
Solving the Vlasov equation for one-dimensional
models with long range interactions on a GPU

Tarcísio M. Rocha Filho a,1

aInstituto de Física and International Center for Condensed Matter Physics
Universidade de Brasília, CP: 04455, 70919-970 - Brasília, Brazil

Abstract

We present a GPU parallel implementation of the numeric integration of the Vlasov
equation in one spatial dimension based on a second order time-split algorithm with
a local modified cubic-spline interpolation. We apply our approach to three different
systems with long-range interactions: the Hamiltonian Mean Field, Ring and the
self-gravitating sheet models. Speedups and accuracy for each model and different
grid resolutions are presented.

Key words: Vlasov equation; Long-range interaction;

1 Introduction

Systems with long-range interactions are particularly important in physics,
Coulomb forces being probably the most prominent example. Albeit their
relevance, many of its properties are still not well understood. The long-
range nature of the interaction leads to some interesting phenomena not ob-
served for short-range interactions, such as the existence of quasi-stationary
non-Gaussian states with diverging life-times with the number of particles,
negative microcanonical heat capacity, inequivalence of ensembles and non-
ergodicity [1,2,3,4,5,6,7]. Examples of systems with long range forces include
self-gravitating systems [9], non-neutral plasmas [10,11] and models as the ring
model [12,13] Hamiltonian Mean Field (HMF) [14], one-dimensional gravity
(infinite uniform density sheets) [15,16,17], Free Electron Laser [18] and plasma
single wave models [19], among others. For out of equilibrium situations, many
of these studies rely on molecular dynamics simulations, i. e. solving numeri-
cally the Hamiltonian equations of motion for the N -particle system. It is also

1 e-mail: marciano@fis.unb.br

Preprint submitted to Elsevier 24 August 2021

ar
X

iv
:1

20
6.

32
29

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

5
Ju

n
20

12

a well known fact that, under suitable conditions, the statistical description
of the dynamics of long range interacting systems is equivalent to the Vlasov
equation [1,20]. The numerical solution of the Vlasov equation was applied to
the HMF model in Ref. [21] and more recently to characterize non-equilibrium
phase-transitions in the same model [22,23], although the phase diagram is still
open to a closer scrutiny [24].

One-dimensional models are important for a better understanding of many
properties of long-range interacting systems. Therefore a fast numeric im-
plementation of the solution of the Vlasov equation is of uttermost value in
their investigation. Numerical solutions of the Vlasov equation are obtained
either by Particle In Cell (PIC) methods [25], where the distribution func-
tion is represented by a collection of macro-particles under the dynamics of
the self-consistent mean-field force, or Eulerian methods where the distribu-
tion is represented as the density of a non-compressible fluid on a numerical
grid [26]. For higher dimensional models, PIC methods are more effective in
computational effort, even though its applicability is limited by inherent sta-
tistical noise and a poor description of the tails of the distribution. On the
other hand, Eulerian methods are limited at higher dimensions by the num-
ber of grid points required to accurately represent the distribution function
(see [31,32,33] for a comparison of different Eulerian codes). With the rapid
increase in computational power and the use of parallel machines Eulerian
codes have been implemented up to two spatial dimensions [27,28,29,30].

We present in this paper an implementation in the CUDA framework [34] of a
semi-Lagrangian solution method for the Vlasov equation in one dimensional
systems with long range interactions, and applications to the ring, HMF and
self-gravitating sheet models. In this approach the distribution function is
represented on a numerical grid and a times-split algorithm is used to evolve
the function by computing the characteristic curves and equating the value
of the solution to its value at the foot of the characteristic [23,35,36]. This
last step requires an interpolation scheme, and a common choice is to use a
cubic spline, which is global on the grid due to the requirement to compute
second order derivatives of the distribution function at grid points [37]. As a
consequence its parallel implementation is of limited efficiency. An alternative
in Ref. [38] is to use a local spline on patches (tiles) in the grid, with the
continuity of first derivatives at the borders of each patch. The values of the
distribution at the grid points on each patch is stored in shared memory,
and all steps are then performed on a patch-by-patch basis. This approach
requires communication between processors handling different patches, which
can be reduced by suitably restricting the time step [36]. Here we implement
a different approach where the interpolation relies on the same form of cubic
spline with second order derivatives computed from an eighth order finite
difference method.

2

The structure of the paper is as follows: in section 2 we present the one-
dimensional models to which our approach is applied, and section 3 presents
and discusses the algorithms implemented in CUDA for the solution of the
Vlasov equation. Section 4 presents the results obtained from the implemen-
tation of the algorithm to the one-dimensional models, and speedups relative
to a serial code. We conclude the paper with some concluding remarks in
section 5.

2 One-dimensional models

Since a detailed direct study of real three-dimensional systems with long-
range interactions is a very difficult task, some simplified models have been
introduced in the literature retaining qualitative features of realistic long-range
systems (see [1] and references therein). The Hamiltonian of a one-dimensional
model of N identical particles with unit mass can be written as:

H =
1

2

N∑
i=1

p2i +
1

N

N∑
i<j=1

Vij, (1)

where Vij is the potential energy between particles i and j and the factor N−1
ensures extensivity of the energy and corresponds to a change of time units.
The three different models considered here correspond to different choices for
Vij. The Ring model describes a system of N identical particles on a ring
or radius R interacting through their gravitational attraction [12,13]. With a
choice of units, the interacting potential is given by

Vij = − 1
√

2
√

1− cos(θi − θj) + ε
, (2)

where θi is an angle coordinate specifying the position of particle i on the
circle, and ε is a (small) softening parameter used to avoid the divergence of
the potential at zero distance. For increasing ε the ring model tends to the
HMF model, with potential [14]:

Vij = 1− cos (θi − θj) . (3)

The third system considered is the sheet model formed by N identical infinite
self-gravitating parallel sheets of constant mass density [16,17]. he gravita-
tional force between two sheets is therefore constant and they are allowed to
cross each other, when the force changes sign. Considering only the motion in

3

the direction x perpendicular to the sheets, and again with a choice of units,
the pair interaction potential is written as:

Vij = |xi − xj| . (4)

The Vlasov equation for those models is thus:

ḟ =
∂f

∂t
+
∂f

∂x
v +

∂f

∂v
F (x, t) = 0, (5)

where f = f(x, v, t) is the one particle distribution function, v the velocity of
the particle, x the position coordinate (θ for the HMF and ring models), and
the mean-field force F (x, t):

F (x, t) = − ∂

∂x

∫
v(x− x′)f(x′, v′, t) dx′dv′, (6)

with v(x − x′) given in eqs. (2–4). For the HMF model the mean-field force
can be written as:

F (θ, t) = − sin(θ)Mx + cos(θ)My, (7)

where the components of the “magnetization” vector M are then

Mx =
∫

cos(θ)f(θ, v, t) dx dv, My =
∫

sin(θ)f(θ, v, t) dx dv. (8)

This property implies that molecular dynamics simulation times for the HMF
model with N particles scale as N instead of N2, and is one the reasons why
it is so extensively studied.

3 Algorithms and CUDA implementation

The semi-Lagrangian scheme used here is described in References [23,35,36]
and can be summarized as follows. The one-particle distribution function is
represented in a numerical grid in the one-particle phase space as f(xi, pj, t)
where xi and pj are position and velocity coordinates of the points in the
grid on a finite domain x ∈ [xmin, xmax] and p ∈ [pmin, pmax]. The distribution
function at time t+ ∆t is obtained numerically by evolving the function back
in time and using the invariance of f along the characteristic lines. This back-
wards evolution is performed using a a time-split method. The mains steps
are:

4

(1) Backwards time evolution (advection) of f in the spatial direction by a
time step ∆t/2 with constant momentum:

f (I)(x, p) = f(x− p∆t/2, p, t). (9)

(2) Computation of the mean-field force using f (I):

F (I)(x) = −
∫ ∂

∂x
v(x− x′)f (I)(x′, p′) dx′ dv′. (10)

(3) Backwards time evolution in the momentum direction by a full time step
∆t using F (I)(x):

f (II)(x, p) = f(x, p− F (I)(x)∆t, t). (11)

(4) And as last step repeat (1):

f(x, p, t+ ∆t) = f (II)(x− p∆t/2, p, t). (12)

The values of the intermediate f (I), f (II) and final distribution functions in
steps (1), (3) and (4) at the numerical grid points must be obtained from the
known values at the previous step with a cubic spline as interpolation method.
For a point with coordinate x, xi ≤ x ≤ xi+1, the interpolated value for f(x)
knowing fi = f(xi) and fi+1 = f(xi+1) is given by [37]:

f(x) = αfi + βfi+1 + γf ′′i + δf ′′i+i, (13)

where

α =
xi+1 − x
xi+1 − xi

, β = 1− α,

γ =
α3 − α

6
(xi+1 − xi)2, δ =

β3 − β
6

(xi+1 − xi)2, (14)

and f ′′i stands for the second derivative of f at xi. BY requiring that first
order derivatives computed from eq. (13) are continuum across the boundaries
of neighboring intervals, we obtain a tridiagonal system of equations for f ′′i :(

f ′′i+1

6
+
f ′′i
3

+
f ′′i−1

6

)
∆x2 = fi+1 − 2fi + fi−1, i = 0, . . . n, (15)

with n the number of points in the corresponding direction. Even though
useful in a sequential context, a direct efficient parallel implementation of the
solution of system (15) is not effective enough.

In order to compute the second order derivatives locally, i. e. involving only
a small number of neighbor points, with good accuracy in order not to spoil

5

the quality of the cubic interpolation an eighth order centered finite difference
approximation is used [40]:

f ′′(ui) =− 1

560
f(ui−4) +

8

315
f(ui−3)−

1

5
f(ui−2) +

8

5
f(ui−1)−

205

72
f(ui)

+
8

5
f(ui+1)−

1

5
f(ui+2) +

8

315
f(ui+3)−

1

560
f(ui+4), (16)

where u stands for either the momentum or position variables. Periodic bound-
ary conditions are used both in the spatial and momentum direction. Unphys-
ical effects are avoided by choosing the size of the domain sufficiently large.

The distribution function is represented on an equally spaced grid (xi, pj), with
nx×np points, by a one-dimensional array f(xi, pj)→ f [j ·nx+i], i = 0, . . . , nx
and j = 0, . . . , np. The second order derivatives are represented similarly. The
initial condition array is loaded in global GPU memory and all subsequent
operations are performed there. Memory bandwidth is an important issue for
efficiency is this memory intensive application, and the algorithm must ex-
ploit as much as possible coalesced memory access. Reading and writing in
the one-dimensional array in the x direction tends to be coalesced, but not on
the p direction. This is an issue when computing the spline coefficients (the
second order derivatives) necessary for the interpolation in the spatial advec-
tion, but is avoided in the other parts of the advection process. To overcome
this difficulty a global transpose of the f array is performed before computing
f ′′, and then another transpose is performed it the array f ′′. As a consequence
the same routine is used to compute the derivatives for both spatial and mo-
mentum directions. The transpose of a bidimensional array written in the
one-dimensional form can be performed efficiently close to full bandwidth in
CUDA [39]. Our algorithm is synthesized as:

(i) Transpose f ;
(ii) Compute f ′′;
(iii) Transpose f ′′;
(iv) Perform a spatial advection (step 1 above) using f ′′ obtained in step (ii)

for the spline interpolation;
(v) Compute the mean-field force F (I) (step 2 above);
(vi) Compute f ′′;
(vii) Perform a momentum advection (step 3) using f ′′ from step vi;
(viii) Repeat steps (i–v) (step 4).

The computation of the force in step (v) is implemented by a discretization
of eq. (6).

6

np = nx δe(FD) δNorm(FD) δe(GS) δNorm(GS)

256 7× 10−3 10−3 10−2 10−3

512 7× 10−4 10−4 10−4 1.7× 10−5

1024 10−5 3× 10−6 2× 10−6 9× 10−7

2048 4× 10−6 10−8 3× 10−6 10−8

Table 1
Maximum relative error for the energy (δe) and norm (δNorm) for the Finite Dif-
ference (FD) approximation in eq. (16) and Global Spline (GS), with ∆ = 0.01.

4 Results and discussions

The simulations presented here were performed on a GTX 560 Ti GPU with
384 cores, 1GB global memory and 1,64 GHz clock speed, and a GTX 590
GPU with 512 cores, 1,5 GB global memory and 1.26 GHz clock (in fact the
GTX 590 has two identical devices but only one was used for the runs). The
CPU has an i7-2600 processor with 3.4GHz clock and 16GB of RAM. In this
section we present and discuss the results of simulations for the three one-
dimensional models presented in section 2. All computations performed use
double precision.

4.1 Self-gravitating sheet model

As a first test case let us apply our approach to the self-gravitating sheet model
with pair interaction potential given by eq. (4), with a (waterbag) constant
distribution in an interval as initial condition, i. e:

f(x, p, t = 0) = 1/4p0x0, if − x0 ≤ x ≤ x0, and− p0 ≤ p ≤ p0. (17)

The parameters of the numeric grid are xmax = −xmin = 2.0, pmax = −pmin =
2.0 and np = nx = 256, 512, 1024, 2048 (different number of points in each
direction can also be used). The waterbag initial condition is chosen with
x0 = 1.0 and p0 = 0.5. Two time steps ∆ = 0.1 and ∆t = 0.01 were considered
to assess numerical errors. Figure 1 shows some snapshots of the time evolution
of the distribution function obtained from our code.

Tables 1 and 2 present the relative errors for the energy δe and total norm
δNorm. The accuracy of our approach is similar to the a global spline as
describe in [37], for all cases considered. The speedups obtained by comparing
our parallel code to a CPU serial version using the same interpolation method
are shown in table 3. The speedups grow with np and nx for two main reasons.
First not all the latencies of the GPU are covered with a small number of grid

7

Fig. 1. Snapshots of the distribution function for the self-gravitating sheet model
with xmax = −xmin = 2.0, pmax = −pmin = 2.0, np = nx = 2048, ∆t = 0.01, a wa-
terbag initial condition with x0 = 1.0 and p0 = 0.5, and t = 0, 10, 100, 200, 500, 1000.
In each graphic p and x correspond to the horizontal and vertical axis respectively

np = nx δe(FD) δNorm(FD) δe(GS) δNorm(GS)

256 5× 10−4 4× 10−5 2× 10−4 4× 10−5

512 4× 10−4 2× 10−7 4× 10−4 2× 10−7

1024 3× 10−4 3× 10−10 3× 10−4 10−10

2048 3× 10−4 8× 10−13 3× 10−4 10−14

Table 2
Same as table 1 with ∆t = 0.1.

np = nx GTX 570 Ti GTX 590

256 17 20

512 25 31

1024 38 51

2048 51 71
Table 3
Speedups for the self-gravitating sheet model for different grid resolutions.

points. And second, with smaller grid spacings the possibility of coalesced
access to global memory is significantly increased.

8

1 10 100 1000

t

0.6

0.8

1

1.2

S

256

512

1024

2048

Fig. 2. Entropy for the sheet model for different grid resolutions. The runs are the
same as in table 2.

The Vlasov dynamics has an infinite number of invariants, called Casimirs, of
the form

C[s] =
∫
s(f(p, x, t)) dp dx. (18)

This fact can be used to asses how information on the initial condition is
lost due to the finite resolution of the numerical grid and other sources of
errors. For this purpose we consider the entropy of the distribution f given
by s(f) = −f log f in eq. (18). Figure 2 shows the time dependence of S
for different grid resolutions. Information loss starts to be significant when
filamentation is of the order of the grid spacing. These non-Vlasov effects
are inherent to Eulerian solvers and must be considered with due care in
the numerical solutions of the Vlasov equation [21,41,42,43]. For the highest
resolution (2024 × 2024), there are are two plateaus, one at the initial stage,
before the formation of filamentation, and another at the final stage, when
details smaller than the grid resolutions were lost.

4.1.1 The HMF model

For the HMF model as defined by the pair interaction potential in eq. (3)
Molecular Dynamics (MD) simulations scale with the number of particles N .
Therefore it is possible to compare results from MD simulations with the
solutions of the Vlasov equation, which describes the statistical properties of
the particle dynamics in the N → limit [1,20]. As initial condition we consider
a waterbag with total energy per particle e = 0.7 and average magnetization
M =

√
M2

x +M2
y = 0.8, with Mx ≡ 〈cos(θ)〉, My ≡ 〈sin(θ)〉. This corresponds

to a uniform distribution in the interval 0 ≤ θ ≤ 2.262 and −1.766 ≤ p ≤

9

np = nx GTX 570 Ti GTX 590

256 22 24

512 29 35

1024 35 37

2048 39 53
Table 4
Speedups for the HMF model for different grid resolutions.

1.766. All integrations were performed with ∆t = 0.1, a spatial grid 0 ≤ θ < 2π
and momentum grid −pmax < p < pmax with pmax = 3.531 and np = nθ =
256, 512, 1024, 2048. Snapshots of the time evolution of the distribution are
shown in Fig. 3 with a strong filamentation already present at t = 50.

Figure 4 shows the graphic of the potential energy obtained from a MD simula-
tion with N = 20, 000, 000 particle using a sympletic integrator with time step
∆t = 0.1 [44], and the same curve obtained from our code with a numerical
grid with np = nθ = 2048 points. Both simulations are in very good agreement
up to roughly t ≈ 70.0, after which the details of small fluctuations differ. This
is due to the finite number of particles in the MD simulation and the strong
formation of filaments by the natural evolution of the distribution function
down to scales of the size of the grid spacing. Nevertheless the asymptotic
behavior is the same in both cases. The entropy for different grid resolutions
is shown in Fig. 5. Analogously to the sheet model, it has two plateaus, one
before indentations scale reaches grid resolution, and a final plateau after the
distribution is coarse grained. The speedups for the HMF model are shown in
table 4, and are somewhat smaller than those for the sheet model. This comes
from the fact that the serial code is well optimized by using eq. (7). Also the
rate of successful coalesced memory access depends on the dynamics of the
model, i. e. how far each grid point is moved by the advection. Figure 5 shows
the entropy for the HMF model for different number of grid points np = nθ.
The behavior is qualitatively the same as the previous case.

4.1.2 The Ring model

Computation of the mean-force field (6) for the pair interaction potential given
in eq. (2) involves the computation of sin(θ − θ′) = sin θ cos θ′ − cos θ sin θ′,
and can therefore be optimized by simply computing and storing two arrays
with the values of sin θ and cos θ at the spatial grid points at the beginning of
the simulation. The CUDA function rsqrt for the inverse of the square-root in
eq. (6) is exploited as it is cheaper than to computed both a square root and its
inverse. The remaining steps are as described above. The speedups obtained
are presented in table 5. The behavior with the number of grid points is similar

10

Fig. 3. Snapshots of the distribution function of the HMF model for t = 0, 10, 50, 300.
In each graphic p and θ correspond to the horizontal and vertical axis respectively.

0.1 1 10 100

t

0.1

0.2

0.3

0.4

0.5

0.6

v

MD

Vlasov

100

t

0.495

0.496

0.497

0.498

0.499

0.5

v

MD

Vlasov

Fig. 4. Mono-Log graphic of the potential energy for the HMF model obtained from
Molecular Dynamics simulation (dots) with N = 20, 000, 000 particles and from the
numerical solution of the Vlasov equation with np = nθ = 2048 (continuous line).
The right panel is a zoom over a region of the left panel.

to the two previous models.

11

1 10 100 1000

t

2

2.2

2.4

2.6

2.8

S
256

512

1024

2048

Fig. 5. Entropy for the HMF model for different grid resolutions.

np = nx GTX 570 Ti GTX 590

256 17 19

512 29 33

1024 46 55

2048 57 73
Table 5
Speedups for the Ring model model.

5 Concluding remarks

We presented a GPU implementation using CUDA of a parallel numeric solver
for the Vlasov equation on a GPU, based on a time-split scheme with a mod-
ified cubic spline interpolation for both the spatial and momentum direction
in phase space. The interpolation relies on a finite-difference scheme to ac-
curately determine the second order derivatives required by the cubic spline
interpolation in such a a way than only a small number of neighboring points
is required, leading to a faster and simpler parallel implementation. Coalesced
access to global memory in the GPU is ensured by performing a transpose
of the distribution function and its second derivatives when performing the
advection in the spatial direction. Implementations for three different one-
dimensional long-range interacting models were presented with a discussion
of accuracy and speedups of the simulations. The Vlasov dynamics leads to
the formation of indentations in a scale which becomes smaller with time,
and due to the finite grid accuracy, information loss ensues after some time,
leading to a coarse-grained distribution, and an increase in entropy. Before
the scale of indentation reaches grid accuracy the entropy is conserved by
our approach. The same occurs after the distribution has been coarse-grained.

12

Higher order time split schemes and a filtering procedure can also be imple-
mented if required [31]. Although there is certainly room for improvements
in our algorithm, the speedups obtained allow to conclude that the present
parallel implementation is a useful tool in the ongoing investigations on open
problems for long-range interacting systems.

6 Acknowledgments

The author would like to thank CNPq and CAPES (Brazil) for partial financial
support.

References

[1] A. Campa, T. Dauxois and S. Ruffo, Phys. Rep. 480 (2009) 57.

[2] Dynamics and Thermodynamics of Systems with Long-Range Interactions,
T. Dauxois, S. Ruffo, E. Arimondo and M. Wilkens (Eds.), Springer (Berlin,
2002)

[3] Dynamics and Thermodynamics of Systems with Long-Range Interactions:
Theory and Experiments, A. Campa, A. Giansanti, G. Morigi and F. S. Labini
(Eds.), AIP Conf. Proceedings Vol. 970 (2008).

[4] Long-Range Interacting Systems, Les Houches 2008, Session XC, T. Dauxois,
S. Ruffo and L. F. Cugliandolo Eds, Oxford Univ. Press (Oxford, 2010).

[5] T. M. Rocha Filho, A. Figueiredo and M. A. Amato, Phys. Rev. Lett. 95 (2005)
190601.

[6] A. Figueiredo, T. M. Rocha Filho and M. A. Amato, Europhys. Lett. 83 (2008)
30011.

[7] F. P. C. Benetti, T. N. Teles, R. Pakter and Y. Levin, cond-mat:1202.1810.

[8] T. M. Rocha Filho, M. A. Amato, B. A. Mello and A. Figueiredo, Phys. Rev. E
84 (2011) 041121.

[9] T. Padmanabhan, Phys. Rep. 188 (1990) 285.

[10] Y. Levin, R. Pakter and T. N. Teles, Phys. Rev. Lett. 100 (2008) 040604.

[11] Y. Levin, R. Pakter and T. N. Teles, Phys. Rev. E 78 (2008) 021130.

[12] Y. Sota, O. Iguchi, M. Morikawa, T. Tatekawa and K. I. Maeda, Phys. Rev. E
64 (2001) 056133.

13

[13] T. Tatekawa, F. Bouchet, T. Dauxois and S. Ruffo, Phys. Rev. E 71 (2005)
056111.

[14] M. Antoni and S. Ruffo, Phys. Rev. E 52 (1995) 2361.

[15] T. N. Teles, Y. Levin and R. Pakter, Mon. Not. R. Atron. Soc. 417 (2011) L21.

[16] M. Joyce and T. Worrakitpoonpon, Phys. Rev. E 84 (2011) 011139.

[17] K. R. Yawn and B. N. Miller, Phys. Rev. E 68 (2003) 056120.

[18] R. Bonifacio, F. Casagrande, G. Cerchioni, L. De Salvo Souza, P. Pierini and
N. Piovella, Riv. Nuovo Cimento 13 (1990) 1.

[19] J. L. Tennyson, J. D. Meiss and P. J. Morrison, Physica D 71 (1994) 1.

[20] W. Braun and K. Hepp, Commun. Math. Phys. 56 (1977) 101.

[21] A. Antoniazzi, F. Califano, D. Fanelli and S. Ruffo, Phys. Rev. Lett. 98 (2007)
160602.

[22] P. de Buyl, D. Fanelli and S. Ruffo, cond-mat:1112.1102.

[23] P. de Buyl, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 2133.

[24] R. Pakter and Y. Levin, Phys. Rev. Lett. 106 (2011) 200603.

[25] Space Plasma Simulation, Lect. Notes in Physics, J. Büchner, C. T. Dum and
M. Scholer Eds. Springer (Berlin, 2003).

[26] E. Pohn, M. Shoucri and G. Kamerlander, Comp. Phys. Comm. 166 (2005) 81.

[27] N. Crouseilles, M. Gutnic, G. Latu and E. Sonnerdrücker, Comm. Nonlin. Sci.
Num. Sim. 13 (2008) 88.

[28] N. Crouseilles, G. Latu and E. Sonnerdrücker, J. Comp. Phys. 228 (2009) 1429.

[29] L. K. S. Daldorff and B. Elisson, Parallel Computing 35 (2009) 109.

[30] E. Bengt, Transp. Theor. Stat. Phys. 39 (2010) 387.

[31] T. D. Arber and R. G. L. Vann, J. Comp. Phys. 180 (2002) 339.

[32] F. Filbet and E. Sonnerdrücker, Comp. Phys. Comm. 150 (2003) 247.

[33] M. Shoucri, Commun. Nonlinear Sci. Numer. Simulat. 13 (2008) 174.

[34] NVIDIA, CUDA PRogramming Guide, Ver. 4.0, 2011.

[35] C. Z. Cheng and G. Knorr, J. Comp. Phys. 22 (1976) 330.

[36] E. Sonnerdrücker, J. Roche, P. Bertrand abd A, Ghuizzom J. Comp. Phys. 149
(1999) 201.

[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling adn B. P. Flannery, Numerical
Recipes 3rd Ed, Cambridge University Press (Cambridge, 2007).

14

[38] G. Latu. Fine-grained parallelization of Vlasov-Poisson application on GPU,
Euro-Par 2010, Parallel Processing Workshops, Springer (New York, 2011).

[39] G. Ruetsch and P. Micikevicius, Optimizing matrix transpose in CUDA, NVIDIA
Technical Report (2009).

[40] B. Fornberg, Math. Comp. 51 (1988) 699.

[41] L. Galeotti and F. Califano, Phys. Rev. Lett. 95 (2005) 015002.

[42] F. Califano and L. Galeotti, Phys. Plasmas 13 (2006) 082102.

[43] V. Carbone, R. De Marco, F. Valentini and P. Veltri, Eur. Phys. Lett. 78 (2007)
65001.

[44] H. Yoshida, Phys. Lett. A 150 (1990) 262.

15

	1 Introduction
	2 One-dimensional models
	3 Algorithms and CUDA implementation
	4 Results and discussions
	4.1 Self-gravitating sheet model

	5 Concluding remarks
	6 Acknowledgments
	References

