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Abstract

A revised and extended (Columbus) version of the Chicago atomic
self-consistent-field (Hartree-Fock) program of 1963 is described. Its
principal present use is in developing Gaussian basis sets for molecu-
lar calculations. Complete memory allocation (using Fortran 90) has
been added as well as improved integral formulas and efficient and sim-
ple programming features. Energy-expression coefficients have been
added sufficient to treat the ground states of all atoms to the extent
that Russell-Saunders (LS) coupling applies. Excited states with large
angular-momentum orbitals can be treated. Relativistic effects can be
included to the extent possible with relativistic effective core poten-
tials. An alternative method of exponent optimization is provided. A
review of earlier work is included.

PACS codes and keywords:

31.15.Ar Ab initio calculations
31.15.Ne Self-consistent-field methods
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I Introduction

This program carries out atomic self-consistent-field (SCF) calculations for
Slater or Gaussian basis sets. Effective core potentials may be used. The
number of open shells, with some exceptions, is limited to one for each sym-
metry.

The antecedents of this program are (1) the original (Chicago) version
written by Roothaan and Bagus [1], in assembly language, for the IBM 70xx
series computers and (2) the subsequent (San Jose) Fortran II version written
by Roos, Salez, Veillard, and Clementi [2].

The present (Columbus) version is written in Fortran 90, and is based on
the Bielefeld version [3], written in Fortran 66 (later modified to Fortran 77),
which is one of many descendants of the San Jose version. The features of the
program will be described principally with respect to the original Chicago
version. The principal use of this program has been for developing basis sets
for molecular calculations [4, 5, 6].

Since the general exposition of the theory and methods on which this
program is based are contained in early references which are difficult to ob-
tain [1, 2], this paper includes a review of the earlier work. The original [1]
section numbers and titles are used to facilitate comparison.

II General Theory

This section is mostly summarized from Roothaan and Bagus [1], but exten-
sions concerning the use of Gaussian basis sets and effective core potentials
(ECPs) have been included.

The orbitals (φiλα) are expressed as linear combinations of basis functions
(χpλα) by

φiλα = ΣpχpλαCpiλ

where λ designates the orbital angular momentum magnitude quantum num-
ber and α designates the orbital angular momentum component quantum
number (commonly ml). The basis functions are expressed as products of
radial and angular factors,

χpλα = Rpλ(r)Yλα(θ, φ)

where the Rpλ (unnormalized) can be either Slater orbitals (STOs)

rn−1e−ζr
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or Gaussian orbitals (GTOs)

rn−1e−ζr2

where, for GTOs,
n − λ = odd integer

to enable convenient molecular use.
The one-electron integrals needed (overlap, kinetic energy, nuclear attrac-

tion) are

Sλpq =
∫ ∞

0
Rλp(r)Rλq(r)r

2dr

Tλpq =
1

2

∫ ∞

0
[R′

λp(r)R
′
λq(r)r

2 + λ(λ + 1)Rλp(r)Rλq(r)]dr

Uλpq =
∫ ∞

0
Rλp(r)Rλq(r)rdr

In addition, if ECPs are used for each angular momentum, then

UECP
λpq =

∫ ∞

0
Rλp(r)U

ECP

λ Rλq(r)r
2dr

The energy integrals are combined into

Hλpq = Tλpq − ZUλpq + UECP
λpq

(where the last term is optional).
These integrals are stored in one-dimensional arrays with the λpq indices

combined into a single index in dictionary order on λpq with p ≥ q. Such
arrays are called supervectors.

For self-consistent-field (SCF) calculations, electron-repulsion integrals
are needed in which two orbitals have angular momentum λ and two orbitals
have angular momentum µ, where λ and µ can be equal. The two ways
of arranging these orbitals among the two electrons give the (symmetric)
coulomb and exchange supermatrices.

Jλpq,µrs,ν =
∫ ∞

0

∫ ∞

0
Rλp(r1)Rλq(r1)(r

ν
</rν+1

> )Rµr(r2)Rµs(r2)r
2
1dr1r

2
2dr2

Kλpq,µrs,ν =
1

2
[
∫ ∞

0

∫ ∞

0
Rλp(r1)Rλq(r2)(r

ν
</rν+1

> )Rµr(r1)Rµs(r2)r
2
1dr1r

2
2dr2

+
∫ ∞

0

∫ ∞

0
Rλp(r1)Rλq(r2)(r

ν
</rν+1

> )Rµr(r2)Rµs(r1)r
2
1dr1r

2
2dr2]
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These integrals can be evaluated in the form
∫∞
0 dr1

∫ r1

0 dr2(r
ν
2/r

ν+1
1 ) . . . or

∫∞
0 dr1

∫∞
r1

dr2(r
ν
1/r

ν+1
2 ) . . .. For both STOs and GTOs the latter form is usu-

ally more efficient. Closed-shell calculations require only the linear combina-
tion of the shell-averaged coulomb supermatrix less half of the shell-averaged
exchange supermatrix, defined as the P supermatrix :

Pλpq,µrs = Jλpq,µrs,0 −
1

2

λ+µ,2
∑

ν=|λ−µ|

AλµνKλpq,µrs,ν

where the Aλµν appear in the coupling of Legendre polynomials

PλPµ =
λ+µ,2
∑

ν=|λ−µ|

(2ν + 1)AλµνPν

and can be expressed as squares of 3-j coefficients:

Aλµν =

(

λ µ ν
0 0 0

)2

They are most easily computed in terms of particular binomial coefficients:

A2n =

(

2n
n

)

=
(2n)!

(n!)2

where
A0 = 1

and
A2n+2 = 2(2n + 1)A2n/(n + 1)

Then

Aλµν =
A−λ+µ+νAλ−µ+νAλ+µ−ν

(λ + µ + ν + 1)Aλ+µ+ν

Open-shell calculations also require the Q supermatrix :

Qλpq,µrs =
2(λ,µ)<,2
∑

ν=0

JλµνJλpq,µrs,ν −
1

2

λ+µ,2
∑

ν=|λ−µ|

KλµνKλpq,µrs,ν

where the Jλµν and Kλµν are open-shell energy coefficients that depend on
the open-shell electron configuration and electronic state of the atom. When
λ = µ, Jλλν and Kλλν are not independent in most cases.
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Table I of ref. [1], containing open-shell energy coefficients for (s, p)n, was
extended by Malli and Olive [7] to include (s, p, d)n and fn. Additions here
include various (s, p, d, f, g)n cases [8, 9] and include all LS coupling cases
needed for the ground states of atoms [10]. Tables of these coefficients are
given in Appendix A. These include some cases with two open shells of the
same symmetry. All coefficients have been redefined to show the hole-particle
equivalence, making the tables more compact. The tables now include Landé
(spin-orbit splitting) factors for use in a future version of the program. Some
general formulas [11] in terms of the Aλµν are also provided.

The Cpiλ for all values of p define the vector ciλ for the iλ shell. These
vectors are orthonormal using Sλ, the λ block of the S matrix,

c
†
iλSλcjλ = δij

The occupation number of the iλ shell is denoted by Niλ. For each value of
λ there is only one closed-shell value of Niλ and we are only considering one
open-shell value of Niλ as well, so we also use the notation NCλ and NOλ. A
density matrix (supervector) for each shell, Diλ is defined by

Diλpq = (2 − δpq)NiλCpiλCqiλ

where the factor (2 − δpq) is required to treat the off-diagonal matrix ele-
ments correctly in contractions with integral supervectors and supermatri-
ces. Closed-shell, open-shell, and total-density matrices (supervectors) are
defined by summing over the corresponding ranges of i.

DCλ = Σi⊂closedDiλ

DOλ = Σi⊂openDiλ

DTλ = DCλ + DOλ

The open-shell sum is usually over one (or zero) shells, but is slightly general-
ized here to some cases with more than one open shell of the same symmetry
where the occupation numbers and open-shell energy coefficients are all the
same.

The expression for the total energy, in the general case, contains shell-shell
interactions of the closed-closed, closed-open, and open-open types. Since
the first two types have the same form (twice as many coulomb integrals
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as exchange integrals), the energy expression has its simplest form when
expressed in terms of DT and DO.

E = H†DT +
1

2
D

†
T
PDT −

1

2
D

†
O
QDO

Applying the variational principle to this energy expression, using the or-
thonormality constraints, results in the closed- and open-shell Fock matrices
(supervectors),

FC = H + P + RO

FO = H + P − Q + RC

using
P = PDT

Q = QDO

siλ = Sλciλ

qiλ = Qλciλ

RCλ = [NCλ/(NCλ − NOλ)]Σi⊂closed][siλq
†
iλ + qiλs

†
iλ]

ROλ = [NOλ/(NCλ − NOλ)]Σi⊂open][siλq
†
iλ + qiλs

†
iλ]

The closed- and open-shell vectors ciλ then satisfy the respective equa-
tions

FCλciλ = ǫiλSλciλ

FOλciλ = ǫiλSλciλ

The two-Hamiltonian form [1] of the equations, used here, is probably
somewhat less efficient, particularly in poorly convergent cases, than a one-
Hamiltonian form [12], but the difference has not been significant enough to
justify revision of the program.

III Calculation of Integrals

The one-electron integral formulas, except for core potential integrals, are
taken from ref. [1, 2, 13]. The two-electron integral formulas are taken from
ref. [14]. Some notation changes have been made for both types of integrals,
so all the integral formulas are summarized here.
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Expressions used for both STO and GTO integrals are

Vn(x) =
n!

xn+1
Wn(x) =

n − 1

x

nλpq = nλp + nλq ζλpq = ζλp + ζλq

En
k (x) =





k−1
∑

j=0

(

n
j

)

xj



 /

[(

n
k

)

xk

]

The En
k are calculated with the recursion relation

En
k (x) = k[1 + En

k−1(x)]/[(n − k + 1)x]

and the starting value
En

0 (x) = 0

Both STO and GTO radial functions share the property that the product
of two of them is a radial function of the same type. Accordingly, the basic
radial electron repulsion integrals defined below, Rmnν(x, y), need only three
indices.

Formulas for STO integrals are

Nλpq = [Vnλpp
(ζλpp)Vnλqq

(ζλqq)]
− 1

2

Sλpq = NλpqVnλpq
(ζλpq)

Uλpq = NλpqVnλpq−1(ζλpq)

Tλpq =
1

2
ζλpζλqNλpq{Wnλp−λ(ζλp)Wnλq−λ(ζλq)Vnλpq−2(ζλpq)

− [Wnλp−λ(ζλp) + Wnλq−λ(ζλq)]Vnλpq−1(ζλpq) + Vnλpq
(ζλpq)}

With a core potential of the form

UECP

λ =
∑

k

dλkr
nλk−2e−ωλkr

the core-potential integrals are given by

UECP
λpq = Nλpq

∑

k

dλkVnλpq+nλk−2(ζλpq + ωλk)

The radial electron-repulsion integrals are given by

Rmnν(x, y) =
∫ ∞

0

∫ ∞

0
rm
1 e−xr1(rν

</rν+1
> )rn

2 e−yr2dr1dr2
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=
(m + n − 1)!

xy(x + y)m+n−1
[1 + Em+n−1

n−ν−1 (y/x) + Em+n−1
m−ν−1 (x/y)]

Formulas for GTO integrals are

Nλpq = [V 1

2
(nλpp−1)(ζλpp)V 1

2
(nλqq−1)(ζλqq)]

− 1

2

Sλpq = NλpqV 1

2
(nλpq−1)(ζλpq)

Uλpq = NλpqV 1

2
(nλpq−2)(ζλpq)

Tλpq = 2ζλpζλqNλpq{Wnλp−λ(2ζλp)Wnλq−λ(2ζλq)V 1

2
(nλpq−3)(ζλpq)

− [Wnλp−λ(2ζλp) + Wnλq−λ(2ζλq)]V 1

2
(nλpq−1)(ζλpq) + V 1

2
(nλpq+1)(ζλpq)}

With a core potential of the form

UECP

λ =
∑

k

dλkr
nλk−2e−ωλkr2

the core-potential integrals are given by

UECP
λpq = Nλpq

∑

k

dλkV 1

2
(nλpq+nλk−3)(ζλpq + ωλk)

The radial electron-repulsion integrals are given by

Rmnν(x, y) =
∫ ∞

0

∫ ∞

0
rm
1 e−xr2

1(rν
</rν+1

> )rn
2 e−yr2

2dr1dr2

=
[1
2
(m + n − 3)]!

xy(x + y)
1

2
(m+n−3)

[1 + E
1

2
(m+n−3)

1

2
(n−ν−2)

(y/x) + E
1

2
(m+n−3)

1

2
(m−ν−2)

(x/y)]

For both STOs and GTOs, the coulomb and exchange supermatrices are
given by

Jλpq,µrs,ν = NλpqNµrsRnλpq ,nµrs,ν(ζλpq, ζµrs)

Kλpq,µrs,ν =
1

2
NλpqNµrs[Rnλp+nµr,nλq+nµs,ν(ζλp + ζµr, ζλq + ζµs)

+Rnλp+nµs,nλq+nµr,ν(ζλp + ζµs, ζλq + ζµr)]

The one-electron integrals are calculated together in the subroutine OEIP
and the coulomb and exchange integrals are assembled in the subroutine
TEIP, with the subroutine RDNT providing blocks of the Rmnν integrals
computed for the range of ν values needed.
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IV Eigenvectors and Eigenvalues

As given above, the basic eigenvalue-eigenvector problem to be solved has
the form

Fc = ǫSc

Roothaan and Bagus [1] gave a detailed derivation of a method of computing
the eigenvalues ǫ and eigenvectors c, in the presence of the overlap matrix S,
one at a time. They chose this method, rather than a method that involved
transforming S to a unit matrix and then diagonalizing, due to arguments
concerning stability, accuracy, and simplicity. Some of these constraints are
less limiting using today’s 64-bit floating-point words compared to the 36-bit
words used then. Their method is summarized here.

Let c0 be an approximate eigenvector. Then

c
†
0Sc0 = 1

ǫ0 = c
†
0Fc0

The first-order improvement to c0 is defined by

c = c0 + δc

Without loss of generality, δc can be required to be orthogonal to c0. Next,
define

s0 = Sc0

g0 = (F − ǫ0S)c0

G0 = F − ǫ0S − s0g
†
0 − g0s

†
0

Note that G0 is a symmetric matrix. It is shown that δc is determined by

G0δc = −g0

This equation is solved by the method of Gaussian elimination, yielding

Tδc′ = −t

where T is a lower-triangle matrix and δc′ is not necessarily orthogonal to
c0, but care must be taken because G0 is singular. The algorithm used is to
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store G0 in lower-triangle form, replace the first column of G0 (shown to be
superfluous) by g0, and then use

Tpq = Gpq −
n
∑

r=p+1

TrpTrq/Trr

for q ≤ p and p starting at n and decreasing to 1 and noting that the sum
does not exist for p = n. The first column of T will then contain t from
which δc′ can be obtained directly. Orthogonalization of δc′ to c0 yields δc:

δc = δc′ − (c†0Sδc′)c0

Since eigenvectors are found one at a time, inaccurate input can result in du-
plication of eigenvectors. Due to the program design, for a given symmetry,
vectors for closed shells must precede vectors for open shells, irrespective of
energy order. The eigenvectors and eigenvalues are computed in the subrou-
tine EIGEA.

V SCF Iterations and Extrapolations

Roothaan and Bagus [1, 2] described and implemented two different extrap-
olation methods based on the orbital coefficients from three successive SCF
iterations. The Fortran versions of the program have only used the first of
these methods, as implemented by Roos et al. [2]. To summarize this method,
the notation for a particular orbital coefficient Cpiλ for iterations k, k − 1,
and k− 2 is Ck, Ck−1, and Ck−2 where the piλ indices have been suppressed.
The extrapolated value is C. First, the quantity

f = (Ck − Ck−1)/(2Ck−1 − Ck − Ck−2)

is computed. If |f | ≥ 2, no extrapolation occurs and C = Ck. If |f | < 2,
then

C = Ck + f(Ck − Ck−1)

which is equivalent to

C = (C2
k−1 − CkCk−2)/(2Ck−1 − Ck − Ck−2)

The extrapolations are carried out in the subroutine EXTRAP.
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VI Convergence Control

The convergence of both diagonalization and SCF iterations is measured by
the largest absolute differences in orbital coefficients in successive iterations.
Roothaan and Bagus [1] designed a flexible way of controlling both types of
iterations within acceptable ranges. Thus the minimum acceptable accuracy
is set by the input, but higher accuracy is attempted by the program and used
where possible. This algorithm is used in the present version of the program,
with some control options omitted. The diagonalization control parameters
are the initial diagonalization threshold (set at 2−23 = 1.19 × 10−7), the
maximum number of diagonalization iterations, NDIAG (default value is 25),
and the diagonalization divergence limit, DGATH (default value is 10−5).

Diagonalization iterations take place for an orbital until convergence is
obtained or NDIAG iterations have occurred. In the latter case, the diag-
onalization threshold for the orbital is increased by a factor of two and up
to NDIAG additional iterations occur. This process is continued until con-
vergence is obtained or until the diagonalization threshold exceeds DGATH,
causing the calculation to terminate. If convergence is obtained, the resulting
diagonalization threshold is stored and the same procedure is applied to the
next orbital. Once all the orbitals have been computed, the SCF iteration
is complete. In subsequent SCF iterations, all the previous diagonalization
thresholds larger than the minimum value are initially decreased by a factor
of two to try to increase the accuracy.

The SCF threshold is set at 2BIAS times the maximum diagonalization
threshold where BIAS (default value is 1) is read in along with the SCF
divergence limit, SCFAT (default value is 10−3), the maximum number of
SCF extrapolations, NXTRP (default value is 25), and the maximum total
number of SCF extrapolations, MXXTRP (default value is 50).

SCF iterations and extrapolations are performed until convergence is ob-
tained or NXTRP extrapolations have occurred. In the latter case, BIAS is
increased by one and up to NXTRP additional extrapolations occur. This
process is continued until convergence is obtained except that either the
SCF threshold exceeding SCFAT or the number of extrapolations exceeding
MXXTRP cause the calculation to terminate.

All of the convergence controls could probably be tightened in most cases
if additional accuracy is desired. The default values for the convergence
control parameters are given in the next two tables.

11



INTEGERS FOR CONVERGENCE CONTROL

Symbol Explanation Default Value
BIAS Diagonalization-SCF threshold bias 2
NXTRP Number of extrapolations 25
NDIAG Number of diagonalization iterations 25
MXXTRP Maximum number of extrapolations 50

VII Exponent Variation

A specified number (NVAR) of orbital exponents may be varied either indi-
vidually (ISCALE=0) or as a group (ISCALE=1) [2]. The intervals are set
at ZSCALE times the initial exponent values. Energies are calculated until
three adjacent values have the middle one lowest. Then a parabolic fit is
used to approximate the minimum. Selected exponents can be constrained
to be the same by setting NZET to the number of independent values.

Various situations in which exponent optimization and other procedures
can go wrong are controlled by:

ALARM THRESHOLDS

Symbol Explanation Default (Slater) Default (Gaussian)
DGATH Diagonalization divergence 10−4 10−4

SCFAT SCF divergence 10−3 10−3

EXPMN Minimum exponent 10−2 10−5

DMNXP Minimum exponent difference 10−2 10−7

RMNED Relative minimum energy difference 10−11 10−11

RMXED Relative maximum energy difference 10−1 10−1

These thresholds can usually be loosened somewhat without causing difficul-
ties.

A fairly common problem in exponent optimization is exponent collapse,
where two exponents approach each other very closely and their correspond-
ing coefficients become very large in magnitude with opposite signs. A way
of managing this problem is to express the natural logarithms of all the expo-
nents for each l value as a series of Legendre polynomials and then constrain
the number of independent coefficients[15].

ln ζp =
kmax
∑

k=0

AkPk(
2p − 2

Nprim − 1
− 1)
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where Nprim is the number of primitive functions, p varies from 1 to Nprim,
and kmax = Nprim − 1 means no constraints. For smaller values of kmax there
are Nprim − 1 − kmax constraints. If only two coefficients are retained then
the exponents form an even-tempered set. To use this Legendre expansion,
set ILEG=1 and then the coefficients are read in instead of the exponents
and they are varied by a constant amount of ZSCALE.

VIII Output Format and Options

The only output options are with respect to printing the integrals over basis
functions (NPRINT) and to writing out optimized orbital exponents and
orbital coefficients (IPNCH) to a separate file.

IX Input Format and Conventions

The input directions principally follow the form established in ref. [2] and
are given in detail in Appendix B. Free-format input is used.

X Limitations of the Program

The program is written in Fortran 90 with all floating-point quantities desig-
nated as REAL*8, etc. On machines with 64-bit words, the compiler option
to turn off all double precision should be used. Arrays are allocated dynam-
ically. Most of the computer time is usually spent evaluating integrals and
multiplying the supermatrices by supervectors. The latter code is written so
that moderate vectorization can be achieved.

Simplicity in programming was a general goal. No calls are made to
special libraries. All communication is by subroutine arguments. Variable
names are kept the same wherever possible. All formulas are general except
for the open-shell energy expressions, which are part of the input.

Files are defined by unit numbers: 5 (input), 6 (output), IPNCH (optional
optimization output).

The largest angular momentum quantum number allowed is 24. These
numbers are represented by their spectroscopic symbols [16], s, p, d, f − i, k−
o, q, r, t − z for 0-20, supplemented by a − c, e for 21-24.
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More than one open shell of a symmetry is permitted only if (1) the
occupation numbers are the same and (2) the intra- and intershell open-shell
energy coefficients are the same. Thus 1s2s 3S can be done, but not the
corresponding 1S.
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A Open-Shell Energy Coefficients

Most of these coefficients are taken from ref. [1, 7]. Additional coefficients
involving f and g orbitals have been derived and included, in some cases using
energy expressions from Ref. [8, 9, 17]. The tables have been shortened by
(1) listing intrashell and intershell coefficients separately, and (2) omitting
almost all states where the electron configuration gives more than one wave
function of that symmetry (such as d3 2D). Ref. [7] listed coefficients for the
average energy of such wave functions.

For some of the high-spin dmp1 cases, where the lowest energy wave func-
tion can be for a duplicated symmetry, the coefficients are provided for both
wave functions.

For half-filled shells (d5, f 7) in some cases where more than one wave
function of a certain symmetry exists, the seniority number can be used
to choose these wave functions so that they have no matrix element of the
Hamiltonian between them[9]. Such cases are included in the tables with the
addition of the seniority number as a left subscript (such as d5 2

5G).
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Thus the states included are generally those with high S (low energy) and
lower S, high L (higher energy) as well as some intermediate cases.

A few states are degenerate at the Hartree-Fock level [8]. Examples in
these tables are

(d3, d7) 2H, 2P ; (d3, d7(2H, 2P ))s1 3H, 3P ; 1H, 1P

(f 3, f 11) 4F, 4S; (f 3, f 11(4F, 4S))s1 5F, 5S; 3F, 3S

(f 4, f 10) 5F, 5S; (f 4, f 10(5F, 5S))s1 6F, 6S; 4F, 4S

Still more compact tables were obtained by redefining the open-shell en-
ergy coefficients by multiplying them by a factor of

NOλNOµ(2ν + 1)

The occupation numbers make the hole-particle relationship apply to the
tables. The factor of (2ν +1) simplifies the expression for exchange integrals
involving s orbitals and simplifies other relationships as well. These changes
also generally reduce the size of the integers in the fractions. The original
definitions of the coefficients are the form used for actual computation in the
program. The revised form is more convenient for reference purposes; the
program changes them back to their original form for computational use.

Intrashell coefficients are not unique; thus intrashell J coefficients can
be set to zero except when they also serve as intershell coefficients. Some
simple, general relationships are

Jλµ0 = 0

Kλλ0 = N2
Oλ/(2λ + 1) − 2NOλ

A state with open shells of more than one symmetry requires coefficients
from more than one table. Thus s1p3 5S appears in the intershell table
as p3(4S)s1(2S)5S and K101 is provided there; looking under p3(4S) in the
intrashell table provides K110 and K112; looking under s1(2S) in the intrashell
table provides K000.

Some simple general formulas, in terms of the Aλµν , exist for a few groups
of states [11]:

1. λNOλ 1S states with seniority 0. These are usually the highest-energy
states from this electron configuration.

Kλλν = [NOλ(4λ + 2 − NOλ)(λ + 1)/λ](2ν + 1)Aλλν (ν = 2, 2λ, 2)
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2. λNOλ 2Λ states with seniority 1. These are the only states for NOλ =
1 or 4λ + 1. For intermediate values of NOλ, they are usually the highest-
energy states from this electron configuration.

Kλλν = {[NOλ(4λ+2−NOλ)(λ+1)−(2λ+1)2]/λ}(2ν+1)Aλλν (ν = 2, 2λ, 2)

3. λNOλ 2λ+1Λ states with seniority 2λ. These are the only high-spin states
from this electron configuration and therefore the lowest-energy states.

Kλλν = −2(2λ2 − 1)(2ν + 1)Aλλν (ν = 2, 2λ, 2)

4. λ2λ+1 2λ+2S states with seniority 2λ + 1. These are the high-spin
states from this half-filled electron configuration and therefore the lowest-
energy states.

Kλλν = −(2λ + 1)2(2ν + 1)Aλλν (ν = 0, 2λ, 2)

General formulas for averages of states are (using dλ = 2λ + 1):
1. For an intrashell average of states, the additional coefficients are

Kλλν = [NOλ(2dλ − NOλ)/(2dλ − 1)]dνAλλν (ν = 2, 2λ, 2)

2. For an intrashell average of high-spin states, the additional coefficients
are

Kλλν = {[NOλ(2dλ − NOλ) − dλ(dλ − |dλ − NOλ|)
2]/(dλ − 1)}dνAλλν

(ν = 2, 2λ, 2)

3. For an intershell average of states,

Kλµν = 0

4. For an intershell average of high-spin states,

Kλµν = −(dλ − |dλ − NOλ|)(dµ − |dµ − NOµ|)dνAλµν

(ν = |λ − µ|, λ + µ, 2)
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Intrashell Coefficients

El. Config. State Coefficients

K000

s1 2S -1

K110 K112 α1

p1, p5 2P -5/3 2/3 ±1
p2, p4 3P -8/3 -4/3 ±1/2
p2, p4 1D -8/3 52/15
p2, p4 1S -8/3 32/3
p3 4S -3 -6
p3 2D -3 6/5 0
p3 2P -3 6 0

K220 K222 K224 α2

d1, d9 2D -9/5 2/7 18/35 ±1
d2, d8 3F -16/5 -104/49 324/245 ±1/2
d2, d8 3P -16/5 4 -24/5 ±1/2
d2, d8 1G -16/5 136/49 524/245
d2, d8 1D -16/5 -4/49 1224/245
d2, d8 1S -16/5 48/7 432/35
d3, d7 4F -21/5 -174/49 -306/245 ±1/3
d3, d7 4P -21/5 18/7 -258/35 ±1/3
d3, d7 2H -21/5 6/49 894/245 ±1/5
d3, d7 2G -21/5 -94/49 1394/245 ±3/10
d3, d7 2F -21/5 306/49 -606/245 ∓1/6
d3, d7 2P -21/5 6/49 894/245 ±2/3
d4, d6 5D -24/5 -4 -36/5 ±1/4
d4, d6 3H -24/5 -116/49 636/245 ±1/10
d4, d6 3G -24/5 -16/49 136/245 ±3/20
d4, d6 3D -24/5 124/49 -564/245 ∓1/12
d4, d6 1I -24/5 -76/49 1836/245
d4, d6 1F -24/5 32/7 48/35
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K220 K222 K224 α2

d5 6S -5 -50/7 -90/7
d5 4G -5 -150/49 -130/49 0
d5 4F -5 90/49 -90/49 0
d5 4D -5 -10/49 -270/49 0
d5 4P -5 -30/7 30/7 0
d5 2I -5 -130/49 270/49 0
d5 2H -5 -90/49 510/49 0
d5 2

5G -5 90/49 50/49 0
d5 2

3G -5 410/49 10/49 0
d5 2

5F -5 170/49 -30/49 0
d5 2

3F -5 -150/49 570/49 0
d5 2

3D -5 270/49 150/49 0
d5 2P -5 750/49 -330/49 0
d5 2S -5 290/49 -150/49

K330 K332 K334 K336 α3

f 1, f 13 2F -13/7 4/21 18/77 100/231 ±1
f 2, f 12 3H -24/7 -92/63 -636/847 12500/7623 ±1/2
f 2, f 12 3F -24/7 -8/63 -12/77 -200/693 ±1/2
f 2, f 12 3P -24/7 100/21 156/77 -1700/231 ±1/2
f 2, f 12 1I -24/7 188/63 1044/847 172300/99099
f 2, f 12 1G -24/7 -40/21 3508/847 5800/2541
f 2, f 12 1D -24/7 772/315 -180/77 4700/693
f 2, f 12 1S -24/7 128/21 576/77 3200/231
f 3, f 11 4I -33/7 -256/63 -2166/847 17800/7623 ±1/3
f 3, f 11 4G -33/7 52/63 -318/847 -36100/7623 ±1/3
f 3, f 11 4F -33/7 -20/21 -90/77 -500/231 ±1/3
f 3, f 11 4D -33/7 248/63 78/77 -6400/693 ±1/3
f 3, f 11 4S -33/7 -20/21 -90/77 -500/231
f 3, f 11 2L -33/7 12/7 18/847 41500/11011 ±1/4
f 3, f 11 2K -33/7 -116/63 1810/847 412700/99099 ±9/28
f 3, f 11 2I -33/7 80/63 1614/847 172600/99099 ±2/21
f 3, f 11 2P -33/7 -32/63 50/77 3400/693 0
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K330 K332 K334 K336 α3

f 4, f 10 5I -40/7 -340/63 -3552/847 -5300/7623 ±1/4
f 4, f 10 5G -40/7 -32/63 -1704/847 -59200/7623 ±1/4
f 4, f 10 5F -40/7 -16/7 -216/77 -400/77 ±1/4
f 4, f 10 5D -40/7 164/63 -48/77 -8500/693 ±1/4
f 4, f 10 5S -40/7 -16/7 -216/77 -400/77
f 4, f 10 3M -40/7 -116/63 -1032/847 538700/99099 ±1/6
f 4, f 10 3L -40/7 -200/63 228/847 465200/99099 ±5/24
f 4, f 10 1N -40/7 52/63 760/847 685700/99099
f 4, f 10 1K -40/7 -328/315 2524/847 582800/99099
f 4, f 10 1F -40/7 304/63 5604/847 -29800/7623
f 5, f 9 6H -45/7 -344/63 -4794/847 -56800/7623 ±1/5
f 5, f 9 6F -45/7 -260/63 -390/77 -6500/693 ±1/5
f 5, f 9 6P -45/7 16/21 -222/77 -3800/231 ±1/5
f 5, f 9 4M -45/7 -32/7 -138/77 9400/3003 ±1/9
f 5, f 9 4L -45/7 -68/21 -2778/847 127900/33033 ±5/36
f 5, f 9 4S -45/7 44/21 18/7 100/21
f 5, f 9 2O -45/7 -148/63 -90/847 873700/99099 ±1/11
f 5, f 9 2N -45/7 -1048/315 -1322/847 1143200/99099 ±6/55
f 6, f 8 7F -48/7 -136/21 -612/77 -3400/231 ±1/6
f 6, f 8 5L -48/7 -352/63 -2280/847 -263000/99099 ±1/16
f 6, f 8 5K -48/7 -128/63 -4072/847 -302200/99099 ±9/112
f 6, f 8 5P -48/7 -44/63 -164/77 -5300/693 0
f 6, f 8 5S -48/7 -16/63 -24/77 -400/693
f 6, f 8 3O -48/7 -296/63 -1356/847 815000/99099 ±1/22
f 6, f 8 3N -48/7 -1172/315 -124/847 545500/99099 ±3/55
f 6, f 8 1Q -48/7 -152/35 -516/847 145000/11011
f 6, f 8 1P -48/7 2132/315 1724/847 500/7623
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K330 K332 K334 K336 α3

f 7 8S -7 -28/3 -126/11 -700/33
f 7 6I -7 -56/9 -630/121 -128800/14157 0
f 7 6H -7 -16/9 -390/121 -9800/1089 0
f 7 6G -7 -4/3 -982/121 -3500/363 0
f 7 6F -7 -28/9 -42/11 -700/99 0
f 7 6D -7 -256/45 -18/11 -1400/99 0
f 7 6P -7 -8 -6 0 0
f 7 4N -7 -16/3 -274/121 4200/1573 0
f 7 4M -7 -8/3 -18/121 19600/4719 0
f 7 4

5L -7 4/3 -54/121 4900/4719 0
f 7 4

7K -7 -4/5 -382/121 -700/4719 0
f 7 2Q -7 -236/45 -174/121 160300/14157 0
f 7 2O -7 -44/9 -54/121 230300/14157 0
f 7 2

7N -7 -16/5 194/121 26600/4719 0
f 7 2

5N -7 176/45 298/121 68600/14157 0

K440 K442 K444 K446 K448 α4

g1, g17 2G -17/9 100/693 162/1001 20/99 490/1287 ±1
g8, g10 9G -80/9 -6200/693 -10044/1001 -1240/99 -30380/1287 ±1/8

g9 10S -9 -900/77 -13122/1001 -180/11 -4410/143
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Intershell Coefficients for States with Open Shells of Different Symmetry

El. Config. State Coefficients

K101 α1

p1, p5(2P ) s1(2S) 3P -1 ±1/2
p1, p5(2P ) s1(2S) 1P 3
p2, p4(3P ) s1(2S) 4P -2 ±1/3
p2, p4(1D) s1(2S) 2D 0 0
p2, p4(3P ) s1(2S) 2P 4 ±2/3
p2, p4(1S) s1(2S) 2S 0
p3(4S) s1(2S) 5S -3
p3(2D) s1(2S) 3D -1 0
p3(2P ) s1(2S) 3P -1 0
p3(4S) s1(2S) 3S 5
p3(2D) s1(2S) 1D 3
p3(2P ) s1(2S) 1P 3

K202 α2

d1, d9(2D) s1(2S) 3D -1 ±1/2
d1, d9(2D) s1(2S) 1D 3
d2, d8(3F ) s1(2S) 4F -2 ±1/3
d2, d8(3P ) s1(2S) 4P -2 ±1/3
d2, d8(1G) s1(2S) 2G 0 0
d2, d8(3F ) s1(2S) 2F 4 ±2/3
d2, d8(1D) s1(2S) 2D 0 0
d2, d8(3P ) s1(2S) 2P 4 ±2/3
d2, d8(1S) s1(2S) 2S 0
d3, d7(4F ) s1(2S) 5F -3 ±1/4
d3, d7(4P ) s1(2S) 5P -3 ±1/4
d3, d7(2H) s1(2S) 3H -1 ±1/10
d3, d7(2G) s1(2S) 3G -1 ±3/20
d3, d7(4F ) s1(2S) 3F 5 ±5/12
d3, d7(2F ) s1(2S) 3F -1 ∓1/12
d3, d7(4P ) s1(2S) 3P 5 ±5/12
d3, d7(2P ) s1(2S) 3P -1 ±1/3
d3, d7(2H) s1(2S) 1H 3
d3, d7(2G) s1(2S) 1G 3
d3, d7(2F ) s1(2S) 1F 3
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K202 α2

d3, d7(2P ) s1(2S) 1P 3
d4, d6(5D) s1(2S) 6D -4 ±1/5
d4, d6(3H) s1(2S) 4H -2 ±1/15
d4, d6(3G) s1(2S) 4G -2 ±1/10
d4, d6(5D) s1(2S) 4D 6 ±3/10
d4, d6(3D) s1(2S) 4D -2 ∓1/18
d4, d6(1I) s1(2S) 2I 0 0
d4, d6(3H) s1(2S) 2H 4 ±2/15
d4, d6(3G) s1(2S) 2G 4 ±1/5
d4, d6(1F ) s1(2S) 2F 0 0
d4, d6(3D) s1(2S) 2D 4 ∓1/9

d5(6S) s1(2S) 7S -5
d5(4G) s1(2S) 5G -3 0
d5(4F ) s1(2S) 5F -3 0
d5(4D) s1(2S) 5D -3 0
d5(4P ) s1(2S) 5P -3 0
d5(6S) s1(2S) 5S 7
d5(2I) s1(2S) 3I -1 0
d5(2H) s1(2S) 3H -1 0
d5(4G) s1(2S) 3G 5 0
d5(2

5G) s1(2S) 3
5G -1 0

d5(2
3G) s1(2S) 3

3G -1 0
d5(4F ) s1(2S) 3F 5 0
d5(2

5F ) s1(2S) 3
5F -1 0

d5(2
3F ) s1(2S) 3

3F -1 0
d5(4D) s1(2S) 3D 5 0
d5(2

3D) s1(2S) 3
3D -1 0

d5(4P ) s1(2S) 3P 5 0
d5(2P ) s1(2S) 3P -1 0
d5(2S) s1(2S) 3S -1
d5(2I) s1(2S) 1I 3
d5(2H) s1(2S) 1H 3
d5(2

5G) s1(2S) 1
5G 3

d5(2
3G) s1(2S) 1

3G 3
d5(2

5F ) s1(2S) 1
5F 3
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K202 α2

d5(2
3F ) s1(2S) 1

3F 3
d5(2

3D) s1(2S) 1
3D 3

d5(2P ) s1(2S) 1P 3
d5(2S) s1(2S) 1S 3

K303 α3

f 1, f 13(2F ) s1(2S) 3F -1 ±1/2
f 1, f 13(2F ) s1(2S) 1F 3
f 2, f 12(3H) s1(2S) 4H -2 ±1/3
f 2, f 12(3F ) s1(2S) 4F -2 ±1/3
f 2, f 12(3P ) s1(2S) 4P -2 ±1/3
f 2, f 12(1I) s1(2S) 2I 0 0
f 2, f 12(3H) s1(2S) 2H 4 ±2/3
f 2, f 12(1G) s1(2S) 2G 0 0
f 2, f 12(3F ) s1(2S) 2F 4 ±2/3
f 2, f 12(1D) s1(2S) 2D 0 0
f 2, f 12(3P ) s1(2S) 2P 4 ±2/3
f 2, f 12(1S) s1(2S) 2S 0
f 3, f 11(4I) s1(2S) 5I -3 ±1/4
f 3, f 11(4G) s1(2S) 5G -3 ±1/4
f 3, f 11(4F ) s1(2S) 5F -3 ±1/4
f 3, f 11(4D) s1(2S) 5D -3 ±1/4
f 3, f 11(4S) s1(2S) 5S -3
f 3, f 11(2L) s1(2S) 3L -1 ±1/8
f 3, f 11(2K) s1(2S) 3K -1 ±9/56
f 3, f 11(4I) s1(2S) 3I 5 ±5/12
f 3, f 11(2I) s1(2S) 3I -1 ±1/21
f 3, f 11(4G) s1(2S) 3G 5 ±5/12
f 3, f 11(4F ) s1(2S) 3F 5 ±5/12
f 3, f 11(4D) s1(2S) 3D 5 ±5/12
f 3, f 11(2P ) s1(2S) 3P -1 0
f 3, f 11(4S) s1(2S) 3S 5
f 3, f 11(2L) s1(2S) 1L 3
f 3, f 11(2K) s1(2S) 1K 3
f 3, f 11(2I) s1(2S) 1I 3
f 3, f 11(2P ) s1(2S) 1P 3
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K303 α3

f 4, f 10(5I) s1(2S) 6I -4 ±1/5
f 4, f 10(5G) s1(2S) 6G -4 ±1/5
f 4, f 10(5F ) s1(2S) 6F -4 ±1/5
f 4, f 10(5D) s1(2S) 6D -4 ±1/5
f 4, f 10(5S) s1(2S) 6S -4
f 4, f 10(3M) s1(2S) 4M -2 ±1/9
f 4, f 10(3L) s1(2S) 4L -2 ±5/36
f 4, f 10(5I) s1(2S) 4I 6 ±3/10
f 4, f 10(5G) s1(2S) 4G 6 ±3/10
f 4, f 10(5F ) s1(2S) 4F 6 ±3/10
f 4, f 10(5D) s1(2S) 4D 6 ±3/10
f 4, f 10(5S) s1(2S) 4S 6
f 4, f 10(1N) s1(2S) 2N 0 0
f 4, f 10(3M) s1(2S) 2M 4 ±2/9
f 4, f 10(3L) s1(2S) 2L 4 ±5/18
f 4, f 10(1K) s1(2S) 2K 0 0
f 4, f 10(1F ) s1(2S) 2F 0 0
f 5, f 9(6H) s1(2S) 7H -5 ±1/6
f 5, f 9(6F ) s1(2S) 7F -5 ±1/6
f 5, f 9(6P ) s1(2S) 7P -5 ±1/6
f 5, f 9(4M) s1(2S) 5M -3 ±1/12
f 5, f 9(4L) s1(2S) 5L -3 ±5/48
f 5, f 9(6H) s1(2S) 5H 7 ±7/30
f 5, f 9(6F ) s1(2S) 5F 7 ±7/30
f 5, f 9(6P ) s1(2S) 5P 7 ±7/30
f 5, f 9(4S) s1(2S) 5S -3
f 5, f 9(2O) s1(2S) 3O -1 ±1/22
f 5, f 9(2N) s1(2S) 3N -1 ±3/55
f 5, f 9(4M) s1(2S) 3M 5 ±5/36
f 5, f 9(4L) s1(2S) 3L 5 ±25/144
f 5, f 9(4S) s1(2S) 3S 5
f 5, f 9(2O) s1(2S) 1O 3
f 5, f 9(2N) s1(2S) 1N 3
f 6, f 8(7F ) s1(2S) 8F -6 ±1/7
f 6, f 8(5L) s1(2S) 6L -4 ±1/20
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K303 α3

f 6, f 8(5K) s1(2S) 6K -4 ±9/140
f 6, f 8(7F ) s1(2S) 6F 8 ±4/21
f 6, f 8(5P ) s1(2S) 6P -4 0
f 6, f 8(5S) s1(2S) 6S -4
f 6, f 8(3O) s1(2S) 4O -2 ±1/33
f 6, f 8(3N) s1(2S) 4N -2 ±2/55
f 6, f 8(5L) s1(2S) 4L 6 ±3/40
f 6, f 8(5K) s1(2S) 4K 6 ±27/280
f 6, f 8(5P ) s1(2S) 4P 6 0
f 6, f 8(5S) s1(2S) 4S 6
f 6, f 8(1Q) s1(2S) 2Q 0 0
f 6, f 8(3O) s1(2S) 2O 4 ±2/33
f 6, f 8(3N) s1(2S) 2N 4 ±4/55
f 6, f 8(1P ) s1(2S) 2P 0 0

f 7(8S) s1(2S) 9S -7
f 7(6I) s1(2S) 7I -5 0
f 7(6H) s1(2S) 7H -5 0
f 7(6G) s1(2S) 7G -5 0
f 7(6F ) s1(2S) 7F -5 0
f 7(6D) s1(2S) 7D -5 0
f 7(6P ) s1(2S) 7P -5 0
f 7(8S) s1(2S) 7S 9
f 7(4N) s1(2S) 5N -3 0
f 7(4M) s1(2S) 5M -3 0
f 7(4

5L) s1(2S) 5
5L -3 0

f 7(4
7K) s1(2S) 5

7K -3 0
f 7(6I) s1(2S) 5I 7 0
f 7(6H) s1(2S) 5H 7 0
f 7(6G) s1(2S) 5G 7 0
f 7(6F ) s1(2S) 5F 7 0
f 7(6D) s1(2S) 5D 7 0
f 7(6P ) s1(2S) 5P 7 0
f 7(2Q) s1(2S) 3Q -1 0
f 7(2O) s1(2S) 3O -1 0
f 7(4N) s1(2S) 3N 5 0
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K303 α3

f 7(2
7N) s1(2S) 3

7N -1 0
f 7(2

5N) s1(2S) 3
5N -1 0

f 7(4M) s1(2S) 3M 5 0
f 7(4

5L) s1(2S) 3
5L 5 0

f 7(4
7K) s1(2S) 3

7K 5 0
f 7(2Q) s1(2S) 1Q 3
f 7(2O) s1(2S) 1O 3
f 7(2

7N) s1(2S) 1
7N 3

f 7(2
5N) s1(2S) 1

5N 3
K404 α4

g1, g17(2G) s1(2S) 3G -1 ±1/2
g1, g17(2G) s1(2S) 1G 3
g8, g10(9G) s1(2S) 10G -8 ±1/9

g9(10S) s1(2S) 11S -9
g9(10S) s1(2S) 9S 11

J212 K211 K213 α1 α2

—– 2 or 14 d, p electrons —–
d1p1, d9p5(2D, 2P ) 3F -2/7 -2 3/7 ±1/6 ±1/3
d1p1, d9p5(2D, 2P ) 3D 1 8/5 -3/5 ±1/12 ±5/12
d1p1, d9p5(2D, 2P ) 3P -1 0 -3 ∓1/4 ±3/4
d1p1, d9p5(2D, 2P ) 1F -2/7 14/5 27/35
d1p1, d9p5(2D, 2P ) 1D 1 -4/5 9/5
d1p1, d9p5(2D, 2P ) 1P -1 4/5 21/5

—– 3 or 13 d, p electrons —–
d1p2, d9p4(2D, 3P ) 4F 2/7 -8/5 6/35 ±1/9 ±2/9
d1p2, d9p4(2D, 3P ) 4D -1 -8/5 -12/5 ±1/18 ±5/18
d1p2, d9p4(2D, 3P ) 4P 1 12/5 -12/5 ∓1/6 ±1/2
d1p2, d9p4(2D, 1D) 2G -4/7 -8/5 36/35 0 ±1/2
d1p2, d9p4(2D, 1D) 2S -2 2/5 -12/5
d2p1, d8p5(3F, 2P ) 4G -1/7 -14/5 18/35 ±1/12 ±1/4
d2p1, d8p5(3F, 2P ) 4F 3/7 2/5 -54/35 ±1/36 ±11/36
d2p1, d8p5(3F, 2P ) 4D -12/35 28/25 -666/175 ∓1/9 ±4/9
d2p1, d8p5(3P, 2P ) 4D 1/5 -28/25 -12/25 ±1/6 ±1/6
d2p1, d8p5(3P, 2P ) 4P -1 -8/5 -12/5 ±1/6 ±1/6
d2p1, d8p5(3P, 2P ) 4S 2 16/5 -6/5
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J212 K211 K213 α1 α2

d2p1, d8p5(1G, 2P ) 2H -4/7 -8/5 36/35 ±1/5 0
d2p1, d8p5(3P, 2P ) 2S 2 -2/5 12/5

—– 4 or 12 d, p electrons —–
d1p3, d9p3(2D, 4S) 5D 0 -6/5 -9/5 0 ±1/4
d1p3, d9p3(2D, 2D) 3G 0 -6/5 27/35 0 ±1/4
d1p3, d9p3(2D, 2D) 3S 0 14/5 -9/5
d1p3, d9p3(2D, 2D) 1G 0 -6/5 87/35
d1p3, d9p3(2D, 2D) 1S 0 -6/5 -9/5
d2p2, d8p4(3F, 3P ) 5G 1/7 -16/5 -18/35 ±1/16 ±3/16
d2p2, d8p4(3F, 3P ) 5F -3/7 -8/5 -114/35 ±1/48 ±11/48
d2p2, d8p4(3F, 3P ) 5D 12/35 32/25 -804/175 ∓1/12 ±1/3
d2p2, d8p4(3P, 3P ) 5D -1/5 -62/25 -48/25 ±1/8 ±1/8
d2p2, d8p4(3P, 3P ) 5P 1 2/5 -12/5 ±1/8 ±1/8
d2p2, d8p4(3P, 3P ) 5S -2 -16/5 -24/5
d2p2, d8p4(3P, 3P ) 3S -2 8/5 12/5
d2p2, d8p4(1G, 1D) 1I -8/7 -16/5 72/35
d2p2, d8p4(1G, 1D) 1H 10/7 2/5 36/35
d3p1, d7p5(4F, 2P ) 5G 1/7 -14/5 3/35 ±1/16 ±3/16
d3p1, d7p5(4F, 2P ) 5F -3/7 -6/5 -93/35 ±1/48 ±11/48
d3p1, d7p5(4F, 2P ) 5D 12/35 42/25 -699/175 ∓1/12 ±1/3
d3p1, d7p5(4P, 2P ) 5D -1/5 -52/25 -33/25 ±1/8 ±1/8
d3p1, d7p5(4P, 2P ) 5P 1 4/5 -9/5 ±1/8 ±1/8
d3p1, d7p5(4P, 2P ) 5S -2 -14/5 -21/5
d3p1, d7p5(2H, 2P ) 3I -3/7 -12/5 39/35 ±1/12 ±1/12
d3p1, d7p5(2H, 2P ) 1I -3/7 0 15/7
d3p1, d7p5(2P, 2P ) 1S 4/7 -14/5 33/35

—– 5 or 11 d, p electrons —–
d1p4, d9p2(2D, 3P ) 4F -2/7 -4/5 -6/5 ∓1/9 ±2/9
d1p4, d9p2(2D, 3P ) 4D 1 -4/5 -6/5 ∓1/18 ±5/18
d1p4, d9p2(2D, 3P ) 4P -1 -4/5 -6/5 ±1/6 ±1/2
d1p4, d9p2(2D, 1D) 2G 4/7 -4/5 48/35 0 ±1/2
d1p4, d9p2(2D, 1D) 2S 2 16/5 -6/5
d2p3, d8p3(3F, 4S) 6F 0 -12/5 -18/5 0 ±1/5
d2p3, d8p3(3P, 4S) 6P 0 -12/5 -18/5 0 ±1/5
d2p3, d8p3(3F, 2D) 4H 0 -12/5 24/35 0 ±1/5
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J212 K211 K213 α1 α2

d2p3, d8p3(1G, 2D) 2I 0 -12/5 12/5 0 0
d3p2, d7p4(4F, 3P ) 6G -1/7 -22/5 -66/35 ±1/20 ±3/20
d3p2, d7p4(4F, 3P ) 6F 3/7 -18/5 -138/35 ±1/60 ±11/60
d3p2, d7p4(4F, 3P ) 6D -12/35 -12/5 -1086/175 ∓1/15 ±4/15
d3p2, d7p4(4P, 3P ) 6D 1/5 -68/25 -72/25 ±1/10 ±1/10
d3p2, d7p4(4P, 3P ) 6P -1 -16/5 -24/5 ±1/10 ±1/10
d3p2, d7p4(4P, 3P ) 6S 2 8/5 -18/5
d3p2, d7p4(2H, 3P ) 4I 3/7 -12/5 24/35 ±1/18 ±1/18
d3p2, d7p4(2H, 1D) 2K -6/7 -18/5 96/35 0 ±1/7
d4p1, d6p5(5D, 2P ) 6F 2/7 -12/5 -36/35 ±1/15 ±2/15
d4p1, d6p5(5D, 2P ) 6D -1 -12/5 -18/5 ±1/30 ±1/6
d4p1, d6p5(5D, 2P ) 6P 1 8/5 -18/5 ∓1/10 ±3/10
d4p1, d6p5(3H, 2P ) 4I -1/7 -12/5 24/35 ±1/18 ±1/18
d4p1, d6p5(1I, 2P ) 2K -2/7 -2 12/7 ±1/7 0

—– 6 or 10 d, p electrons —–
d1p5, d9p1(2D, 2P ) 3F 2/7 -2/5 -3/5 ∓1/6 ±1/3
d1p5, d9p1(2D, 2P ) 3D -1 -2/5 -3/5 ∓1/12 ±5/12
d1p5, d9p1(2D, 2P ) 3P 1 -2/5 -3/5 ±1/4 ±3/4
d1p5, d9p1(2D, 2P ) 1F 2/7 -2/5 159/35
d1p5, d9p1(2D, 2P ) 1D -1 -2/5 -3/5
d1p5, d9p1(2D, 2P ) 1P 1 38/5 -3/5
d2p4, d8p2(3F, 3P ) 5G -1/7 -8/5 -12/5 ∓1/16 ±3/16
d2p4, d8p2(3F, 3P ) 5F 3/7 -8/5 -12/5 ∓1/48 ±11/48
d2p4, d8p2(3F, 3P ) 5D -12/35 -8/5 -12/5 ±1/12 ±1/3
d2p4, d8p2(3P, 3P ) 5D 1/5 -8/5 -12/5 ∓1/8 ±1/8
d2p4, d8p2(3P, 3P ) 5P -1 -8/5 -12/5 ∓1/8 ±1/8
d2p4, d8p2(3P, 3P ) 5S 2 -8/5 -12/5
d2p4, d8p2(3P, 3P ) 3S 2 28/5 12/5
d2p4, d8p2(1G, 1D) 1I 8/7 -8/5 96/35
d2p4, d8p2(1G, 1D) 1H -10/7 -8/5 6/35
d3p3, d7p3(4F, 4S) 7F 0 -18/5 -27/5 0 ±1/6
d3p3, d7p3(4P, 4S) 7P 0 -18/5 -27/5 0 ±1/6
d3p3, d7p3(4P, 2P ) 5S 0 -2 -3
d3p3, d7p3(2H, 2D) 3K 0 -18/5 81/35 0 ±1/7
d3p3, d7p3(2H, 2D) 1K 0 -6/5 177/35
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J212 K211 K213 α1 α2

d4p2, d6p4(5D, 3P ) 7F -2/7 -24/5 -132/35 ±1/18 ±1/9
d4p2, d6p4(5D, 3P ) 7D 1 -6/5 -24/5 ±1/36 ±5/36
d4p2, d6p4(5D, 3P ) 7P -1 -14/5 -36/5 ∓1/12 ±1/4
d4p2, d6p4(3H, 3P ) 5I 1/7 -18/5 -24/35 ±1/24 ±1/24
d4p2, d6p4(1I, 1D) 1L -4/7 -4 24/7
d4p2, d6p4(1I, 1D) 1K 4/7 -4/5 48/35
d5p1, d5p5(6S, 2P ) 7P 0 -2 -3 ±1/6 0
d5p1, d5p5(4G, 2P ) 5H 0 -2 -3/7 ±1/20 0
d5p1, d5p5(4P, 2P ) 5S 0 -2 -3
d5p1, d5p5(2I, 2P ) 3K 0 -2 9/7 ±1/14 0
d5p1, d5p5(2I, 2P ) 1K 0 -6/5 117/35
d5p1, d5p5(2P, 2P ) 1S 0 -2 -3/7

—– 7 or 9 d, p electrons —–
d2p5, d8p1(3F, 2P ) 4G 1/7 -4/5 -6/5 ∓1/12 ±1/4
d2p5, d8p1(3F, 2P ) 4F -3/7 -4/5 -6/5 ∓1/36 ±11/36
d2p5, d8p1(3F, 2P ) 4D 12/35 -4/5 -6/5 ±1/9 ±4/9
d2p5, d8p1(3P, 2P ) 4D -1/5 -4/5 -6/5 ∓1/6 ±1/6
d2p5, d8p1(3P, 2P ) 4P 1 -4/5 -6/5 ∓1/6 ±1/6
d2p5, d8p1(3P, 2P ) 4S -2 -4/5 -6/5
d2p5, d8p1(1G, 2P ) 2H 4/7 -4/5 48/35 ∓1/5 0
d2p5, d8p1(3P, 2P ) 2S -2 -4/5 -6/5
d3p4, d7p2(4F, 3P ) 6G 1/7 -12/5 -18/5 ∓1/20 ±3/20
d3p4, d7p2(4F, 3P ) 6F -3/7 -12/5 -18/5 ∓1/60 ±11/60
d3p4, d7p2(4F, 3P ) 6D 12/35 -12/5 -18/5 ±1/15 ±4/15
d3p4, d7p2(4P, 3P ) 6D -1/5 -12/5 -18/5 ∓1/10 ±1/10
d3p4, d7p2(4P, 3P ) 6P 1 -12/5 -18/5 ∓1/10 ±1/10
d3p4, d7p2(4P, 3P ) 6S -2 -12/5 -18/5
d3p4, d7p2(2H, 3P ) 4I -3/7 -12/5 -6/35 ∓1/18 ±1/18
d3p4, d7p2(2H, 1D) 2K 6/7 -12/5 114/35 0 ±1/7
d4p3, d6p3(5D, 4S) 8D 0 -24/5 -36/5 0 ±1/7
d4p3, d6p3(3H, 4S) 6H 0 -12/5 -18/5 0 ±1/25
d4p3, d6p3(5D, 2D) 6S 0 -6/5 -24/5
d4p3, d6p3(3H, 2D) 4K 0 -22/5 54/35 0 ±1/21
d4p3, d6p3(1I, 2D) 2L 0 -18/5 18/5 0 0
d5p2, d5p4(6S, 3P ) 8P 0 -4 -6 ±1/7 0
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J212 K211 K213 α1 α2

d5p2, d5p4(4G, 3P ) 6H 0 -4 -18/7 ±1/25 0
d5p2, d5p4(2I, 3P ) 4K 0 -14/5 18/35 ±1/21 0
d5p2, d5p4(2I, 1D) 2L 0 -18/5 18/5 0 0
d6p1, d4p5(5D, 2P ) 6F -2/7 -8/5 -12/5 ±1/15 ∓2/15
d6p1, d4p5(5D, 2P ) 6D 1 -8/5 -12/5 ±1/30 ∓1/6
d6p1, d4p5(5D, 2P ) 6P -1 -8/5 -12/5 ∓1/10 ∓3/10
d6p1, d4p5(3H, 2P ) 4I 1/7 -8/5 6/35 ±1/18 ∓1/18
d6p1, d4p5(1I, 2P ) 2K 2/7 -8/5 66/35 ±1/7 0

—– 8 d, p electrons —–
d3p5, d7p1(4F, 2P ) 5G -1/7 -6/5 -9/5 ∓1/16 ±3/16
d3p5, d7p1(4F, 2P ) 5F 3/7 -6/5 -9/5 ∓1/48 ±11/48
d3p5, d7p1(4F, 2P ) 5D -12/35 -6/5 -9/5 ±1/12 ±1/3
d3p5, d7p1(4P, 2P ) 5D 1/5 -6/5 -9/5 ∓1/8 ±1/8
d3p5, d7p1(4P, 2P ) 5P -1 -6/5 -9/5 ∓1/8 ±1/8
d3p5, d7p1(4P, 2P ) 5S 2 -6/5 -9/5
d3p5, d7p1(2H, 2P ) 3I 3/7 -6/5 27/35 ∓1/12 ±1/12
d3p5, d7p1(2H, 2P ) 1I 3/7 -6/5 21/5
d3p5, d7p1(2P, 2P ) 1S -4/7 -6/5 -9/5
d4p4, d6p2(5D, 3P ) 7F 2/7 -16/5 -24/5 ∓1/18 ±1/9
d4p4, d6p2(5D, 3P ) 7D -1 -16/5 -24/5 ∓1/36 ±5/36
d4p4, d6p2(5D, 3P ) 7P 1 -16/5 -24/5 ±1/12 ±1/4
d4p4, d6p2(3H, 3P ) 5I -1/7 -16/5 -48/35 ∓1/24 ±1/24
d4p4, d6p2(1I, 1D) 1L 4/7 -16/5 132/35
d4p4, d6p2(1I, 1D) 1K -4/7 -8/5 36/35

d5p3(6S, 4S) 9S 0 -6 -9
d5p3(4G, 4S) 7G 0 -18/5 -27/5 0 0
d5p3(4F, 4S) 7F 0 -18/5 -27/5 0 0
d5p3(6S, 4S) 7S 0 2/5 3/5
d5p3(2I, 2D) 3L 0 -22/5 99/35 0 0
d5p3(2I, 2D) 1L 0 -6/5 207/35
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J312 K312 K314 α1 α3

f 1(2F ) p1(2P ) 3G -1/3 -15/7 10/21 1/8 3/8
f 1(2F ) p1(2P ) 3F 1 9/7 -2/7 1/24 11/24
f 1(2F ) p1(2P ) 3D -4/5 9/35 -20/7 -1/6 2/3
f 1(2F ) p1(2P ) 1G -1/3 3 2/3
f 1(2F ) p1(2P ) 1F 1 -3/7 10/7
f 1(2F ) p1(2P ) 1D -4/5 3/5 4
f 2(3H) p1(2P ) 4I -1/3 -24/7 16/21 1/18 5/18
f 2(3H) p1(2P ) 4H 13/15 24/35 -20/21 1/90 29/90
f 3(4I) p1(2P ) 5K -2/15 -141/35 16/21 1/28 3/14
f 3(4I) p1(2P ) 5I 1/3 -3/7 -40/21 1/168 41/168
f 4(5I) p1(2P ) 6K 2/15 -144/35 8/21 1/35 6/35
f 4(5I) p1(2P ) 6I -1/3 -12/7 -62/21 1/210 41/210
f 5(6H) p1(2P ) 7I 1/3 -27/7 -10/21 1/36 5/36
f 5(6H) p1(2P ) 7H -13/15 -99/35 -82/21 1/180 29/180
f 6(7F ) p1(2P ) 8G 1/3 -24/7 -40/21 1/28 3/28
f 6(7F ) p1(2P ) 8F -1 -24/7 -32/7 1/84 11/84
f 6(7F ) p1(2P ) 8D 4/5 6/35 -32/7 -1/21 4/21
f 7(8S) p1(2P ) 9P 0 -3 -4 0 1/8
f 1(2F ) p2(3P ) 4G 1/3 -12/7 8/21 1/12 1/4
f 1(2F ) p2(3P ) 4F -1 -12/7 -16/7 1/36 11/36
f 1(2F ) p2(3P ) 4D 4/5 66/35 -16/7 -1/9 4/9
f 1(2F ) p3(4S) 5F 0 -9/7 -12/7 0 1/4
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J322 J324 K321 K323 K325 α2 α3

f 1(2F ) d1(2D) 3H -10/21 -3/77 -81/35 -8/45 320/693 1/5 3/10
f 1(2F ) d1(2D) 3G 5/7 2/7 69/35 -58/45 20/63 7/40 13/40
f 1(2F ) d1(2D) 3F 11/21 -6/7 -27/35 -26/45 -20/63 1/8 3/8
f 1(2F ) d1(2D) 3D -2/7 9/7 27/35 32/15 -40/21 0 1/2
f 1(2F ) d1(2D) 3P -8/7 -6/7 3/35 -4/5 -30/7 -1/2 1
f 1(2F ) d1(2D) 1H -10/21 -3/77 99/35 32/45 340/693
f 1(2F ) d1(2D) 1G 5/7 2/7 -51/35 82/45 40/63
f 1(2F ) d1(2D) 1F 11/21 -6/7 9/7 10/9 80/63
f 1(2F ) d1(2D) 1D -2/7 9/7 -9/35 -8/5 20/7
f 1(2F ) d1(2D) 1P -8/7 -6/7 3/7 4/3 110/21
f 2(3H) d1(2D) 4K -10/21 4/77 -102/35 -4/5 200/231 2/21 5/21
f 2(3H) d1(2D) 4I 11/21 -24/77 -18/35 -64/45 250/693 1/14 11/42
f 3(4I) d1(2D) 5L -4/21 3/77 -99/35 -8/5 260/231 1/16 3/16
f 3(4I) d1(2D) 5K 4/21 -17/77 -45/7 -8/9 -20/693 5/112 23/112
f 4(5I) d1(2D) 6L 4/21 -3/77 -18/7 -20/9 760/693 1/20 3/20
f 4(5I) d1(2D) 6K -4/21 17/77 -18/7 -4/9 -640/693 1/28 23/140
f 5(6H) d1(2D) 7K 10/21 -4/77 -81/35 -12/5 130/231 1/21 5/42
f 5(6H) d1(2D) 7I -11/21 40/77 -81/35 -38/45 -1570/693 1/28 11/84
f 6(7F ) d1(2D) 8H 10/21 3/77 -72/35 -32/15 -60/77 2/35 3/35
f 6(7F ) d1(2D) 8G -5/7 -2/7 -72/35 -32/15 -80/21 1/20 13/140
f 6(7F ) d1(2D) 8F -11/21 6/7 -72/35 8/15 -80/21 1/28 3/28
f 6(7F ) d1(2D) 8D 2/7 -9/7 -72/35 -32/15 -80/21 0 1/7
f 6(7F ) d1(2D) 8P 8/7 6/7 138/35 -32/15 -80/21 -1/7 2/7
f 7(8S) d1(2D) 9D 0 0 -9/5 -28/15 -10/3 1/8 0
f 1(2F ) d2(3F ) 4I -5/21 9/77 -72/35 -46/45 580/693 1/6 1/6
f 1(2F ) d2(3F ) 4H 5/21 -51/77 -72/35 -46/45 160/693 1/6 1/6
f 1(2F ) d3(4F ) 5I 5/21 -9/77 -9/5 -44/45 40/77 1/8 1/8
f 1(2F ) d3(4F ) 5H -5/21 51/77 -9/5 16/45 -70/99 1/8 1/8
f 1(2F ) d4(5D) 6H 10/21 3/77 -54/35 -8/5 40/231 2/25 3/25
f 1(2F ) d4(5D) 6G -5/7 -2/7 -54/35 -8/5 -20/7 7/100 13/100
f 1(2F ) d4(5D) 6F -11/21 6/7 -54/35 16/15 -20/7 1/20 3/20
f 1(2F ) d4(5D) 6D 2/7 -9/7 -54/35 -8/5 -20/7 0 1/5
f 1(2F ) d4(5D) 6P 8/7 6/7 156/35 -8/5 -20/7 -1/5 2/5
f 1(2F ) d5(6S) 7F 0 0 -9/7 -4/3 -50/21 0 1/6
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Inter- and Intrashell Coefficients for States with Two Open Shells of the
Same Symmetry

El. Config. State Coefficients

K000

s1s
′1(2S) 3S -1

J112 K110 K112 α1

p1p
′1(2P ) 3D -1/5 -5/3 4/15 1/4

p1p
′1(2P ) 3S -2 -5/3 -10/3

p1p
′1(2P ) 1P 1 -5/3 8/3

p2p
′2(3P ) 5D -1/5 -8/3 -26/15 1/8

p2p
′2(3P ) 5S -2 -8/3 -16/3

p2p
′2(1D) 1G -4/5 -8/3 28/15

p3p
′3(4S) 7S 0 -3 -6

p3p
′3(2D) 3G 0 -3 -6/5 0

J222 J224 K220 K222 K224 α2

d1d
′1(2D) 3G -20/49 -1/49 -9/5 -26/49 116/245 1/4

d1d
′1(2D) 3D 15/49 -36/49 -9/5 44/49 -234/245 1/4

d1d
′1(2D) 3S -10/7 -18/7 -9/5 -18/7 -162/35

d1d
′1(2D) 1F 40/49 9/49 -9/5 94/49 216/245

d1d
′1(2D) 1P -5/7 12/7 -9/5 -8/7 138/35

d2d
′2(3F ) 5I -5/49 -9/49 -16/5 -114/49 234/245 1/8

d2d
′2(1G) 1L -80/49 -4/49 -16/5 -24/49 484/245

d3d
′3(4F ) 7I -5/49 -9/49 -21/5 -184/49 -396/245 1/12

d3d
′3(2H) 3N -45/49 -4/49 -21/5 -12/7 122/35 1/20

d4d
′4(5D) 9G -20/49 -1/49 -24/5 -236/49 -1774/245 1/16

d4d
′4(5D) 9D -15/49 -36/49 -24/5 -166/49 -2124/245 1/16

d4d
′4(5D) 9S -10/7 -18/7 -24/5 -48/7 -432/35

d4d
′4(3H) 5N -5/49 -16/49 -24/5 -18/7 68/35 1/80

d4d
′4(1I) 1Q -20/49 -20/49 -24/5 -58/7 1476/245

d5d
′5(6S) 11S 0 0 -5 -50/7 -90/7

d5d
′5(4G) 7L 0 0 -5 -150/49 -130/49 0

d5d
′5(2I) 3Q 0 0 -5 -130/49 270/49 0
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f 1f
′1 two lines of coefficients each

J332 J334 J336 K330

f 1f
′1(2F ) 3I -5/9 -9/121 -25/14157 -13/7

f 1f
′1(2F ) 3G 2/3 -97/121 -50/363 -13/7

f 1f
′1(2F ) 3D -19/45 9/11 -125/99 -13/7

f 1f
′1(2F ) 3S -4/3 -18/11 -100/33 -13/7

f 1f
′1(2F ) 1H 5/9 51/121 25/1089 -13/7

f 1f
′1(2F ) 1F 2/9 3/11 50/99 -13/7

f 1f
′1(2F ) 1P -1 -3/11 25/11 -13/7

K332 K334 K336 α3

f 1f
′1(2F ) 3I -58/63 72/847 42550/99099 1/4

f 1f
′1(2F ) 3G 32/21 -1160/847 400/2541 1/4

f 1f
′1(2F ) 3D -206/315 144/77 -1450/693 1/4

f 1f
′1(2F ) 3S -52/21 -234/77 -1300/231

f 1f
′1(2F ) 1H 82/63 912/847 3650/7623

f 1f
′1(2F ) 1F 40/63 60/77 1000/693

f 1f
′1(2F ) 1P -38/21 -24/77 1150/231
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B Input for Atomic SCF Program, Columbus

Version

Free-Format input for integers and floating-point numbers (ending a line with
a / provides the default values for any remaining input variables).

LIM No. of data sets to be run. This line appears only once no matter how
many data sets are included.

ANAME (A80) Title for data set.
NFLAG1,NPRINT,NSYM,NVAR,MXVAR,NEXTRA,ISCALE,IAMP,IRD,
NZET,NJ,NK,IPNCH,NLAB,LCPU,ILEG

NFLAG1=0 : Slater basis.
=1 : Gaussian basis.

NPRINT=0 : Do not print integrals.
=1 : Print integrals.

NSYM : Maximum (ℓ+1) value. (=2 means s,p)
(=25 is maximum)

NVAR : No. of exponents to be varied.
MXVAR,NEXTRA,ISCALE : See later notes on exponent optimization.
IAMP=0 : Do not print radial functions.

=1 : Print radial functions (additional input needed later).
IRD=0 : Use default convergence parameters.

=1 : Read in convergence parameters (additional input needed later).
NZET=0 : Normal default.

≥1 : No. of orbital exponents, if less than no. of basis functions
(some basis functions constrained to have the same
exponents, additional input needed later to specify).

NJ : No. of J-type open-shell energy coefficients to be read in.
NK : No. of K-type open-shell energy coefficients to be read in.
IPNCH : If non-zero, unit no. for writing out orbital exponents and

orbital coefficients.
NLAB=0 : n-labels for occupied orbitals will not be read in.

=1 : Read in n-labels for occupied orbitals (to be used when the
order is not ℓ+1,ℓ+2,... for each ℓ).

LCPU=0 : No core potentials used.
≥1 : Maximum (ℓ+1) value for which a core potential is used.

ILEG=0 : Normal default.
≥1 : Use Legendre expansion of natural logarithms of exponents.
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Requires that expansion coefficients be input in place of
exponent values.

(NBAS(I), I=1,NSYM) No. of basis functions of each symmetry.
(NCSH(I), I=1,NSYM) No. of closed shells of each symmetry.
(NOSH(I), I=1,NSYM) No. of open shells of each symmetry.
(NCCUP(I), I=1,NSYM) Open-shell occupation no. for each symmetry.
(Omit if NLAB is zero): (NLBL(I), I=1,NSHT) n-labels of occupied orbitals.

NSHT=Total no. of shells.
(Omit if NVAR is zero): (NBVAR(I), I=1,NVAR) Indices of exponents to be

varied.
(IPQN(I), I=1,NBAST) Principal quantum numbers of basis functions.

NBAST=Total no. of basis functions=NBAS(1)+NBAS(2)+. . .
ZN,ZSCALE

ZN : Nuclear Charge.
ZSCALE : Fractional change of exponents during optimization if

ILEG=0. Absolute change of coefficients if ILEG=1.
(Omit if NZET was read in as zero): (NXZET(I), I=1,NBAST)

Orbital exponent index for basis functions.
(ZETA(I), I=1,NZET) Orbital exponents for basis functions.

NZET=NBAST unless a different non-zero value was read in.
If ILEG=1, coefficients of Legendre expansion of natural logarithms of
exponent values.

L1,L2,L3,NUM,NDEN For I=1,NJ. One such line for each non-zero
J-type open-shell energy coefficient.
L1 : lambda (=0 is minimum)
L2 : mu (=0 is minimum; =L1 is maximum)
L3 : nu (=0 is minimum; =2*L2 is maximum)
NUM : numerator of fraction.
NDEN : denominator of fraction (default is 1).

L1,L2,L3,NUM,NDEN For I=1,NK. One such line for each non-zero
K-type open-shell energy coefficient.
L1 : lambda (=0 is minimum)
L2 : mu (=0 is minimum; =L1 is maximum)
L3 : nu (=L1-L2 is minimum; =L1+L2 is maximum)
NUM : numerator of fraction.
NDEN : denominator of fraction (default is 1).

(C(IJM+M), M=1,NBAS(I)) For each shell, read in the initial approximation
to the orbital coefficients, where I designates the symmetry.
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NDIAG,NXTRP,MXXTRP
NDIAG : No. of diagonalization iterations before diagonalization

threshold is increased (default is 25).
NXTRP :No. of SCF iterations before SCF threshold is increased

(default is 25).
MXXTRP : No. of SCF iterations allowed (default is 50).

(Omit if IRD=0): BIAS,DGATH,SCFAT,EXPMN,DMNXP,RMNED,
RMXED
BIAS : The SCF threshold is 2.0BIAS times the diagonalization

threshold (default is 1).
DGATH : Diagonalization threshold maximum (default is 10−4).
SCFAT : SCF threshold maximum (default is 10−3).
EXPMN : Minimum exponent value permitted (default is 10−2 for

Slaters, and 10−5 for Gaussians).
DMNXP : Smallest exponent difference permitted (default is 10−2 for

Slaters, and 10−7 for Gaussians).
RMNED : Minimum relative energy change permitted (default is 10−11).
RMXED : Maximum relative energy change permitted (default is 10−1).

(Omit if LCPU=0): CNAME (A80) Title for core potential.
(Omit if LCPU=0): NZCOR No. of electrons to be replaced by core

potential.
(Omit if LCPU=0): Groups of lines for the first LCPU symmetries,

ICPU : No. of functions in potential expansion,
(Omit if ICPU=0) (NCP(ICP),ZCP(ICP),DCP(ICP), ICP=1,ICPU)
ICPU such lines.
NCP(ICP) : Power (+2) of r.
ZCP(ICP) : Exponential parameter.
DCP(ICP) : Coefficient.

(Omit if IAMP=0): NGRPS No. of groups of points at which to evaluate
the radial functions.

(Omit if IAMP=0): (NPTS(I),DEL(I), I=1,NGRPS)
NPTS(I) : No. of points in this group.
DEL(I) : Distance between points for this group.

Exponent Optimization
NVAR : No. of exponents to be varied.
(NBVAR(I), I=1,NVAR) : Exponents to be varied, in order.
MXVAR : No. of times this set of optimizations is to be carried out
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(default is 1 if NVAR.gt.0).
NEXTRA : No longer used.
ISCALE=0 : Fractional exponent change = ZSCALE if ILEG=0. Absolute

coefficient change if ILEG=1.
=1 : All designated exponents simultaneously changed with

fractional increment ZSCALE if ILEG=0. All designated
coefficients changed with absolute increment ZSCALE if
ILEG=1.
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C Sample Input

Example 1

The orbital exponent of the Gaussian function added to describe the 3p
orbital of the C atom is optimized. This value could previously only be esti-
mated to be 0.021 (T. H. Dunning and P. J. Hay in Methods of Electronic
Structure Theory, H. F. Schaefer, ed., Plenum Press, New York, 1977) be-
cause the version of the program available at that time could not do the
calculation. The results obtained here are an exponent value of 0.022441 and
a total energy of -37.38334669. In doing the corresponding 2p14p1 calcula-
tion, a very careful choice of the initial 4p vector was required to keep it from
collapsing to 3p.

1

CARBON (1S)2 (2S)2 (2P)1 (3P)1 1P STATE (z=0.022441; e=-37.38334669)

1 0 2 1 1 0 0 0 0 0 1 2 /

9 6

2 0

0 2

0 1

15

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

6.0 0.01

4233.0 634.9 146.1 42.50 14.19 5.148 1.967 0.4962 0.1533

18.16 3.986 1.143 0.3594 0.1146 0.021

1 1 2 1 1

1 1 0 -5 3

1 1 2 8 3

0.0012 0.0093 0.0454 0.1546 0.3587 0.4381 0.1458 0.0020 0.0004

-0.0003 -0.0020 -0.0097 -0.0361 -0.0894 -0.1770 -0.0527 0.5741 0.5476

0.0147 0.0915 0.3061 0.5074 0.3173 0.0000

-0.0029 -0.0183 -0.0612 -0.1015 -0.0635 1.0000
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Example 2

The s and p primitives for a cc-pVTZ (correlation-consistent polarized
valence triple-zeta) basis set, (5s5p2d1f)/[4s3p2d1f ]/[3s3p2d1f ], have been
optimized for use with the O core potential of L. F. Pacios and P. C. Chris-
tiansen, J. Chem. Phys. 82, 2664, 1985. The d and f functions are added
later.

1

O (2s)2 (2p)4 3P, cc-pVTZ, Christiansen RECP (e=-15.67084530)

1 0 2 0 0 0 0 0 0 0 0 2 0 1 2 0

5 5

1 0

0 1

0 4

2 2

1 1 1 1 1 2 2 2 2 2

8.0 0.002

37.70 6.840 1.053 0.4163 0.1706

34.57 7.760 2.282 0.7160 0.2140

1 1 0 -8 3

1 1 2 -4 3

-0.02 -0.14 0.38 0.54 0.21

0.02 0.10 0.31 0.49 0.34

O core potential

2

7

0 2.1892 2.193891

1 4.3740 1.042944

2 2.4049 -16.344477

2 2.2479 11.216304

1 100.0039 -1.486456

2 34.1980 -5.766847

2 10.0286 -0.798420

3

1 100.0039 -1.486456

2 34.1980 -5.766847

2 10.0286 -0.798420
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Example 3

The s, p, and d primitives for a cc-pVDZ (correlation-consistent polar-
ized valence double-zeta) basis set, (6s6p4d1f)/[4s3p2d1f ]/[3s3p2d1f ], were
optimized in other calculations for use with the 10-electron Ni core poten-
tial of M. M. Hurley, L. F. Pacios, P. C. Christiansen, R. B. Ross, and W.
C. Ermler, J. Chem. Phys. 84, 6840, 1986. The present calculation was
used to obtain the s, p, and d contractions together. The f functions were
added later. This basis set was developed as perhaps the smallest set to get
the lower electronic states in the right order. This type of basis gets the
spin-orbit coupling 15% to 20% too small. A 6d basis set is needed for rea-
sonably accurate spin-orbit coupling. For this electron configuration, there
are two 3d84s14p1 5D wave functions, usually written so that one has the d
shell coupled to 3F and the other to 3P . Presumably an MCSCF calculation
would result in the 3F term being predominant, so it is used here. Since
there are three open shells, open-shell energy coefficients need to be taken
from 3(3+1)/2=6 places in tables: s1 for K000; p1 for K110, K112; d8(3F ) for
K220, K222, K224; p1s1(3P ) for K101; d8(3F )s1(4F ) for K202; d8(3F )p1(4D) for
J212, K211, K213.

1

Ni (4s)1 (3d)8(3F) (4p)1 5D, cc-pVDZ Christiansen RECP (e=-168.27973327)

1 0 3 0 0 0 0 0 0 0 1 10 0 1 3 0

6 6 4

1 1 0

1 1 1

1 1 8

3 4 3 4 3

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3

28.0 0.0007

124.9 6.941 2.575 0.8926 0.1069 0.03769

65.66 16.88 2.886 0.9170 0.1326 0.03337

23.40 6.129 1.741 0.3993

2 1 2 12 35

0 0 0 -1 1

1 0 1 -1 1

1 1 0 -5 3

1 1 2 2 3

2 0 2 -2 1

2 1 1 -4 5

2 1 3 -6 5

2 2 0 -16 5
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2 2 2 -104 49

2 2 4 324 245

-0.00 -0.48 0.79 0.56 0.00 0.00

0.00 0.13 -0.27 -0.26 0.94 0.18

-0.01 -0.03 0.64 0.45 0.01 -0.00

0.00 0.00 -0.14 -0.07 0.67 0.47

0.09 0.35 0.56 0.35

Ni core potential

10

10 / !No. expansion fns (Ni s potential)

0 31.8744 3.171606

1 2.4875 7.880363

2 8.6773 218.644477

2 6.1502 -202.672719

2 4.3453 106.501105

2 3.3950 -48.543110

1 571.4202 -9.794457

2 155.5959 -84.096072

2 45.5220 -32.098072

2 14.8828 -4.438070

10 / !No. expansion fns (Ni p potential)

0 30.3227 5.445407

1 2.2244 -6.764236

2 7.9169 154.697624

2 5.5321 -121.264700

2 4.0426 54.267602

2 1.7805 1.342317

1 571.4202 -9.794457

2 155.5959 -84.096072

2 45.5220 -32.098072

2 14.8828 -4.438070

4 / !No. expansion fns (Ni d potential)

1 571.4202 -9.794457

2 155.5959 -84.096072

2 45.5220 -32.098072

2 14.8828 -4.438070
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Example 4

Optimize the exponents for a minimal Slater basis set for C, starting with
exponent values from Slater’s Rules. See E. Clementi and D. L. Raimondi,
J. Chem. Phys. 38, 2686, 1963.

1

C (2s)2 (2p)2 3P, minimal Slater (z=5.6727,1.6083,1.5679; e=-37.622389)

0 0 2 3 3 0 0 0 0 0 0 2 /

2 1

2 0

0 1

0 2

1 2 3

1 2 2

6.0 -0.005

5.7 1.625

1.625

1 1 0 -8 3

1 1 2 -4 3

1.0 0.0

-0.2 1.0

1.0

Example 5

For a pvtz S basis set, optimize the (s, p)-exponents in Hartree-Fock cal-
culations on the ground, 3P , state, using a 10-electron core potential. One
s Legendre constraint is used to prevent the 2nd and 3rd s exponents from
collapsing. The core potential is from L. F. Pacios and P. A. Christiansen, J.
Chem. Phys. 82, 2664, 1985. Two d and one f functions were added later.
The d potential could have been omitted in this case.

1

S (3s)2 (3p)4 3P, Christiansen core potential (e=-9.93127973)

1 0 2 9 32 0 0 0 0 0 0 2 0 1 3 1

5 5

1 0

0 1

0 4

3 3

1 2 3 4 6 7 8 9 10

1 1 1 1 1 2 2 2 2 2
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16.0 0.0002

-0.193608 -2.052666 0.848376 -0.530008 0.000

-0.243022 -2.326330 0.329400 -0.031719 -0.118918

1 1 0 -8 3

1 1 2 -4 3

-0.00 -0.34 0.38 0.39 0.47

-0.01 -0.03 0.35 0.53 0.26

S core potential

10

9 / !No. expansion fns (S s potential)

0 4.2705 2.956192

1 6.4145 5.373976

2 3.9961 -115.523128

2 3.2682 182.122366

2 2.7904 -59.912218

1 70.1180 -6.839463

2 22.8283 -26.413399

2 7.7010 -9.881822

2 2.6916 -1.090965

9 / !No. expansion fns (S p potential)

0 3.3434 4.771437

1 5.2359 4.199833

2 3.1484 -100.904171

2 2.6019 140.849325

2 2.2363 -48.719188

1 70.1180 -6.839463

2 22.8283 -26.413399

2 7.7010 -9.881822

2 2.6916 -1.090965

4 / !No. expansion fns (S d potential)

1 70.1180 -6.839463

2 22.8283 -26.413399

2 7.7010 -9.881822

2 2.6916 -1.090965
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