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Abstract

A new approach is presented to evaluate multi-loop intsgrahich appear in the calculation of cross-sections in

high-energy physics. It relies on a fully numerical methad & applicable to a wide class of integrals with various

mass configurations. As an example, the computation of b@p-planar and non-planar box diagrams is shown. The
results are confirmed by comparisons with other techniguekjding the reduction method, and by a consistency
check using the dispersion relation.
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1. Introduction

In the study of high-energy reactions observed at curretiffature accelerators, such as LHC and ILC, precise
theoretical predictions of cross-sections including Bigbrder corrections are required. This is due to the fadt tha
the lowest order approximation in perturbative calculaiof quantum field theory is not sufficiently accurate to be
compared to the experimental data. One has to take into attimel contributions from higher order terms as well.
In order to include these corrections in the Standard modeégond, it is indispensable to handle the evaluation of
loop integrals.

At the one-loop level it is known that analytic solutionssxXor any type of diagram, and the results are expressed
in terms of known functions, such as logarithms and Spengetifuns (see, for example [1]). Using these analytic
results several automatic computation systems [2, 3, 4, B, 8, 9, 10] have been proposed. In order to estimate
cross sections we need automatic computation systemsdeeegumay have to deal with a large number of relevant
Feynman diagrams for a given process.

However, the extension of the system to include higher ocderections is not an easy task, because analytic
integration is generally impossible for higher loop diagsa especially for diagrams which depend on more general
mass configurations. Analytic results are only known fomaited class of two-loop diagrams. Therefore we have
to rely on numerical evaluations. We need to establish efficmethods that can be incorporated into automatic
computation systems of cross-sections. For a number o yeahave gained experience evaluating one-loop integrals
numerically, where the results can be compared with knovatyéin answers. We succeeded in calculating vertex,
box and pentagon diagrams with arbitrary masses [11, 121435, 16, 17, 18, 19, 20, 21, 22]. We also computed
two-loop self-energy and vertex diagrams. Further relatedk can be found in [23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39].

In our method we start from the Feynman parameter reprasantd loop integrals. We employ a fully numerical
integration procedure combined with numerical extrapofatThe purpose of this paper is to describe the method in
detail and to show results for more complicated loop intisgrresponding to two-loop box diagrams with massive
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particles. For simplicity we deal with scalar loop integrtiroughout this paper, ignoring all spin complicatioret th
are irrelevant to the essential discussion of the numeaimatoach.
The most general form of the scalar integral for a diagrarh Witoops andV internal lines is given by

N
H D_ (1)

wherel; is thej-th loop momentum in the-dimensional space-time, and

D, =q? —m? +ie )

is the inverse of the-th Feynman propagator, whetr@lenotes an infinitesimal quantity;,. is the mass of the-th
particle, and the momentugy flowing on ther-th internal line is given by a sum of loop and external moraeke
make use of the Feynman identity,

ﬁ L _ / Z$r) (3)
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Carrying out the loop momentum integrations delivers
1 nL/2 nl
where
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The functionD is a polynomial in the Feynman parametéis}. D further involves physical variables such as the
external momenta and particle masses. The funéli@also a polynomial in théx; }. Both functions are determined
by the topology of the Feynman diagram. Details of their tmrtsion are summarized in Appendix A.

In the two-loop box diagramd) depends on two kinematical variableandt, wheres is the square of the total
energy of the colliding particle system, ahet 0 is the squared momentum transfer between the initial antirtak
particles. For the infrared divergent integrals, we have pwescriptions. One is to introduce a small fictitious mass
for the massless particles and the other is the dimensiegalarization technique. In the former we cansset 4 in
Eq.(5) and the procedure is straightforward once the vaisdixed [14, 16]. For the latter we put= 4+2§ = n(J)
and use double extrapolation techniqder bothe ands (fromn(0)) in Eq.(5) [20, 21]. Here we estimate the integral
for a fixed value ob using the extrapolation with respectdoRepeating this for a series dvalues, we can estimate
the pole residue of /¢ and the finite part of the integral numerically.

We briefly describe the general properties of the intefjaid give some terminology. Depending on the value of
s, the functionD in the denominator may vanish in the integration domainhig tase, the infinitesimal parameter
prevents! from diverging. Ther/ exhibits an imaginary part even if all the physical paramsetet and the masses
are real. This region of is called thephysical regionwheres exceeds the threshold energy, so that the reaction takes
place. On the other hand, in thuaphysical regions is lower than the threshold. This is the regionsofvhere we
can pute = 0 and the integral is real for real Thus the integral can be regarded as an analytic function in the
complexs-plane with cuts along the realaxis, starting at branch points which are determined bysjgsyconditions.
However, as we shall see below in Section 3, we tegadt as infinitesimal but as fnite number in the numerical
procedure for calculating (1) and3(1), I = R(I) + (1), in the physical region.

This paper is outlined as follows. In Section 2 we constrbetintegrands for two-loop box diagrambs & 2
and N = 7), and present suitable variable transformations. We éxpitee details of our techniques in Section 3;
and the results of the computations are shown in SectionetidBes is devoted to a discussion on how to assess the
correctness of the obtained results. Section 6 gives csiocisiand future directions for this work.
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2. Two-loop box integrals

The topology of the two-loop box diagram is depicted in Figi\e call Fig. 1(a) the planar diagram and Fig. 1(b)
the non-planar diagram, respectively. The loop integréhé@Feynman parameters,( - - - , x7) is of the form
1 7 C
I= /0 dxy dxo dxs dxy das dre doy (1 — ez:;:rg) m (6)

Here,D andC are polynomials of Feynman parameters. Their derivatiomgizen in Appendix A.
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Figure 1: (a) Two-loop planar box diagram (b) Two-loop ndarar box diagram

The external momenta , p2, ps andp, are defined to flow inward, satisfying + ps + p3 + p4 = 0. The kinematical
variabless andt are given by

s = (p1+p2)?=(ps+pa)’,
t (p1 +ps)® = (p2 + pa)”.
For later notational convenience we introduce a third kiagral variableu by

u=(p1+ps)’ = (p2+p3)*.
The variables;, t andu are not independent, as

s+t+u=pi+p;+p;+pi.

In the following we derive the explicit formulae of the fuiais D andC. We also show examples of variable
transformations, which allow eliminating a common factothie numerator and denominator. Furthermore, the re-
sulting form of the integral will be suited for an applicatiof the reduction formalism given in Section 5.1. Followed
by a Monte Carlo integration we will use the latter for thegse of comparing of its numerical results with those by
DCM.

2.1. Explicit formulae of the function3 andC for the planar diagram
The functionsD andC in Eq. (6), corresponding to Fig. 1(a), are given by

D = CY xmj (7)
— {s(z1zo(xs + x5 + 6 + 27) + 526 (21 + T2 + T3 + T4) + T1T4T6 + T2X4T5)

t$3$4l’7

P%(l’3($13€4 + 2175 + 21T6 + T1T7 + T4T5

T3(X2Xy + ToXs + ToZg + T2X7 + TaZg

+ 4+ 4+ + 4

)
)
)
)

pa(as(
p§ (x7(x124 + T125 + T25 + T3x5 + T4T5
pa(w7 (2126 + Tos + 2276 + T3T6 + 2476)) },
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and
C = (21 + 2 + 23+ 24) (24 + 5 + 26 + 27) — 275 (8)

Using the transformatiofe:, x2, 3, x4, x5, 26, ¥7) — (p1, p2, p3, U1, u2, us, us), defined byz, = pruq, x> =
pP1U2, T3 = pl(l — U] — UQ), T4 = P3, Ts = P2U3, Tg = P2U4 andx7 = p2(1 —Uuz — U4), we obtain

/ dzy - -+ dx7 5(1 — Zz]) = / dp1 dps dps 5(1 — ij)pfpgf duy dug dus duy,

with
pr+p2+p3=1 0<u +uy <1, 0<uz+uyg <1,
and with Jacobiap?p2. Changing the variables by = p&, p2 = p(1 — ) andps = 1 — p gives

1 1
/dm dpzdp35(1zpj)p?p§m/0 dp/o d p°e*(1 =€)+

After these transformation#) andC contain a common factqr and we seD = D/p andC = C/p. The integral
becomes

Lytanar = — / dp / ¢ / aur [ s / dus [ - usdm T - ©)

whereD is a quadratic imn = (u1, us, uz, us)?,

D=u"4Au+BTu+ c, (10)
and

C=p§(1—=&+1—p. (11)

The4 x 4 matrix A is symmetric and depends on the internal masses(1 < ¢ < 7), and on the kinematical
variables,s andt. In this paper we assumg = p3 = p2 = p3 = m? for both diagrams. Whem; = my = ms =
mg = m andms = my4 = my = M (m # M), we have

A:( P& (1 = pg) Ay pE(1 = p)(1— &) Ay )
pEL—p)1 =42  p(1-*(1—p(1-€)A1)°

where the2 x 2 matrices4; and A, are

A1< —m? 8/2—212)7 A2< t/2 —m? S/2+t/2—m2>'

s/2 —m? -m s/2+1t/2 —m? t/2 —m?

The vectoB is given by
—tp€(1 — p)(1 — &) + M>pC
(1

B | e —p)(1 =&+ M?psC
—tp€(1—p)(1 = &) + M?p(1 - €)C |’
—tp&(1 = p)(1 = &) + M?p(1 - €)C

and the scalaf is
c=tp&(1—p)(1—¢€) — M?C.

The quadratic form will further be used in Section 5.1 for enparison of DCM with a reduction method.



2.2. Explicit formulae of the functions andC for the non-planar diagram
The functionsD andC in Eq. (6), corresponding to Fig. 1(b), are

D = CY zmj (12)
— {s(z1@224 + 1725 + X102 + T1X227 + T1T5T6 + T2LaTy — T3L4Te)

t(zs(—xgxe + x527))

pi(zs(z124 4+ 3125 + 2126 + T107 + T4T6 + Ta7))

2
x3(Tamy + Tas + ToZe + TaT7 + Take + T5T6))

+ o+ + 4+ o+

P2(
2

P5(T124%5 + 12527 + ToXaTs + ToZaTe + T3TaTs + T3TaTe + TaT5T6 + TaT5T7)
2

p4(

T1T4T6 + T1T6T7 + T2T5T7 + TaTeLr + L3T4Te + T3TeL7 + TaTeTr + T5T6T7)}
and
C = ($1 + o+ 23+ 24 + .1‘5)($1 + 2o+ x3 + 26 + .1‘7) — (.1‘1 + 29 + $3)2. (13)

The transformatior@xl, xr2,X3,%4,T5,T6, $7) — (pl,pg, p3, U1, U2, U3, U4), defined by.’L’l = p1uUi, o = pru2,
x3 = p1(1 — w1 — u2), x4 = pous, 5 = p2(1 — u3), g = psug andxry = ps(1 — uy), yields

/dx1~~~ dxy 5(172%):/ dp1 dps dps 5(172pj)p§p2p3/ duy dusg dug duy,

with
pr+p2+p3=1 0<ur+us <1, 0<uz3 <1, 0<uy <1,

and the Jacobian j§ p2p3. The change of variableg = 1 — p, p2 = p€ andps = p(1 — &) gives

/ dp1 dp2 dps 5(1—ZP‘)p2p2p3---=/1 dp/l dg p*(1 - p)*c(1—¢)---
J 1 o 0 ’

with
0<p<1, 0<E<T

Similar to the case of the planar diagram,andC contain a common factqs. PuttingD = D/p andC = C/p,
delivers the final form of the integral

1 1 1 1—uy 1 1 C )
Inon— anar — d d du du du du D ———— 1— 1— , 14
pl /o /)/0 5/0 1/0 2/0 3/0 4(szec)3p( p)°E(1 =) (14)

whereD is a quadratic im = (uy, ua, u3, us)”, given by

D=ulAu+BTu+e¢, (15)
and

C=p§(1-=&+1-p. (16)

With the mass assignmentasg = ms = my = mg = m andms = ms = my = M(m # M) we have

(G-’ pEl- -4
4= <ﬂ€(1 — )1 - )4, 4q ) ’

where the2 x 2 matricesA;, A, andAs are
A — —m? 5/2 —m? A — t/2 —m? $/2+t/2 —m?
17 \s/2 —m? -m? )’ 27 \s/2+4t/2—m? t/2 —m? ’
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A ( —m?p€?(1 — p¢) (=s/2+m?)p(1 - p)£(1 5))
T Ns/24mP)p(l - p)E(L =€) —mPp(1 - &) (1 —p(1-€)))
The vectoB is given by €L (L) 4 M(1— p)C
—tp(1—p)(1 = &) + M*(1 - p
B | “trE1—=p)(A =&+ M*(1-p)C
—tpE(1—p)(1 = &) + M?pcC |’
—tp&(1 —p)(1 = &) + M?p(1 - €)C

and the scalag is

¢ =tp(1 - p)e(1 — €) — M*C.

Note the similarity between the Eqgs. (9) and (14) of the plama the non-planar integral, respectively, obtained
via the transformations in Sections 2.1 and 2.2. The tramsfd integrand functions (of both 6-dimensional integrals
involve a functionD in the denominator, which is a quadratic in the variablesus, us anduy. This form of the
integrand will further lend itself to the reduction methddSection 5.1 (which will be used for a comparison of the
numerical results). As an aside, the form of the 4-dimeradiortegral inuy, us, us, us also resembles that of the
one-loop pentagon integrad,g, in [19].

3. Numerical techniques

We introduce theDirect Computation MethodDCM), based on a combination of humerical integration, and
extrapolation on a sequence of integrals. DCM comprisefolfeving three steps:

1. Letein Eq. (5) be a finite value determined by a (scaled) geomsddgcience
EZEIZEO/(AC>l;l:0517"'7 (17)

for a constant, and bas® < 1/A4, < 1.

2. Evaluate the multi-dimensional integfabf Eq. (5) numerically. In view of the finite; we obtain a finite value
for the integral corresponding to eathrhus a sequence dfe;), 1 = 0,1,2, - - - is generated.

3. Extrapolate the sequentg;) to the limit ase; — 0 with the purpose of calculatingaslim,_,o I (¢).

If D does not vanish within the integration region, we can igra@ed no extrapolation is neededis- I(¢) |c—o.

For multi-dimensional integration we make use of H@AGE routine in theQUADPACK [40] package DQAGE
uses a variant of Gaussian quadrature, where the samplints @e given by a Gauss-Kronrod rule pair in each
subinterval. The Gauss rule with points has polynomial degree of accuraty = 2v — 1; i.e., it is exact for
polynomials of degred = 0, - - - , d,, and not for all polynomials of degreg + 1. The corresponding Kronrod rule
re-uses the abscissas of the Gauss rule and:adds points interlacing with those of the Gauss rule. The Kronrod
rule with 2v + 1 points has polynomial degrée + 1 if this number is odd (for even), and otherwis& + 2 (for v
odd).

On input forDQAGE, the user selects one of six Gauss-Kronrod pairs, with 1532141, 51 or 61 points, via
the input parametektey = 1,2,3,4,5, or6, respectively. The rule pair produces the Kronrod rule valaghe
integral approximation, together with an estimate of theo#lite error on each subinterval (which is based on the
difference between the Gauss and the Kronrod result on thiatenval). This allows the selection of that subinterval
with the largest estimated error, as the next interval toutgliwided in successive steps of the adaptive partitioning
strategy ofDQAGE. The user imposes a bound on the number of subdivisions gimffut parameterimit. As a
result of the adaptive partitioning, the algorithm subd@s intensively around singularities, so that hot spotsgene
where singularities or other irregular integrand behawimrur within the integration interval. For multi-dimensal
integration we applpQAGE in a repeated (iterated) quadrature for successive camrldirections [41].

In DCM, the accuracy of the result depends on that of the tatled sequence of integralge;),l = 0,1,--- .
Since the integration error affects the accuracy of theapxiiation, we want to compute the integra(s;) to at least
an order of magnitude more accuracy than that expected éofirthal result. On the other hand, the CPU time is

6



directly related to the accuracy requirement. Thus, adequeues need to be specified for the input paraméteys
andlimit of theDQAGE routine in each dimension, to control the overall work areltdrmination of the algorithm.
For the computation of two-loop box integrals, we find theg = 1 or 2 andlimit = 10 ~ 30 are suitable values.

We use Wynn's-algorithm[42, 43] for the extrapolation, which works eiéiotly under fairly general conditions,
even for very slowly convergent sequences or series.cTdlgorithm is applied to the sequentg;),l = 0,1, - - -
obtained by multi-dimensional integration. We define thddalements(l, k) of the extrapolation table with initial
values

a(l,—1) =0, a(l,0) = I(e), 1=0,1,---. (18)
The element(l, k + 1) is obtained fromu(l, k) anda(l, k — 1) by the following recurrence relation:

1
(1+1,k)—a(l, k)’

a(l,k—i—l):a(l—i—l,k—l)-i-a l=0,1,---. (19)
Whilst thea(l, k)'s with odd k are meant to store temporary numbers, dk k)'s with evenk give extrapolated
estimates.

We use the-algorithm code from th@UADPACK [40] package. With each nef(e; ), a new lower diagonal can
be added to the extrapolation table. At each iteration omdylast two lower diagonals need to be stored for this
computation. Along with each new table eleme(:, n) wheren is even, an error estimate is calculated based on
differences with its neighboring elements. In a convergatde, the even-numbered columns as well as the diagonals
converge to the limitim._,o I(¢) = I (barring roundoff). Among the even-column indexed tabksrednts along
newly computed lower diagonal, tkealgorithm code selects the "best{m, n) (with the least error estimate). The
CPU time for the extrapolation is negligible compared td tifahe integration.

We further have to use some heuristics for the computatitimoéxtrapolated sequence. The acceleration constant
A, in (17) can usually be set to 2. In cases where the integragieery difficult for decreasing;, a smaller value of
A.isusedge.g, A. = 1.3 or 1.2, yielding a sequence @f,! = 0, 1, - - - which decreases more slowly. To determine
the initial value of the geometric sequence, we assjgtepending on the squared mass appearing in fundliowe
parametrize, in the formey = A7, where the parametercan be adjusted. The choice of these parameters influence
the accuracy of the result.

For the two-loop box integral computations reported in tartsection, we foundl, = 1.2 and~ around 40 to
be adequate values. The accuracy achieved is restrictdtetactual CPU time needed. If the computation time is
excessive, we have to accept less accurate results. Thiehspfor example, whenis much greater thah0m?2.
Thus the accuracy is different from point to point in the plshown below. All the computations are done in double
precision arithmetic.

4, Numerical results

According to the prescription of DCM in the previous sectiae evaluate both,;q,qr aNdL,on—planar given by
Egs. (9) and (14), respectively. In both cases the kinemlatariables is varied butt is fixed att = —10000GeV?
throughout the computations. We introduce the dimensgsnlariable

For the mass parameters we set= 50 GeV andM = 90 GeV.

4.1. Planar diagram

In previous work [19] we presented results of the real pdaegral in the physical region,5 < f, < 25.0. Here
we evaluate the integral in the regio < f, < 25.0 for the real part and the imaginary part. The results arectiegi
in Fig. 2 where the data points represent the integral vadueghe lines merely connect the points as a guide for the
eyes. The-channel threshold starts At = 4.0 corresponding te = 4m?. For example, we set = 1.2%°, key = 1
andlimit = 10 in all dimensions for the real part # = 10.0 and it took 8.5 days to obtain the result with enough
accuracy as 0.01% using a system with Intel Xeon CPU E54306@Gtz.
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Figure 2: Numerical results 88 (Ipanar) andS(Ipianar) in units 0f 10712 GeV =6 for 0.0 < f, < 25.0 andt = —10000.0GeV 2. Plotted
points are the real part (bullets) and the imaginary paudseg).

4.2. Non-planar diagram
Fig. 3 shows the results fe¥r20.0 < f; < 20.0. Different from the planar case, it is known thag,, —pianaer has

two cuts; one starts from the normathannel thresholds = 4m?, and the other fros = —t — M? — 4mM to
s = —oo. The latter corresponds to thechannel threshold at = (M + 2m)?2. These correspond t = 4.0 and
fs = —6.44, respectively. In Fig. 3 we also show some results of the ineag part in the range-100.0 < f, <

—20.0. In this region the imaginary part is small but its contribatis not negligible when it is put in the dispersion
integral (32) of Section 5.2.

In the physical region the computation time tends to be lofaydarger f,. This applies to both the planar and the
non-planar diagram. For example the time required to olkemeal part of the non-planar box integral with enough
accuracy as 0.003% gt = 10.0 (with ¢ = 1.2%°, key = 2 in all dimensions, andimit = 10, 20, 20, 10, 10, 10in
consecutive dimensions) is about a week using a system miithXeon CPU X5365 @ 3.16GHz. For much greater
fs it may become more difficult to get an answer in a practicaktiralowever, this computation time is measured
using a single CPU. It can potentially be shortened by appglparallel computing techniques on (possibly distributed
multi-core processors [17, 44, 45].

5. Validation of theresults

After obtaining answers by the numerical computation, tlstimportant issue is how to confirm that the results
are correct and reliable. It would be most desirable to haggvars available by independent methods. For example,
we computed the result 10364072096 + (0.315 x 10~7) for the planar integral, with = t = 1 GeV? andm? =1
GeVZ (1 <i <7),p? =1GeV? (1 <i < 4). We were able to compare this to the valu¢036407209893
evaluated by the prograsy s [46] and found good agreement. With the same values of trenkatical variables we
obtained the non-planar integral@88535139+ (0.105 x 10~7), but no result was available sy s. This comparison
demonstrates that the expressions of the funciivasd D for the planar diagram are correct and thaRkGE works
as expected. In these examplésdoes not vanish within the integration region; thus we donesd extrapolation.
The CPU time required for both the planar and the non-plaizgrdm is less than &in. using a Xeon CPU X5365
@ 3.16GHz.
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Below we outline an integration method based on reductiomtitas, and explain how to use it for a consistency
check.

5.1. Comparison with the reduction method

Consider a quadratic for® in N variablesp = (uq,--- ,un),
D =ulAu+B%u+c, (21)
where A is an N-dimensional symmetric matrix = (A;;), B is an N-dimensional vectoB” = (B, -, By),

with constant coefficients. Herecontains not only a real part but alsaeC with an infinitesimak. AssumingA is
invertible, we define the vector

XT =ouT +BTA L. (22)
Then we have

XT(VD) =4(D —¢) + BTA™'B = 4D + Ay, (23)
with VT = (8/0uy, - -+ ,0/0un). HereAy is defined as

Ay =BTA™'B - 4e. (24)

We divide Eq. (23) byD**! wherea > 0 is an arbitrary number. Using the relation

X 2N XTVD
T _ e v
v (Da) - Do @ Da+1 (25)
we obtain the following reduction formula
Ay  —4+4+2N/a 1_p (X
e -V (55 ), fora>o. (26)

It should be noted that the power of the denominator in thetsfiand side is decreased by one, compared to the
left-hand side, that is, the singular behavior is softenédena = 0 we find

Ax

o> = —4—2NlogD + V* (Xlog D). (27)
When a polynomial in1, f(u) # 1, occurs in the numerator of the left-hand side, the formategyeneralized to
fAN _ —Af+VI(X) /e 14 ([X
S = o V' (5 ) fora >0 (28)
and
A
fTN = —4f - VT (fX)logD + VT (fXlogD). (29)

We apply the formula to the functiori given in Egs. (10) and (15), which are quadratic&in- - - , u4. Since we
haveN = 2a (N = 4, a = 2) in both cases, we find a simpler formula

Ay 1, (X
D5 3V <D2>’ (30)
with Ay = Ay(p, £). By integrating we have

4

Jatwgs =gy [awvT (). dew =TT aus (31)

j=1
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are shown by circles and bullets with error bars, respdgtive

In Egs.(9) and (14), the above expression is integrated peerd¢. Here A, = 0 can occur inp-¢ space, and is
regularized numerically by setting the integrand to zerth@wvicinity of this anomaly.

The right-hand side is immediately integrated once. Appthe reduction repeatedly to the form in the right-
hand side, we see that the original integral is finally repdbloy a sum of integrals of functions involving logarithms.
Thus the severity of the integrand singularity is reduceltictv allows performing the integration even with Monte
Carlo routines. Note that this procedure generally crelatagthy expressions. The imaginary part results from the
logarithms; letR be a positive number and let= — R +ie, thenlog z = log(—R +i€) = log R+ im. We refer to this
integration method as tHeeduction MethodRM). We computed the two-loop box integrals by usBeSES [47].
The real part of the planar diagram integral in the physiegion, shown in [19], is in good agreement with the results
by DCM. On the other hand, for the imaginary part, the Montd@iategration failed to convergence satisfactorily.

In Fig. 4 we show the real part of the non-planar case obtayettie reduction formulas. Agreement with the
results by DCM is poor around the threshgld= 4 in view of poor convergence of the integration by RM. This may
be caused by the numerical regularization in the vicinitAgf= 0 as mentioned above.

5.2. Consistency check using dispersion relation

The dispersion relation provides a good tool for a conscstemeck. Based on the observation thét) can be
regarded as an analytic function in the compigdane, the real part and the imaginary p&t/(s)) and(I(s)), of
I(s) satisfy thedispersion relation

oo (I(s
R(I(s)) = 1 P/ Mds’, (32)

T J_ o S—8
whereP denotes principal value integral. Recall tét) is real in some region of and accordinglys(1(s)) vanishes
there. This integral relation, which is the consequench@ginalyticity ofl (s), implies the real part can be estimated
from the imaginary part. DCM computes the real and the imagipart independently, as they are given by separate
integrals. However, the dispersion relation indicates liwdh parts are not independent. They should be consistent
with the relation of Eg. (32).

11
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Figure 5: Numerical results O8(Z,,on— planar) in Units of 10712 GeV =6 for 0.0 < f; < 20.0. Values calculated by DCM and those by the
dispersion relatiorare shown by circles and squares, respectively.

In order to show how this relation works we consider the taogl non-planar box as an example. In this case the
integral can be written as

R(I(s)) = = <p / 3UIE)) ho / T SUE) (S/))ds’) , (33)

_ g _ g
U oo S— S w S—8

wheresy, = 4m? ands{, = —t — M? — 4mM are the threshold in thechannel and in the-channel, respectively, as
described in Section 4.2.

For the principal value integral computation we used thpezaidal rule, assuming th&t(7(s)) = 0 far away
from the origin, forf, < —100.0 and f; > 50.0. Values ofR(I(s)) resulting from this computation are plotted in
Fig. 5 for0.0 < f; < 10.0. The results show good agreement with those by DCM. Thus th¢ae of Eq. (32)
enables a consistency check for the answers produced by DCM.

6. Conclusions

In this paper we calculated the scalar integrals of two-lglepar and non-planar box diagrams involving massive
particles. We introduced tHeirect Computation Metho(OCM) for the evaluation. The novelidea in DCM is that the
e value in the propagators s treated numerically as a finiteber, not as an infinitesimal value. In view of the finite
the integrand of the loop integral is no longer singular. ifitegration can be carried out numerically for both the real
part and the imaginary part. Consecutive integrationséahe;, produce a sequence of integralg;),l = 0,1, -,
which are supplied to the extrapolation procedure. A nucatégnswer for the loop integral results in the limiteas
tends to O.

Since DCM does not impose restrictions on the values of maisaeters, the method is valid when masses are
complex [17]. For this case we can put 0 where no extrapolation is needed in the same manner as irothe n
physical region. This flexibility is remarkable and usefuithe calculation of cross-sections where decaying pestic
are involved.

In order to check our evaluations we compared the results tdse obtained by other methods [46], including
Reduction MethodRM). Comparisons of the results have shown satisfactorgeagent. The examination of the

12



dispersion relation has lead to a consistency check betiieereal and the imaginary part of the integral. Thus we
have established various ways to confirm the results.

Some issues linked with the implementation of parametegs the choice of; values, need to be solved heuris-
tically. Furthermore, in some regions of the kinematicaialales, DCM requires very long CPU times to obtain
reasonable accuracy. It may be possible to tackle the CP&jgnoblem by utilizing recent developments in computer
resources and parallel computing technologies [17, 44, A%pughout this paper we use double precision arithmetic,
but quadruple or extended precision may be needed for sorse enafigurations, including a small fictitious mass
to regularize infrared divergent integrals [16]. This caniticorporated in dedicated program packages [48, 49].

For a specified high-energy reaction, all the necessanjdap-diagrams can be generated automatically using
the GRACE system [4]. The next stage, which involves theraat generation of amplitudesd,, the integrands of
loop-integrals), would be manageable in view of the expeave gained in handling tree and one-loop processes [4].
Thus the only component which needs further developmerihfoconstruction of an automatic computation system
for two-loop reactions is a robust loop integral evaluatgatem.

Concerning the further development of DCM we need to tesiiratls for various mass configurations different
from those in this paper, particularly, infrared divergaregrals by the prescription using a fictitious mass. We
also need to examine loop integrals with a non-trivial nuatmt and explore a systematic treatment of ultra-violet
divergence. From a technical point of view, reducing CPUetiamd automatic tuning of the integration parameters
should be included. After completion of these studies, weeekthat DCM will play an important role in constructing
automatic computation systems for higher-order correstio
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Appendix A. Construction of thefunctions D and C
For a given diagram, the explicit form of the functioPsandC' is determined by the following steps [50, 51, 52].

e Step 1.
N

1. Assign the parameter; to thei-th internal line. The parametefs; } satisfyz x; = 1.

i=1

2. DefineL topologically independent loops and label thenwas 1, - - - , L. The loop momenturf, flows
through thez-th loop in its own direction.

3. External momentp;,j = 1,--- , K are presumed to enter the diagram inward. Heres the number
of external lines. We lep; flow through the diagram while respecting the momentum awasien at
each vertex. A simple example is where eaghj = 1,--- , K — 1 flows through the diagram along a
continuous path, to reach the vertex whggeenters. In this case the momentum conservation is trivial
aSZle pj = 0.

4. Each internal line has its direction and the momenkyrfor the i-th internal line is defined along this
direction. It can be expressed by a linear combination of ftedp; as

L K
=Y oY,
a=1 j=1

where

1 [, flows along the i-th internal line parallel to its direction
=< —1 [, flows along the i-th internal line anti-parallel to its direction
0 (otherwise)

Q =

and&;'- can be defined in a similar manner for We definepc,:,; = Z;il &;lpj for thei-th internal line.
13



5. It should be noted that, even though the choice ofltHeops, the selection of loop-momerita and the
flow of external momenta are not unique, the final result issrae for any choice.

e Step 2.
We construct arl. x L symmetric matrixA, an L-vectorB and a scalat.

N N N
_ i i _ i _ 2 2
Agp = E 040pLi, B. = E 04TiPext i c= E xi(pezt,i —m;).
i=1 i=1 i=1

e Step 3.
The functions” and D are obtained by

C = det(A), and D = —det < BAT E ) .

D is a homogeneous polynomial of degiiee- 1, andC' is a homogeneous polynomial of degie@ «;.

Appendix B. Two-loop box diagrams

Following these prescriptiong) andC (Egs. (7), (8)) for the two-loop planar diagram (Fig. 6(a) abtained
from

Al =21 + 22 + 23 + T4, Ag = Ay = —a4, Az = x4 + x5 + T6 + T7,
Bi = z1p1 — x2p2, By = xsp1 — z6p2 + x7(p1 + p3),
¢ = z1(p} —mi) + z5(p] — m) + x2(p3 — m3) + x6(p5 — M)
+7((p1 + ps)® —m3) + x3(—m3) + za(—m3),
and those (Egs. (12), (13)) for non-planar diagram (Fig))dtbm

A1 =21+ 29 + 23 + 24 + T5, Az = A9y = 21 + 22 + 73,
Ags = 1 + 22 + 23 + T6 + 27,
B1 = — (@1 + z4)p3 — x3(p1 + p3) + T2pa, By = (w2 + x6)ps — x3(p1 + p3) — T1p3,
¢ = a1(p3 —mi) + za(p — m3) + w2(pf — m3) + w6 (pi — mg)
+a3((pr + ps)? — m3) + ws(—m3) + w7 (—m3).

14
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Figure B.6: The quantities in Appendix B are obtained from ¢onfiguration shown in the figure for (a) two-loop planar lboxl (b) two-loop
non-planar box. The arrow on each internal line defines fsction(Step 1.4). Red lines and blue lines show the flow o lmomentd(,, Step
1.2) and that of external momengg( Step 1.3), respectively.
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