Dimensional Imaging, OSA
Techinal Digest (CD) (Optical Society of America, 2011), paper DWC20.

[73] G. Marsaglia, “Xorshift RNGs,” Journal of StatisticalSoftware8, 1–6
(2003).

[74] CImg homepage,http://cimg.sourceforge.net/
[75] ImageMagik homepage,http://www.imagemagick.org/script/index.php

Appendix A. System requirements and installation

System requirements for the CWO++ library are as follows:

1. OS : for Windows XP(32/ 64 bit), 7
2. CUDA : CUDA 4.0 (32 bit version) (if the GWO class or

gwoPLS is used)

The installation of the CWO++ library involves the follow-
ing steps:

1. Create a project file of Visual C++.
2. Ensure the following dll and library files are placed in

your project directory:
(a) cwo.dll, cwo.lib, libfftw3f-3.dll (libfftw3f-3.dll can

be download from Ref. [58])
(b) gwo.dll, gwo.lib (if you use GPU version of the

CWO++ library)
3. Set library files (*.lib) to your VISUAL C++ project.
4. Set the following C++ and header files to your project:

(a) cwo.h, cwo.cpp, cwolib.h
(b) gwo.h, gwo.cpp, gwolib.h (if you use the GPU ver-

sion of the CWO library)

17

http://www.fftw.org/
http://cimg.sourceforge.net/
http://www.imagemagick.org/script/index.php

Appendix B. Image formats

Using CImag library [74], CWO library allows us to read
and write image data in the following formats:

1. Bitmap
2. Jpeg
3. Png
4. Tiff

If you read and write image formats other than bitmap format,
you must install ImageMagik [75] on your computer.

18

	1 Introduction
	2 Detail of the CWO++ library
	2.1 Diffraction calculation
	2.1.1 Fresnel diffraction (convolution form)
	2.1.2 The Fresnel diffraction (Fourier form)
	2.1.3 Shifted Fresnel diffraction
	2.1.4 Angular spectrum method
	2.1.5 Shifted angular spectrum method
	2.1.6 Summary of diffraction calculation

	2.2 CWO class: Simple example using the CWO++ library of the Fresnel diffraction calculation on the CPU
	2.3 Three-dimensional diffraction calculations
	2.4 Calculations of a complex amplitude field and a computer generated hologram from point light sources

	3 GWO and gwoPLS classes: Diffraction and CGH calculations on GPU
	3.1 Fresnel diffraction and CGH calculations on a GPU using the GWO and gwoPLS classes

	4 Implementations of the CWO and GWO classes
	5 Field type
	6 Performance
	7 Applications to holography
	7.1 Inline phase-only CGH (Kinoform)
	7.2 GS algorithm

	8 Conclusion
	Appendix A System requirements and installation
	Appendix B Image formats

