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Abstract 

In this paper we perform a comparative study of the forward and backward Liouville 

mapping applied to the modeling of ring-shaped and non-gyrotropic velocity distribution 

functions of particles injected in a sheared electromagnetic field. The test-kinetic method is 

used to compute the velocity distribution function in various areas of a proton cloud moving 

in the vicinity of a region with a sharp transition of the magnetic field and a non-uniform 

electric field. In the forward approach the velocity distribution function is computed for a 

two-dimensional spatial bin, while in the backward approach the distribution function is 

averaged over a spatial bin with the same size as for the forward method and using a two-

dimensional trapezoidal integration scheme. It is shown that the two approaches lead to 

similar results for spatial bins where the velocity distribution function varies smoothly. On 

the other hand, with bins covering regions of configuration space characterized by sharp 

spatial gradients of the velocity distribution function, the forward and backward approaches 

will generally provide different results. 

 

Keywords: test-kinetic simulations, Liouville mapping, velocity distribution function, space 

plasma. 

 

 

 

 

 

 



Manuscript	published	to	Computer	Physics	Communications	
Computer	Physics	Communications	183	(2012)	2561–2569;	doi:10.1016/j.cpc.2012.07.005		

2 

	

1. Introduction 

Test-kinetic simulations provide a useful tool to investigate the dynamics of charged 

particles in systems in which a good approximation of the actual electromagnetic fields can 

be obtained [1]. This approach can provide useful information about the kinetic structure of 

the system. The electric and magnetic fields used in the test-kinetic approach are prescribed a 

priori. Thus, the test-kinetic method gives a first approximation of the kinetic structure of a 

plasma using electric and magnetic fields obtained from either theoretical models, MHD 

simulations or experimental data. Although the results obtained using this approach are not 

self-consistent, the test-kinetic method is an important simulation tool able to provide a useful 

description of complex situations where the use of self-consistent kinetic methods is not 

possible. 

The test-kinetic method has been applied in various contexts of space plasma physics. 

For example, Wagner et al. [2] integrated test-particle orbits in an X-line distribution of the 

magnetic field illustrating the non-adiabatic character of orbits for sheets having the thickness 

comparable with the particle’s Larmor radius. Speiser et al. [3] used the test-kinetic approach 

to map velocity distribution functions from the magnetosphere into the magnetosheath. 

Curran et al. [4] and Curran and Goertz [5] mapped velocity distribution functions along 

numerically integrated orbits in order to study the plasma dynamics in X-line magnetic 

topology. Ashour-Abdalla et al. [6] investigated the ion dynamics into the magnetotail using 

the test-kinetic approach. Richard et al. [7] studied the magnetospheric penetration 

mechanisms by solar wind ions using the same method, for electric and magnetic field 

profiles obtained from a global MHD simulation of the terrestrial magnetosphere. Rothwell et 

al. [8] developed test-particle simulations in order to investigate non-adiabatic effects 

introduced by sharp spatial variations of the electromagnetic field. Delcourt et al. [9,10,11] 

performed test-particle simulations to investigate impulsive changes of ion dynamics in the 

near-Earth plasma sheet. Mackay et al. [12] and Marchand et al. [13] applied the test-kinetic 

approach to obtain first order kinetic effects in collisionless perpendicular shocks in the 

vicinity of the Earth’s bow shock and also to check consistency with a solution obtained in 

the MHD approximation. 

The test-kinetic simulation method is based on numerical integration of test-particle 

orbits in prescribed electric and magnetic fields. Marchand [1] identified four different 

approaches of the test-kinetic method: (i) trajectory sampling, (ii) forward Monte Carlo, (iii) 

forward Liouville and (iv) backward Liouville. In this paper we perform a comparative study 
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of the forward and backward Liouville approaches in the test-kinetic modelling of ring-

shaped and non-gyrotropic velocity distribution functions for particles injected in a sheared 

electromagnetic field. The test-kinetic simulation method is used to compute the velocity 

distribution function in various regions of a proton cloud moving in the vicinity of a region 

with a sharp transition of the magnetic field. This type of configuration is of interest for 

studying the dynamics of the terrestrial magnetotail. The distribution functions obtained with 

both approaches are compared and the differences are analyzed. 

The remainder of the paper is organized as follows. In the second section we outline 

the main features of both forward and backward test-kinetic approaches and describe how 

they are applied in our simulations. In the third section we illustrate the numerical solutions 

obtained for a cloud of protons injected in a non-uniform electromagnetic field and we 

analyze the differences between the velocity distribution functions given by both approaches. 

The last section includes our conclusions. 

 

2. Test-kinetic modeling: forward and backward Liouville approaches 

In a collisionless plasma the characteristics of the Vlasov equation can be obtained by 

solving the Newton-Lorentz equation of motion: 

 
   

d 2!r
dt2 = q

m
!
E + d!r

dt
×
!
B⎛

⎝⎜
⎞
⎠⎟

 (1) 

for an ensemble of charged particles injected into the electromagnetic field given by   
!
E  and 

  
!
B  [14]. This is equivalent to Liouville’s theorem applied to a one-particle distribution 

function which states that: 

 0df
dt

=  (2) 

along a particle trajectory. Therefore, the velocity distribution function has the same 

numerical value at each point along a particle orbit. One can compute any number of Vlasov 

characteristics and then “propagate” f  along them by applying Liouville’s theorem. 

In the forward and backward test-kinetic approaches the magnetic and electric fields 

introduced in Eq. (1) are prescribed. The B-field used in our computations is stationary and it 

varies with the x-coordinate in a transition region centred at x=0. The profile of the magnetic 

field is anti-parallel, i.e.   
!
B  is everywhere parallel to the z-axis and it changes orientation as it 

goes through x=0:  
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 1( ) erfz z
xB x B
L

⎛ ⎞= − ⎜ ⎟⎝ ⎠
 (3) 

where B1z represents the asymptotic field in the left hand side of the transition region 

(x→−∞), −B1z is the asymptotic field in the right hand side (x→+∞) and L represents the 

characteristic scale length of the transition region. This type of magnetic profile has been 

obtained self-consistently from kinetic models of one-dimensional tangential discontinuities 

[15,16,17].  

The electric field is everywhere normal to the magnetic induction   
!
B  and it is obtained 

by solving the two-dimensional Laplace equation: 

 
2 2

2 2 0
x y

∂ Φ ∂ Φ+ =
∂ ∂

 (4) 

in the xOy plane. The integration domain considered is rectangular with L Rx x x≤ ≤  and 

B Ty y y≤ ≤ . The boundary conditions are taken to be Neumann, with: 

 

0

0

( )

L R

B T

x x x x

x z
y y y y

x x

V B x
y y

= =

= =

∂Φ ∂Φ= =
∂ ∂

∂Φ ∂Φ= = −
∂ ∂

 (5) 

where V0x is the plasma bulk velocity at the left hand side of the transition region. The 

boundary conditions (5) have been chosen such that the electric field at y=yB and y=yT 

sustains a quasi-uniform   
!
E ×
!
B  drift in the x direction: 0( ) / ( )y z xE x B x V= . The boundary 

conditions at x=xL and x=xR correspond to a vanishing Ex component at the two sides. The 

electric field obtained from Eq. (4) and Eq. (5) is a two-dimensional generalization of the 1D 

electric field used in previous test-particle simulations [18]. Taking R Lx x= −  and T By y= − , 

the electric field intensity,   
!
E = −∇Φ , has the Ex and Ey components: 

 
1

( , ) cos sinh
2 2 2x m

mL L L

m x m yE x y
x x x
π π πη

∞

=

⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  (6a) 

 
1

( , ) sin cosh
2 2 2y m

mL L L

m x m yE x y
x x x
π π πη

∞

=

⎛ ⎞ ⎛ ⎞
= − ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑  (6b) 

where m=1, 3, 5, etc. The ηm coefficients are given by: 
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The solution of Laplace’s equation (4) with boundary conditions (5) may be viewed as an 

electric field simulating the one sustained by space-charge layers forming at the boundaries 

of a moving non-diamagnetic plasma element in the presence of a magnetic field [19,20]. Our 

simulations have been performed for an electromagnetic field configuration that reproduces 

some typical parameters of the terrestrial magnetotail. The magnetic field profile would 

correspond to a tangential discontinuity. A possible origin of the electric field can be a 

localized perturbation of the dawn-dusk electric field. Another region of the magnetosphere 

where such electric and magnetic fields could be observed is the magnetopause. The 

relevance for this configuration of the electric and magnetic fields have been discussed in a 

previous publication [21]. 

The initial velocity distribution function specified for the source region is described 

by a displaced Maxwellian with the average velocity    
!

V0  parallel to the positive x-axis and 

perpendicular to the magnetic field: 

 

2 2 2
0

0

( )3/ 2
2

0
0

( , , )
2

x y z

B

m v V v v

k T
x y z

B

mf v v v N e
k Tπ

⎡ ⎤− + +⎣ ⎦−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (8) 

where N0 and T0 are the density and temperature of protons at the source region. In both 

forward and backward approaches the initial (t=0) source region, where the velocity 

distribution function is known, is localized in the left hand side of the transition region in the 

xOy plane. It is defined in terms of the positions of the guiding centers.  

In the forward approach a uniform grid of guiding centers having Nx×Ny nodes is 

placed inside the source region. For each of the Nx×Ny guiding centres, np particles are 

“attached” with the initial velocities 0 0 0( , , )i i i
x y zv v v  distributed according to the displaced 

Maxwellian (8). Knowing the gyration velocity and the guiding center position of all test-

particles, obtaining the particles’ position is straightforward. In order to reconstruct the 

velocity distribution function at later times, 6×np×Nx×Ny equations of motion (1) are 

numerically integrated in the time range t>0, thus providing 3×np×Nx×Ny components of the 

test-particles velocities ( , , )i i i
x y zv v v  at time t . These final velocities define a scattered 

distribution of points in velocity space. Using the Liouville theorem (2) we assign to each 
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point defined by the final velocities, ( , , )i i i
x y zv v v , the numerical value of the distribution 

function computed from (8) for the initial velocity components 0 0 0( , , )i i i
x y zv v v . In this way we 

obtain a map of f  in the three-dimensional velocity space. This procedure is applied at time 

t  in those spatial bins of the configuration space populated by a sufficiently large number of 

particles so as to have a good representation of f . A schematic diagram describing the 

forward approach is shown in Fig. 1. 

 With the backward approach, a three-dimensional velocity grid ( , , )i i i
x y zv v v  with Nv 

vertices is constructed at a precise position in configuration space. Starting from each vertex 

of the velocity grid, the equation of motion of a test-particle is integrated backward in time 

back to t=0. To each node of the grid a single test-particle is assigned. In order to reconstruct 

the velocity distribution function at time t , 6×Nv equations of motion (1) are numerically 

integrated backward in time, thus providing 3×Nv components 0 0 0( , , )i i i
x y zv v v  of the test-

particles velocities at time t=0 . If the particle’s i guiding center is localized inside the source 

region, at time t=0, we assign to that particle the numerical value of the distribution function 

computed from (8) for the velocity components 0 0 0( , , )i i i
x y zv v v . Otherwise, the value of f  is 

set to zero. Using Liouville’s theorem (2) we assign to each vertex of the grid, ( , , )i i i
x y zv v v , the 

numerical value of the distribution function assumed at time t=0 .  In this way f  is 

discretized in the three-dimensional velocity space. This procedure is applied at time t  for Nr 

points of interest in configuration space. A schematic diagram describing the backward 

approach is shown in Fig. 2. 

The numerical method used to solve the equation of motion of test-particles is based 

on the 4th order Runge-Kutta algorithm with fixed step-size. We checked the accuracy of the 

Runge-Kutta solver by integrating a number of 27 test-orbits with different initial conditions, 

forward and backward in time, over an interval of 225 seconds (~100 Larmor periods) using 

1500 time steps. The results obtained show that the error in computing the particles positions 

is smaller than 0.13RL, while the error in computing the particles velocities is smaller than 

0.10w⊥, where RL is the Larmor radius and w⊥ is the gyration velocity of the particles. These 

results indicate that the accuracy of the numerical method used to integrate test-trajectories is 

satisfactory. 
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3. Numerical results and comparison between forward and backward test-kinetic 

approaches 

The velocity distribution function is determined with the forward and backward test-

kinetic approaches for different regions of a proton cloud moving in an anti-parallel magnetic 

field and a non-uniform electric field. The injection source is localized at the left hand side of 

the transition region and it is characterized by the displaced Maxwellian (8). The input 

parameters are given in Table I. The simulation domain is delimited by the interval [−40000, 

+40000] km along the x-axis and [−30000, +30000] km along the y-axis. The particles that 

reach regions outside these limits are removed from the simulation and no new particles are 

injected at the boundaries. In the forward approach, a uniform grid of 12×12 nodes 

considered as guiding centers is defined inside the source region; 20000 protons are 

“attached” to each guiding center position. The magnetic field, described by Eq. (3), is 

everywhere parallel to the z-axis and changes sign at x=0 (see Fig. 3 – left panel). Figure 3 

(right panel) shows the electric field profile obtained from the Laplace equation (4) subject to 

boundary conditions (5) discussed in the previous section. This profile may be viewed as 

describing a neutral sheet and a superimposed electric field with Ey changing sign whenever 

Bz reverses sign.  

Figure 4 (left panel) shows the initial positions of protons (t=0) and the local number 

density in the xOy plane, perpendicular to the magnetic field. A two-dimensional cross-

section (for vz=0) of the velocity distribution function corresponding to the central region (the 

blue rectangle in the xOy plane) is shown in the right panel of Fig. 4. It is shown that the 

initial distribution function is a displaced Maxwellian with an average velocity V0=200 km/s 

in the x direction.  

The positions and the local number density of the test-protons in the xOy plane, 

perpendicular to the magnetic field, at t=225 s (∼100⋅TL) are shown in Fig. 5. The overall 

shape of the proton cloud is deformed and shows significant asymmetries, the particles being 

scattered in the positive direction of the y-axis. This asymmetric expansion of the cloud is 

related to the gradient-B drift that is oriented in the +Oy direction. Thus, an energy-dispersed 

structure is formed due to the energy-dependent displacement of protons towards the edges of 

the cloud by the gradient-B drift. Another effect of the gradient-B drift is the formation of 

ring-shaped velocity distribution functions within the energy-dispersed structure, as can be 

seen further. Higher energy particles populate the edges of the proton beam while smaller 

energies are located inside the core. Also, non-gyrotropic velocity distribution functions form 

in the front-side and trailing edge of the cloud due to remote sensing of energetic particles 
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with guiding centers localized inside the beam. An explanation of the physical mechanism 

responsible for the formation of such an energy-dispersed structure and also a detailed 

analysis of the kinetic effects contributing to the formation of ring-shaped and non-gyrotropic 

velocity distribution functions is published elsewhere [21]. Here we limit our attention to the 

differences between the results obtained using both forward and backward test-kinetic 

approaches. 

The velocity distribution function of protons obtained at t=225 s using the forward 

approach is shown in Fig. 6. The velocity distribution function inside the cloud is computed 

for each bin defined by the blue rectangles in the xOy plane and identified by the combination 

of letters (columns) and numbers (rows) in Fig. 5. The size of a spatial bin is defined such 

that it contains enough particles (at least 104 particles per bin) for a good sampling of velocity 

space. The bins of the mesh shown in Fig. 5 have a spatial resolution of 280 km in x-direction 

and 2500 km in y-direction, adapted to the geometry of the cloud and the total number of 

simulated particles. The corresponding velocity distribution functions obtained using the 

backward approach are shown in Fig. 7. f  is computed for the central point of each spatial 

bin defined by the blue rectangles in the xOy plane illustrated in Fig. 5.  

There are significant differences between the forward and backward approaches as 

illustrated by Fig. 6 and Fig. 7. Nevertheless, the velocity distribution function, f , has the 

same variation tendency in both cases, i.e. (i) it is ring-shaped close to the upper boundary 

(i.e. for larger y-values) while in the center is approximately Maxwellian (comparing, for 

instance, f  corresponding to C1 and C3 in Fig. 6 and Fig. 7) and (ii) the anisotropy of the 

velocity distribution function is more pronounced close to the trailing edge of the cloud (i.e. 

for smaller x-values) than in the center (for example, comparing f  for A2 and B2 in Fig. 6 

and Fig. 7). The explanation for the differences observed is related to the different methods 

used to compute the distribution function with forward and backward approaches. In the 

forward approach f  is sampled over a spatial bin whose size is defined such that it contains 

a large enough number of particles and the statistical error resulting from sampling is 

minimized. On the other hand, in the backward approach the computation of f  for a precise 

point in configuration space is free from statistical errors; in our case, f  is computed for the 

central point of each spatial bin defined for the forward method. The strength of the backward 

approach is related to its ability to produce detailed velocity distribution functions at precise 

locations without statistical sampling errors. The essential difference between the forward 

and backward approaches is that the former necessarily relies on spatial binning and 
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sampling, while the latter can be calculated at precise locations in space. In many cases, the 

backward approach can lead to filamentary structures in velocity (or momentum) space, 

while such structures are always attenuated in the forward approach, owing to the spatial 

averages involved. In contrary to the backward approach, the forward Liouville approach 

enables the computation of both the velocity distribution function and general dynamics of 

the particle cloud while advancing an initial distribution of particles into a non-uniform 

configuration of the magnetic and electric fields. Thus, the strength of the forward approach 

is related to its ability to investigate the evolution of a specific plasma source. 

A solution to eliminate these differences and to obtain comparable distribution 

functions would involve spatial averages of f  by a proper quadrature scheme applied in the 

backward approach. For that purpose, the velocity distribution function obtained using the 

backward approach is numerically integrated over a rectangular domain in the xOy plane 

corresponding to the spatial bin used to compute the distribution function using the forward 

approach. The resulting averages are presented in Fig. 8 for each bin defined by the blue 

rectangles in the xOy plane (see Fig. 5). The averages are computed by the trapezoidal 

integration rule with 10×10 points applied in each spatial bin. The resulting averaged 

distribution functions are closer to those given by the forward approach, as expected. 

Nevertheless, there are still some notable differences particularly for bins B2 and C2 (see Fig. 

8). These two bins are localized in a region characterized by a pronounced spatial variation of 

the velocity distribution function, as can be seen from Fig. 7 by comparing f  for C1* and C2 

(C1* is the middle point between C1’s and C2’s centres). On the other hand, the results 

obtained for bin C1 using both forward and backward approaches are very similar since the 

spatial variation of the distribution function for that region is smooth (see f  for C1 and C1* 

in Fig. 7). The differences observed for the bins localized in regions with sharp spatial 

variation of the velocity distribution function can be explained by analyzing in more detail 

the sampling method of the forward approach and the averaging method of the backward 

approach. In order to better understand the differences between the two, a schematic 

representation is shown in Figures 9 and 10.  

Let us consider the problem of calculating the velocity distribution function for a 

spatial bin which is localized in a region from the configuration space characterized by a 

steep spatial variation of f  along Oy direction. The velocity distribution function is 

computed using both forward and backward approaches; for the latter approach, the 

averaging method is used. We divide the spatial bin in two areas, A and B, characterized by 
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two distinct velocity distribution functions, as shown in Fig. 9 and 10. In area A the velocity 

distribution function is the inner core of a Maxwellian distribution function, fA, while in area 

B we retrieve the outer shell of the same Maxwellian distribution, fB.  

For simplicity, let us assume that f  does not vary significantly in either A or B. By 

using the forward approach, the particles localized in the both areas A and B will have the 

velocities distributed according to their respective velocity distribution functions. Thus, the 

less energetic particles will be found in area A, while the most energetic ones will be found in 

area B (see Fig. 9). This simplified model corresponds roughly to our simulation results. All 

particles localized inside the entire spatial bin will be distributed in velocity space as follows. 

Particles originating from area A, i.e. the less energetic ones, will be found in the central 

regions of velocity space, while particles originating from area B, i.e. the most energetic 

ones, will be found in the outer regions of velocity space.  

In order to reconstruct the velocity distribution function by using the forward 

approach, a uniform grid in velocity space is defined. For each velocity bin j centred in 
  
!v j , 

the corresponding distribution function 
   
fFWD(!v j )  is computed by averaging over all 

numerical values i
jf  “attached” to each particle i localized inside the considered velocity bin: 

 

   
fFWD(!v j ) =

f j
i(!v j

i )
i=1

nj

∑
nj

 (9) 

where 
  
!v j

i  is the velocity of particle i localized inside the velocity bin j and jn  is the total 

number of particles inside bin j. Among these jn  particles, let A
jn  be the ones from area A 

and B
jn  those from area B such that A B

j j jn n n= + . Thus, Eq. (9) becomes:    

 

   
fFWD(!v j ) =

f j
iA (!v j

iA )
iA=1

nj
A

∑ + f j
iB (!v j

iB )
iB=1

nj
B

∑
nj

 (10) 

where 
   
f j

iA (!v j
iA) = fA(!v j

iA) , since all Ai  particles are localized inside area A and likewise 

   
f j

iB (!v j
iB ) = fB(!v j

iB ) , as all Bi  particles belongs to area B. Furthermore, we consider that all 

velocity bins are small enough such that 
   
fA(!v j

iA) = fA(!v j )  and 
   
fB(!v j

iB ) = fB(!v j ) . In this way, 

f  computed using the forward approach for the velocity bin centred on 
  
!v j  is: 
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fFWD(!v j ) =

nj
A

nj

fA(!v j )+ 1−
nj

A

nj

⎛

⎝
⎜

⎞

⎠
⎟ fB(!v j )  (11) 

 In order to compute the velocity distribution function using the backward approach, 

we define a uniform grid in configuration space having n×n points that cover the entire area 

of the spatial bin to be sampled (see Fig. 10). For each velocity vertex j centred in 
  
!v j , the 

corresponding distribution function 
   
fBWD(!v j )  is computed by averaging over all numerical 

values i
jf  “attached” to each point i of the spatial grid: 

 

   
fBWD(!v j ) =

f j
i(!v j )

i=1

n2

∑
n2  (12) 

Considering that m grid points are localized inside area A, while the other n2−m grid points 

are localized inside area B, Eq. (12) becomes:  

 

   
fBWD(!v j ) =

f j
iA (!v j )

iA=1

m

∑ + f j
iB (!v j )

iB=m+1

n2

∑
n2  (13) 

where 
   
f j

iA (!v j ) = fA(!v j ) , since all Ai  grid points are localized inside area A, and similarly 

   
f j

iB (!v j ) = fB(!v j ) . Therefore, f  computed using the backward approach for the velocity bin 

centred on 
  
!v j  is given by: 

 
   
fBWD(!v j ) =

m
n2 fA(!v j )+ 1− m

n2

⎛
⎝⎜

⎞
⎠⎟

fB(!v j )  (14) 

We should mention that the average value (14) has been obtained simply by computing the 

arithmetic mean of all n2 function’s values instead of integrating the velocity distribution 

function over the entire spatial bin using a 2D trapezoidal integration rule, as it is done in our 

simulations. Also, we considered a uniform grid in velocity space for the backward approach, 

while in our simulations an unstructured grid has been used to compute the velocity 

distribution function. These simplifications should not have major consequences on the final 

results.  

 In order to compare the velocity distribution functions obtained from both forward 

and backward approaches we considered three representative velocity bins, designated a, b 

and c and centred at   
!va ,   
!vb  and   

!vc  (see Fig. 9 and Fig. 10), to compute the numerical values 

of f  given by Eq. (11) and Eq. (14). These three velocity bins have been chosen such that: 
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   fA(!va ) ≠ 0  and    fB(!va ) = 0 ,    fA(!vb ) = fB(!vb ) ≠ 0 , while    fA(!vc ) = 0  and    fB(!vc ) ≠ 0 . 

Therefore, from Eq. (11) and Eq. (14), we obtain the values of f  computed with both 

forward and backward approaches for velocity bins a, b and c. The results are given in Table 

II and show that the velocity distribution function given by the backward approach is smaller 

than the one obtained from the forward approach for velocity bins a and c, while for bin b 

both values are equal.  

By applying this algorithm to all velocity space bins, a Maxwellian distribution 

function is obtained with the forward approach, as can be seen in Fig. 9. However, f  

obtained with the backward approach presents a cavity in the central region of velocity space, 

as can be seen in Fig. 10. Similar results are obtained, for instance, for bin C2 of our 

simulations depicted in Fig. 6 and Fig. 8, which is localized in a region characterized by a 

steep spatial variation of the velocity distribution function. Indeed, with the forward approach 

a Maxwellian distribution is obtained for bin C2, while with the backward approach the 

distribution function is characterized by a central cavity in velocity space. Thus, the 

simplified model described in Fig. 9 and Fig. 10 explains the differences obtained between 

forward and backward approaches in spatial regions characterized by sharp gradients of f . 

 The velocity distribution functions given by Eq. (11), for the forward approach, and 

Eq. (14), for the backward approach, have similar mathematical expressions except for the 

weight coefficients of fA and fB. In the forward approach the weight coefficients are expressed 

in terms of /Aj jn n , i.e. the ratio of the number of particles localized inside velocity bin j and 

pertaining to spatial area A to the total number of particles localized inside velocity bin j. In 

the backward approach the weight coefficients are expressed in terms of 2/m n , i.e. the ratio 

of grid points number localized inside area A to total number of grid points localized inside 

the entire spatial bin. By analyzing the /Aj jn n  ratio we can conclude that this quantity 

depends on the position of bin j in velocity space. On the other hand, 2/m n  is equal to the 

ratio of region A area to entire spatial bin area, which is independent on the position of bin j 

in velocity space:    

 2

( )
( )

A
y

y

Lm Area A
n Area bin L

= =  (15) 

where A
yL  indicates the width of area A along the y-axis, while yL  represent the width of the 

entire spatial bin. Thus, the weight coefficients corresponding to forward and backward 

distribution functions are not equal in general and the results provided by the two approaches 
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may also be different, independently of the number of particles injected in the forward 

simulations or the number of grid points used in the averaging scheme for the backward 

simulations.  

The main point which distinguishes the averaging method (14) from the sampling 

method (11) is related to the fact that, in the backward approach, to a given point in velocity 

space correspond n2 points in the configuration space which cover the entire area of the 

spatial bin. In the forward approach however, a given bin in velocity space may originate 

from only a subset of points in configuration space localized in a certain area of the spatial 

bin. Therefore, in order to calculate the numerical value of the distribution function at a 

certain bin in velocity space, the backward averaging method (14) will take into account the 

contribution from the entire spatial bin, while the forward sampling method (11) will take 

into account the contribution of only a part of the considered spatial bin, thus possibly leading 

to different results. Nevertheless, FWDf  given by Eq. (11) would be equal to BWDf  given by 

Eq. (14) if 2m n= . This condition is satisfied if we increase the size of region A such that it 

will cover the entire area of the spatial bin. Only in this case A
jn  will also be equal to jn  for 

all velocity space bins and the weight coefficients corresponding to forward and backward 

distribution functions will be equal. Therefore, by increasing the size of area A it is possible 

to obtain converging results with both approaches as long as the initial assumption is 

satisfied, i.e. there are no significant spatial variations of f  along area A. We should note 

that this assumption will always be satisfied for region B since the size of this area 

continually decreases, as the size of A increases. This result can be generalized for three-

dimensional bins with spatial variations of the velocity distribution function along all three 

coordinate axes. In this case the forward and backward approaches will return similar results 

only for those spatial bins which are small enough such that the following inequality to be 

satisfied simultaneously along all three coordinates axes:   

 i
i

fL f
x
∂⋅ <<
∂

 (16) 

where i = 1, 2, 3 for the x, y, z axes respectively. On the other hand, with bins covering 

regions of configuration space characterized by sharp spatial gradients of the velocity 

distribution function, the forward and backward approaches will generally provide different 

results. 
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4. Conclusions 

In this paper we performed a comparative study of the forward and backward 

Liouville approaches corresponding to the test-kinetic simulation method that integrates 

numerically test-particle orbits in given electric and magnetic fields. The test-kinetic method 

has been applied to study various problems of space plasma physics. In this paper we discuss 

an example relevant for magnetospheric physics that is analyzed in detail in a previous 

publication [21]. The test-kinetic method is an important simulation tool, especially in 

complex situations where the use of fully self-consistent kinetic methods is not possible. We 

applied the forward and backward approaches to compute the velocity distribution function in 

different areas of a proton cloud moving in the vicinity of a region with a sharp transition of 

the magnetic field and a non-uniform electric field. The source region is localized in the left 

hand side of the transition region and it is characterized by a displaced Maxwellian 

distribution function. 

We compare the velocity distribution functions obtained for different regions of the 

proton cloud with the forward and backward approaches. In the forward approach f  is 

sampled over a spatial bin which needs to be populated by a sufficiently large number of 

particles so as to reduce statistical errors. On the other hand, in the backward approach f  is 

computed without statistical errors, at precise positions in configuration space. In order to 

compare the distribution functions obtained with both approaches, a spatial averaging of f  is 

needed. The velocity distribution function given by the backward approach is numerically 

integrated over a rectangular domain corresponding to the spatial bin used to compute the 

distribution function with the forward approach.  

Our simulation results show that there are significant differences between the 

distribution functions given by forward and backward approaches. The differences are 

observed especially for spatial bins from regions with a steep spatial variation of the velocity 

distribution function, while in regions with smooth variations of f  the two approaches 

provide similar results. The differences and similarities can be explained by a careful 

examination of the sampling method used in the forward approach and the averaging method 

used in the backward approach. The main difference between the two computational methods 

is due to the approach used to estimate the velocity distribution function in a spatial bin: the 

backward method uses an averaging method that takes into account the contribution of the 

entire spatial bin to calculate the distribution function for a certain bin in velocity space, 

while, in certain cases, the forward sampling method effectively only takes into account the 
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contribution from a part of the bin considered. The two approaches lead to similar results 

when averages are calculated over bins in which the distribution function varies smoothly in 

configuration space.  
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Table I. Input parameters of the test-kinetic simulations: N0, kBT0, V0 are the density, thermal 

energy and average velocity of the displaced Maxwellian given in Eq. (8). Here B1z is the 

asymptotic value of the magnetic field at the left hand side of the transition region, L is the 

length scale of the transition region, RL is the Larmor radius of thermal protons and TL is the 

Larmor period of protons at the left hand side of the transition region. The boundaries of the 

source region in the xOy plane are defined by xmin, xmax, ymin, ymax. 

N0 

[m-3] 

kBT0 

[eV] 

V0 

[km/s] 

B1z 

[nT] 

L 

[km] 

RL 

[km] 

TL 

[s] 

[xmin xmax] × [ ymin ymax] 

[km] 

104 3000 200 −30 6000 260 2.2 [−20000, −17800]×[−550, +550] 

	

	

	

	

Table II. Values of f  obtained with both forward and backward approaches for three 

selected velocity bins centered at a, b and c. 

  
!v j  

   
fFWD(!v j )  

   
fBWD(!v j )  

  
!va     fA (!va )  

   
m
n2 fA (!va ) < fA (!va )  

  
!vb  

   

fA (!vb )
fB(!vb )

 
   

fA (!vb )
fB(!vb )

 

  
!vc     fB(!vc )  

   
1− m

n2

⎛
⎝⎜

⎞
⎠⎟

fB(!vc ) < fB(!vc )  
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Figure 1: Schematic diagram of the forward Liouville approach; a positive time step is used 

to integrate test-particle orbits in given magnetic and electric fields. 

 

 

	

Figure 2: Schematic diagram of the backward Liouville approach; a negative time step is used 

to integrate test-particle orbits in given magnetic and electric fields. 
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Figure 3: Left panel: magnetic field profile in the simulation domain; the B-field is 

unidirectional and changes orientation at x=0. Right panel: electric field profile in the 

simulation domain; Ey changes sign whenever Bz reverses sign. The simulation domain is 

limited by: −40000 km ≤ x ≤ +40000 km, −30000 km ≤ y ≤ +30000 km. 

   

 

 

Figure 4: The left panel shows proton density profile in the xOy plane, perpendicular to the 

magnetic field, at t=0. The local number density is color coded using a 2D mesh of 60x60 

spatial cells. The right panel shows the velocity distribution function, in the vz=0 cross 

section, sampled in the blue rectangle in the left panel. Note that the initial distribution 

function is given by a displaced Maxwellian with an average velocity V0=200 km/s along the 

x direction.  
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Figure 5: Proton density distribution in the xOy plane, perpendicular to the magnetic field, at 

t=225s (∼100⋅TL) obtained with the forward approach. The local number density is color 

coded using a 2D mesh of 60x60 spatial cells. The density distribution is elongated in +Oy 

direction due to the gradient-B drift acting in the region of non-uniform fields. The blue 

rectangles indicate the spatial bins used to sample the velocity distribution function shown in 

Fig. 6. 

 

 
Figure 6: Velocity distribution functions obtained at t=225 s (∼100⋅TL) using the forward 

approach in the spatial bins indicated by blue rectangles in Fig. 5. The plots correspond to 

vz=0 cross-sections in velocity space.  
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Figure 7: Velocity distribution functions obtained at t=225 s (∼100⋅TL) using the backward 

approach for the central points of the bins indicated by blue rectangles in Fig. 5. C1* is the 

middle point between C1 and C2. The plots show vz=0 cross-sections in velocity space.  

 
Figure 8: Velocity distribution functions obtained at t=225 s (∼100⋅TL) with the backward 

approach by averaging over the spatial bins indicated with blue rectangles in Fig. 5. The plots 

show vz=0 cross-sections in velocity space.  
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Figure 9: Schematic diagram illustrating the sampling method used to compute the velocity 

distribution function with the forward Liouville approach. 

 

 

 

 

Figure 10: Schematic diagram illustrating the averaging method used to compute the velocity 

distribution function with the backward Liouville approach. 


