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Abstract

We provide here all the procedures in Mathematica which are needed for the computation
of the analytic images of the strong coupling constant powers in Minkowski (Āν(s;nf ) and
Aglob
ν (s)) and Euclidean (Āν(Q2;nf ) and Aglob

ν (Q2)) domains at arbitrary energy scales
(s and Q2, correspondingly) for both schemes — with fixed number of active flavours
nf = 3, 4, 5, 6 and the global one with taking into account all heavy-quark thresholds.
These singularity-free couplings are inevitable elements of Analytic Perturbation Theory
(APT) in QCD [1–3], and its generalization — Fractional APT [4–6], needed to apply the
APT imperative for renormalization-group improved hadronic observables.
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Program Summary

Title of program: FAPT

Available from:
http://theor.jinr.ru/˜bakulev/fapt.mat/FAPT.m
http://theor.jinr.ru/˜bakulev/fapt.mat/FAPT Interp.m

Computer for which the program is designed and others on which it is operable: Any
work-station or PC where Mathematica is running.

Operating system or monitor under which the program has been tested: Windows
XP, Mathematica (versions 5 and 7).

No. of bytes in distributed program including test data etc.:
47 kB (main module FAPT.m) and 4 kB (interpolation module FAPT Interp.m);
21 kB (notebook FAPT Interp.nb showing how to use the interpolation module);
10 888 kB (interpolation data files: AcalGlob`i.dat and UcalGlob`i.dat with ` =
1, 2, 3, 3P, and 4)1

Distribution format: ASCII

Nature of physical problem: The values of analytic images Āν(Q2) and Āν(s) of
the QCD running coupling powers ανs (Q2) in Euclidean and Minkowski regions,
correspondingly, are determined through the spectral representation in the QCD
Analytic Perturbation Theory (APT). In the program FAPT we collect all relevant
formulas and various procedures which allow for a convenient evaluation of Āν(Q2)
and Āν(s) using numerical integrations of the relevant spectral densities.

Method of solution: FAPT uses Mathematica functions to calculate different spec-
tral densities and then performs numerical integration of these spectral integrals to
obtain analytic images of different objects.

Restrictions on the complexity of the problem: It could be that for an unphysical
choice of the input parameters the results are out of any meaning.

Typical running time: For all operations the running time does not exceed a few
seconds. Usually numerical integration is not fast, so that we advice to use arrays of
precalculated data and apply then the routine Interpolate (as shown in supplied
example of the program usage, namely in the notebook FAPT Interp.nb).

1The notebook FAPT Interp.nb and all interpolation data files are available from the same place in
the form of the zipped archive FAPT Interp.zip of the size 1844 kB. In order that Mathematica notebook
FAPT Interp.nb can use these precalculated data files one should place the directory .\sources\ with
all data files in the same directory as the main file FAPT Interp.nb.
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1. Introduction

QCD perturbation theory (PT) in the region of spacelike four-momentum transfer
(Q2 = −q2 > 0 — hereafter we call it the Euclidean region) is based on expansions
in a series over the powers of effective charge (or running coupling constant) αs(Q

2),

which in the one-loop approximation is given by α
(1)
s (Q2) = (4π/b0)/L with b0 being the

first coefficient of the QCD beta function, Eq. (2)–(3), L = ln(Q2/Λ2), and Λ = ΛQCD

is the QCD scale parameter. The one-loop solution α
(1)
s (Q2) has a pole singularity at

L = 0 called the Landau pole. The `-loop solution α
(`)
s (Q2) of the renormalization group

equation (2) has an `-root singularity of the type L−1/` at L = 0, which produces the
pole as well in the `-order term d` α

`
s(Q

2). This prevents the application of perturbative
QCD in the low-momentum spacelike regime, Q2 ∼ Λ2, with the effect that hadronic
quantities, calculated at the partonic level in terms of a power-series expansion in the
running coupling, are not everywhere well defined.

Such a singularity appeared first in QED [7, 8] and was named “ghost” due to the
negative residue at the corresponding propagator pole. It was interpreted as an indica-
tion that quantum field theory is self-contradictory. However, as was shown in [9, 10],
it is only a hint about the PT inapplicability in the region where the expansion param-
eter is not small. Appearance of such “ghost” singularities from a theoretical point of
view contradicts the causality principle in quantum field theory [10, 11], since it makes
the Källen–Lehmann spectral representation impossible. It also complicates the deter-
mination of the effective charge in the timelike region (q2 > 0 — hereafter we call it
the Minkowski region). In a seminal paper by N. N. Bogoliubov et al. of 1959 [12], the
ghost-free effective coupling for QED has been constructed using the dispersion relation
technique.

After the very appearance of QCD many researchers tried to determine the QCD effec-
tive charge in the Minkowski region, which is suitable for describing the processes of e+e−

annihilation into hadrons, as well as quarkonium and τ -lepton decays into hadrons. Many
such attempts used analytic continuation of the effective charge from the deep Euclidean
region, in which perturbative QCD is known to work well, into a Minkowski one, where
actual experiments were performed: αs(Q

2) → αs(s = −Q2). In 1982 Radyushkin [13]
and Krasnikov and Pivovarov [14] using the dispersion technique of [12] suggested regular
(for s ≥ Λ2) QCD running coupling in Minkowski region, the well-known π−1 arctan(π/L).

In 1995 Jones and Solovtsov using variational approach [15] constructed the effective
couplings in Euclidean and Minkowski domains which appears to be finite for all Q2 and s
and satisfy analyticity integral conditions. Just in the same time Shirkov and Solovtsov [1],
using the dispersion approach of [12], discovered ghost-free coupling A1(Q

2), Eq. (25a),
in Euclidean region and ghost-free coupling A1(s), Eq. (25b), in Minkowski region, which
satisfy analyticity integral conditions:

A1(Q
2) = Q2

∫ ∞
0

A1(σ)

(σ +Q2)2
dσ ; A1(s) =

1

2πi

∫ −s+iε
−s−iε

A1(σ)

σ
dσ . (1)

At the one-loop approximation the last coupling coincides with the Radyushkin one for
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s ≥ Λ2. This way of making the QCD’s effective charge analytic in the timelike region
was rediscovered later within an approach of fermion bubble resummation by Beneke and
Braun [16], and also by Ball, Beneke, and Braun [17]. Due to the absence of singularities
in these couplings, Shirkov and Solovtsov suggested to use this systematic approach, called
Analytic Perturbation Theory (APT), for all Q2 and s.

Recently the analytic and numerical methods, necessary to perform calculations in
two- and three-loop approximations, were developed [18–24]. This approach was applied
to the calculation of properties of a number of hadronic processes, including the width
of inclusive τ lepton decay to hadrons [25–29], the scheme and renormalization-scale
dependencies in the Bjorken [30, 31] and Gross–Llewellyn Smith [32] sum rules, the width
of Υ meson decay to hadrons [33], etc. Moreover, APT was applied to the analysis of
the processes with two scales rather than just a single scale, namely: the pion-photon
transition form factor [34, 35] and the pion electromagnetic form factor in the O(αs)
order [34–36]. To summarize, we can say that APT (see reviews [37–39]) yields a sensible
description of hadronic quantities in QCD, though there are alternative approaches to the
singularity of effective charge in QCD — in particular, with respect to the deep infrared
region Q2 < Λ2, where appearance of nonzero hadronic masses may be important [40–42].
The main advantage of the APT analysis is much more faster convergence of the APT
non-power series as compared with the standard PT power series, see in [43, 44].

Three-point functions, used in describing the pion electromagnetic form factor or
γ∗γ → π0 transition form factor, contain logarithmic contributions at the next-to-leading
order of the QCD PT, related to the factorization scale. If one set the factorization scale
proportional to the squared momentum-transfer, µ2

F = Q2, then these logarithms will go
to zero, but additional RG factors of the type (αs(Q

2)/αs(µ
2
0))

ν , with ν = γn/(20) being
a fractional number, will appear in the Gegenbauer coefficients of the pion distribution
amplitude. In both cases spectral densities, used to construct analytic images of hadronic
amplitudes, should change. This observation led Karanikas and Stefanis [45, 46] to pro-
pose the concept of analytization “as a whole”, meaning that one should construct analytic
images not only of effective charge and its powers, but of the whole QCD amplitude under
consideration.

A QCD inspired generalization of APT to the fractional powers of effective charge,
called Fractional Analytic Perturbation Theory (FAPT), was done in [4, 6] (for a recent
review see [47], for a recent generalization see [48]), followed by the application [5] to
the analysis of the factorizable contribution to the pion electromagnetic form factor. The
crucial advantage of FAPT in this case is that the perturbative results start to be less
dependent on the factorization scale. This reminds the results, obtained with the APT,
applied to the analysis of the pion form factor in the O(α2

s) approximation, where the
results also almost cease to depend on the choice of the renormalization scheme and its
scale (for a detailed review see [47] and references therein). The process of the Higgs
boson decay into a bb̄ pair of quarks was studied within a framework of FAPT in the
Minkowski region at the one-loop level in [49] and at the three-loop level— in [6]. Results
on the resummation of non-power-series expansions of the Adler function of a scalar, DS,
and a vector, DV , correlators within FAPT were presented in [50]. The interplay between
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higher orders of the perturbative QCD (pQCD) expansion and higher-twist contributions
in the analysis of recent Jefferson Lab data on the lowest moment of the spin-dependent
proton structure function, Γp1(Q

2), was studied in [51] using both standard QCD PT
and (F)APT. FAPT technique was also applied to the analysis of the structure function
F2(x) behavior at small values of x [52, 53]. All these successful applications of (F)APT
necessitate to have a reliable mathematical tool for calculations of spectral densities and
analytic couplings which are implemented in FAPT.2

In this paper we collect all relevant formulas which are necessary for the running of
Āν [L] and Āν [L] in the framework of APT and its fractional generalization, FAPT. We
discuss their proper usage and provide easy-to-use Mathematica [56] procedures collected
in the package FAPT. A few examples are given. Here we do not consider the inclusion
of analytic images of logarithms multiplied by fractional powers of couplings, namely,
[αs(Q

2)]
ν · [ln(Q2/Λ2)]

m
, which are needed for the full implementation of FAPT, — we

postpone it to the next paper.
The outline of the paper is as follows. In the next Section we present the main formulas

of perturbative QCD which are needed for the running of the strong coupling constant up
to the four-loop level. Section 3 contains the basic formulas of APT and FAPT.3 Finally,
in Section 4 we describe the most important procedures of the package FAPT and provide
an example of using this package to produce some numerical estimations. We hope that
for most practical applications it should be sufficient. In the Appendix we supply the
complete collection of the developed procedures.

2. Basics of the QCD running coupling

The running of the coupling constant of QCD, αs(µ
2) = αs[L] with L = ln[µ2/Λ2], is

defined through4

dαs[L]

dL
= β (αs[L];nf ) = −αs[L]

∑
k≥0

bk(nf )

(
αs[L]

4π

)k+1

, (2)

2This task has been partially realized for both APT and its massive generalization [42] as the Maple

package QCDMAPT in [54] and as the Fortran package QCDMAPT F in [55]. Both these realizations are
limited to the case of fixed number of active quarks Nf = 3 only, and use approximate expressions for
the two- and higher-loop perturbative couplings, compare, for example, Eq. (33) in [54] and our Eq. (7).

3Note here that FAPT includes APT as a partial case for the integer values of indices.
4We use notations f(Q2) and f [L] in order to specify the arguments we mean — squared momentum

Q2 or its logarithm L = ln(Q2/Λ2), that is f [L] = f(Λ2 · eL) and Λ2 is usually referred to nf = 3 region.
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where nf is the number of active flavours. The coefficients are given by [57–66]

b0(nf ) = 11− 2

3
nf ,

b1(nf ) = 102− 38

3
nf ,

b2(nf ) =
2857

2
− 5033

18
nf +

325

54
n2
f ,

b3(nf ) =
149753

6
+ 3564 ζ3 −

[
1078361

162
+

6508

27
ζ3

]
nf

+

[
50065

162
+

6472

81
ζ3

]
n2
f +

1093

729
n3
f . (3)

ζ is Riemann’s zeta function, with values ζ2 = π2/6 and ζ3 ≈ 1.202 057. It is convenient
to introduce the following notations:

βf ≡
b0(nf )

4π
, a(µ2;nf ) ≡ βf αs(µ

2;nf ) and ck(nf ) ≡
bk(nf )

b0(nf )k+1
. (4)

Then Eq. (2) in the l-loop approximation can be rewritten in the following form:

da(`)[L;nf ]

dL
= −

(
a(`)[L;nf ]

)2 [
1 +

∑̀
k≥1

ck(nf )
(
a(`)[L;nf ]

)k]
. (5)

In the one-loop (l = 1) approximation (ck(nf ) = bk(nf ) = 0 for all k ≥ 1) we have a
solution

a(1)[L] =
1

L
(6)

with the Landau pole singularity at L → 0. In the two-loop (l = 2) approximation
(ck(nf ) = bk(nf ) = 0 for all k ≥ 2) the exact solution of Eq. (2) is also known [67, 68]

a(2)[L;nf ] =
−c−11 (nf )

1 +W−1 (zW [L])
with zW [L] = −c−11 (nf ) e

−1−L/c1(nf ) , (7)

where W−1[z] is the appropriate branch of Lambert function.
The three- and higher-loop solutions a(`)[L;nf ] can be expanded in powers of the

two-loop one, a(2)[L;nf ], as has been suggested in [19, 22–24, 29]:

a(`)[L;nf ] =
∑
n≥1

C(`)
n

(
a(2)[L;nf ]

)n
. (8)

Coefficients C
(`)
n are known and can be evaluated recursively. We use in our routine for

the three-loop coupling expansion up to the 9-th power included:

C
(3)
1 = 1 , C

(3)
2 = 0 , C

(3)
3 = c2 , C

(3)
4 = 0 , C

(3)
5 =

5

3
c22 , C

(3)
6 =

−1

12
c1 c

2
2 ,

C
(3)
7 =

1

20
c21 c

2
2 +

16

5
c32 , C

(3)
8 =

−1

30
c31 c

2
2 −

23

60
c1 c

3
2 ,

C
(3)
9 =

1

42
c41 c

2
2 +

103

420
c21 c

3
2 +

2069

315
c42 . (9)
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Figure 1: Left panel: Comparison of the standard three-loop coupling α
(3)
s (Q2) (solid blue line) with the

three-loop Pade one α
(3P)
s (Q2) (dashed red line). Right panel: Relative accuracy δ(Q2) = (α

(3P)
s (Q2) −

α
(3)
s (Q2))/α

(3)
s (Q2) of the three-loop Pade coupling as compared with the standard three-loop one.

As has been shown in [24] this expansion has a finite radius of convergence, which appears
to be sufficiently large for all values of nf of practical interest. Note here that this method
of expressing the higher-`-loop coupling in powers of the two-loop one is equivalent to the
’t Hooft scheme, where one put by hands all coefficients in β-function, except b0 and b1,
equal to zero and effectively takes into account all higher coefficients bi by redefining
perturbative coefficients di (see for more detail in [69]).

Another possibility for obtaining the “exact” three-loop solution is provided by the
so-called Pade approximation scheme. It is based on the Pade-type modification of the
three-loop beta function:

β(3P) (αs) = −α
2
s

4π

[
b0 +

b1 αs/(4π)

1− b2 αs/(4π b1)

]
, (10a)

da(3P)[L]

dL
= −a2(3P)[L]

[
1 +

c1 a(3P)[L]

1− c2 a(3P)[L]/c1

]
. (10b)

The last equation can be solved exactly with the help of the same Lambert function (here
the explicit dependence on nf is not shown for shortness):

a(3P)[L] =
−c−11

1− c2/c21 +W−1
(
z
(3P)
W [L]

) with z
(3P)
W [L] = −c−11 e−1+c2/c

2
1−L/c1 . (11)

The relative accuracy of this solution as compared with numerical solution of the standard
three-loop equation (5) with l = 3 is better than 1% for Q2 ≥ 2 GeV2 (with Λ

(3)
3 =

356 MeV) and better than 0.5% for Q2 ≥ 5 GeV2, cf. Fig. 1.
In the four-loop approximation we use the same Eq. (8) with corresponding coefficients

C(4)
n = C(3)

n + ∆(4)
n (12a)
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Figure 2: Left panel: Comparison of the four-loop coupling α
(4)
s (Q2) (solid blue line) with the

three-loop one α
(3)
s (Q2) (dashed violet line). Right panel: Relative accuracy δ34(Q2) = (α

(4)
s (Q2) −

α
(3)
s (Q2))/α

(4)
s (Q2) of the three-loop coupling as compared with the four-loop one.

and

∆
(4)
1 = ∆

(4)
2 = ∆

(4)
3 = 0 , ∆

(4)
4 = c3 , ∆

(4)
5 =

−c1 c3
6

, ∆
(4)
6 =

c21 c3
12

+ 2 c2 c3 ,

∆
(4)
7 =

−c31 c3
20

− 4 c1 c2 c3
5

+
11 c23
20

, ∆
(4)
8 =

c41 c3
30

+
9 c21 c2 c3

20
+

19 c22 c3
3

− 49 c1 c
2
3

120
,

∆
(4)
9 =

c51 c3
42
− 41 c31 c2 c3

140
− 946 c1 c

2
2 c3

315
+

134 c2 c
2
3

35
+

149 c21 c
2
3

504
. (12b)

In the left panel of Fig. 2 we show both couplings, the four-loop α
(4)
s (Q2) (solid blue

line), and the three-loop α
(3)
s (Q2) (dashed violet line) with fixed number of active flavors

nf = 4. We normalize both couplings to the same value αs(m
2
Z) = 0.119 at the Z-boson

mass scale. Numerically, as can be seen in the right panel of Fig. 2, the relative deviation
δ34(Q

2) = (α
(4)
s (Q2) − α

(3)
s (Q2))/α

(4)
s (Q2) varies from 6% at Q2 = 1 GeV2 to 0.5% at

Q2 = 25 GeV2. We also compared the four-loop coupling, calculated in accord with
Eq. (8), with coupling, calculated using package RunDec [70] with the same normalization
αs(m

2
Z) = 0.119, — the relative deviation appears to vary from 0.2% at Q2 = 1 GeV2 to

0.04% at Q2 = 25 GeV2.

2.1. Global scheme

Here we consider the scheme of the so-called “global pQCD” in which the heavy-quark
thresholds are taken into account. We follow here to Shirkov–Solovtsov approach [1, 18, 20]
with the following values of pole masses of c, b, and t quarks: mc = 1.65 GeV, mb =
4.75 GeV and mt = 172.5 GeV. In the MS scheme of the standard pQCD one needs to
match the running coupling values in Euclidean domain at Q2 corresponding to these
masses: M4 = mc, M5 = mb and M6 = mt. In order to implement these matching
conditions we need to use the original QCD coupling

α(`)
s (Q2;nf ) =

4 π

b0(nf )
a(`)(Q2;nf ) , (13)
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where the indicator (`) signals about the loop order of the approximation we use.5

In what follows we use all logarithms L with respect to three-flavor scale Λ2
3:

L(Q2) = ln
(
Q2/Λ2

3

)
. (14)

Recalculation to all other scales is realized with the help of finite additions:

ln
(
Q2/Λ2

k

)
= L(Q2) + λk with λk ≡ ln

(
Λ2

3/Λ
2
k

)
, (15)

and Λk — the corresponding to the specified value nf = k scale of QCD. We also define
the corresponding logarithmic values at the thresholds Mk (k = 4÷ 6):

Lk(Λ3) ≡ ln
(
M2

k/Λ
2
3

)
. (16)

All QCD scales Λf , f = 4, 5, 6, we treat as functions of the single parameter, namely, the
three-flavor scale Λ3:

Λf → Λf (Λ3) with Λ3 > Λ4(Λ3) > Λ5(Λ3) > Λ6(Λ3) , (17)

which should be defined from matching conditions for the running coupling at the heavy-
quark thresholds.

For an illustration we consider here the two-loop approximation with the running
coupling α

(2)
s [L;nf ]

α(2)
s [L;nf ] =

−4 π

b0(nf )c1(nf ) [1 +W−1(zW [L;nf ])]
(18)

with zW [L;nf ] = (1/c1(nf )) exp [−1 + iπ − L/c1(nf )]. Then matching conditions are

α(2)
s [L4(Λ3); 3] = α(2)

s [L4(Λ3) + λ4; 4] ; (19a)

α(2)
s [L5(Λ3) + λ4; 4] = α(2)

s [L5(Λ3) + λ5; 5] ; (19b)

α(2)
s [L6(Λ3) + λ5; 5] = α(2)

s [L6(Λ3) + λ6; 6] . (19c)

These relations define constants λk with k = 4÷ 6 as functions of variable Λ3, namely

λk → λ
(2)
k (Λ3) , (20)

and, as a consequence, the continuous global effective QCD coupling

αglob;(2)
s (Q2,Λ3) = α(2)

s

[
L(Q2); 3

]
θ
(
Q2<M2

4

)
+ α(2)

s

[
L(Q2)+λ

(2)
4 (Λ3); 4

]
θ
(
M2

4 ≤Q2 <M2
5

)
+ α(2)

s

[
L(Q2)+λ

(2)
5 (Λ3); 5

]
θ
(
M2

5 ≤Q2 <M2
6

)
+ α(2)

s

[
L(Q2)+λ

(2)
6 (Λ3); 6

]
θ
(
M2

6 ≤Q2
)
. (21)

5Note here that the dependence a(`)(Q2;nf ) on nf is the consequence of Eq. (5), where for l > 1 one
has nf -dependent coefficients ck(nf ).
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Here is the list of partial values of Λ
(2)
f (Λ3), λ

(2)
f (Λ3) and Lf (Λ3) with f = 4, 5, 6 for

Λ3 = 400 MeV:

Λ
(2)
4 = 333 MeV , Λ

(2)
5 = 233 MeV , Λ

(2)
6 = 98 MeV ; (22a)

λ
(2)
4 = 0.367 , λ

(2)
5 = 1.08 , λ

(2)
6 = 2.82 ; (22b)

L4 = 2.197 , L5 = 4.750 , L6 = 12.162 . (22c)

In our m-file we use the following realizations. The QCD scales are encoded as
Λ1[Λ, nf ], Λ2[Λ, nf ], and Λ3[Λ, nf ] (in Mathematica capital Greek symbol Λ can be writ-
ten as \[CapitalLambda]):

\[CapitalLambda]`[Λ, k] = Λ`[Λ, nf = k] = Λ
(`)
k (Λ) , (` = 1÷ 4, 3P ; k = 4÷ 6) , (23a)

the threshold logarithms — as λ`4[Λ], λ`5[Λ], and λ`6[Λ] (in Mathematica Greek symbol
λ can be written as \[Lambda]):

\[Lambda]`k[Λ] = λ`k[Λ] = ln
(
Λ2/Λ`[Λ, k]2

)
, (` = 1÷ 4, 3P ; k = 4÷ 6) , (23b)

the running QCD couplings with fixed nf — as αBar1[Q2, nf ,Λ], αBar2[Q2, nf ,Λ], and
αBar3[Q2, nf ,Λ] (in Mathematica Greek symbol α can be written as \[Alpha]):

\[Alpha]Bar`[Q2, nf ,Λ] = αBar`[Q2, nf ,Λ] = α(`)
s [ln(Q2/Λ2);nf ], (` = 1÷ 4, 3P) , (23c)

and the global running QCD couplings — as αGlob1[Q2,Λ], αGlob2[Q2,Λ], and
αGlob3[Q2,Λ]:

\[Alpha]Glob`[Q2,Λ] = αGlob`[Q2,Λ] = αglob;(`)
s (Q2,Λ) , (` = 1÷ 4, 3P) , (23d)

To be more specific, we consider here an example. We assume that the two-loop αs

is given at the Z-boson scale as α
(2)
s [ln(m2

Z/Λ
2); 5] = 0.119. We want to evaluate the

corresponding values of the QCD scales Λ3, Λ4, and Λ5 and the coupling α
glob;(`)
s (Q2,Λ)

at the scale Q = M5. We show a possible Mathematica realization of this task.

In[1]:= <<FAPT.m;

Comment: NumDefFAPT is a set of Mathematica rules in our package which assigns typical
values to the physical parameters used in our procedures.

In[2]:= {MZ = MZboson/.NumDefFAPT, Mb=MQ5/.NumDefFAPT}

Out[2]= {91.19, 4.75}

Comment: evaluation of L23= Λ
(2)
3 from α

(2)
s [ln(m2

Z/Λ
2); 5] based on the explicit solution,

Eq. (18), Eq. (21).

In[3]:= L23=lx/.FindRoot[\[Alpha]Glob2[MZ^2,lx]==0.119, {lx,0.1,0.3}]

Out[3]= 0.387282
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Comment: evaluation of L24= Λ
(2)
4 and L25= Λ

(2)
5 from L23= Λ

(2)
3 based on Eq. (23a).

In[4]:= {L24=\[CapitalLambda]2[L23,4], L25=\[CapitalLambda]2[L23,5]}

Out[4]= {0.321298, 0.224033}

Comment: evaluation of α
glob;(2)
s (M2

b ) from L23= Λ
(2)
3 .

In[5]:= \[Alpha]Glob2[Mb^2,L23]

Out[5]= 0.218894

3. Basics of FAPT

In the end of the previous section we used for the running QCD couplings with fixed
nf the Bar notations — αBar1[Q2, nf ,Λ], αBar2[Q2, nf ,Λ], and αBar3[Q2, nf ,Λ]. We did
it on purpose to have a direct connection to our previous papers on the subject [4–6, 47],
where we used the normalized coupling a(µ2) = βf αs(µ

2), cf. Eq. (4). To be in line with
these definitions, we also introduce analogous expressions for the fixed-Nf quantities with
standard normalization, i.e.,

Āν(Q2) =
Aν(Q2)

βνf
, Āν(s) =

Aν(s)

βνf
, (24)

which correspond to the analytic couplings Aν and Aν in the Shirkov–Solovtsov terminol-
ogy [1].

The basic objects in the (F)APT approach are spectral densities ρ̄
(`)
ν (σ;nf ) which enter

the Källen–Lehmann spectral representation for the analytic couplings:

Ā(`)
ν [L;nf ] =

∫ ∞
0

ρ̄
(`)
ν (σ;nf )

σ +Q2
dσ =

∫ ∞
−∞

ρ̄
(`)
ν [Lσ;nf ]

1 + exp(L− Lσ)
dLσ , (25a)

Ā(`)
ν [Ls;nf ] =

∫ ∞
s

ρ̄
(`)
ν (σ;nf )

σ
dσ =

∫ ∞
Ls

ρ̄(`)ν [Lσ;nf ] dLσ , (25b)

It is convenient to use the following representation for spectral functions

ρ̄(`)ν [L;nf ] =
1

π
Im
(
α(`)
s [L− iπ;nf ]

)ν
=

sin[ν ϕ(`)[L;nf ]]

π (βf R(`)[L;nf ])ν
, (26)

which is based on the module-phase representation of a complex number

α(`)
s [L− iπ;nf ] =

a(`) [L− iπ;nf ]

βf (nf )
=

eiϕ(`)[L;nf ]

βf (nf )R(`)[L;nf ]
. (27)

In the one-loop approximation the corresponding functions have the most simple form

ϕ(1)[L] = arccos

(
L√

L2 + π2

)
, R(1)[L] =

√
L2 + π2 (28)
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and do not depend on nf , whereas at the two-loop order they have a more complicated
form

R(2)[L;nf ] = c1(nf )
∣∣∣1 +W1 (zW [L− iπ;nf ])

∣∣∣ , (29a)

ϕ(2)[L;nf ] = arccos

[
Re

(
−R(2)[L;nf ]

1 +W1 (zW [L− iπ;nf ])

)]
(29b)

with W1[z] being the appropriate branch of Lambert function. In the three-loop approx-
imation we use either Eq. (8) and then obtain

R(3)[L] =

∣∣∣∣∣ei ϕ(2)[L]

R(2)[L]
+
∑
k≥3

C
(3)
k

ei k ϕ(2)[L]

Rk
(2)[L]

∣∣∣∣∣
−1

; (30a)

ϕ(3)[L] = arccos

[
R(3)[L] cos

(
ϕ(2)[L]

)
R(2)[L]

+
∑
k≥3

C
(3)
k

R(3)[L] cos
(
k ϕ(2)[L]

)
Rk

(2)[L]

]
(30b)

or Eq. (11) — and then obtain

R(3P)[L] = c1

∣∣∣∣1− c2
c21

+W1

(
z
(3P)
W [L− iπ]

) ∣∣∣∣ ; (31a)

ϕ(3P)[L] = arccos

Re

 −R(3P)[L]

1− (c2/c21) +W1

(
z
(3P)
W [L− iπ]

)
 . (31b)

In the four-loop approximation we use Eq. (8) and then obtain

R(4)[L] =

∣∣∣∣∣ei ϕ(2)[L]

R(2)[L]
+
∑
k≥3

C
(4)
k

ei k ϕ(2)[L]

Rk
(2)[L]

∣∣∣∣∣
−1

; (32a)

ϕ(4)[L] = arccos

[
R(4)[L] cos

(
ϕ(2)[L]

)
R(2)[L]

+
∑
k≥3

C
(4)
k

R(4)[L] cos
(
k ϕ(2)[L]

)
Rk

(2)[L]

]
(32b)

Here we do not show explicitly the nf dependence of the corresponding quantities — it goes

inside through R(2)[L] = R(2)[L;nf ], ϕ(2)[L] = ϕ(2)[L;nf ], C
(3)
k = C

(3)
k [nf ], C

(4)
k = C

(4)
k [nf ],

ck = ck(nf ) with k = 1÷ 3, and z
(3P)
W [L] = z

(3P)
W [L;nf ]. In the left panel of Fig. 3 we show

both spectral densities in comparison. On the right panel of this figure we show the
relative deviation of the Pade spectral density from the standard one: one can see that it
varies from +1% at L ≈ −7, reduces to −2% at L ≈ 0, and then reaches the maximum
of +2% at L ≈ 3.5.

In accordance with Eq. (21) the global spectral densities are constructed through the
nf -fixed ones in the following manner:

ρ(`);globν [Lσ,Λ3] = ρ̄(`)ν [Lσ; 3] θ (Lσ < L4(Λ3)) + ρ̄(`)ν

[
Lσ + λ

(`)
6 (Λ3); 6

]
θ (L6(Λ3) ≤ Lσ)

+ ρ̄(`)ν

[
Lσ + λ

(`)
4 (Λ3); 4

]
θ (L4(Λ3) ≤ Lσ < L5(Λ3))

+ ρ̄(`)ν

[
Lσ + λ

(`)
5 (Λ3); 5

]
θ (L5(Λ3) ≤ Lσ < L6(Λ3)) (33)

11
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Figure 3: Left panel: Comparison of the standard three-loop spectral density ρ
(3)
1 [L] (solid blue line)

with the three-loop Pade one ρ
(3P)
1 [L] (dashed red line). Right panel: Relative accuracy δ

(3)
1 [L] =

(ρ
(3P)
1 [L]− ρ(3)1 [L])/ρ

(3)
1 [L] of the three-loop Pade spectral density as compared with the standard three-

loop one.

with Lσ ≡ ln(σ/Λ2
3) and the corresponding global analytic couplings are

A(`);glob
ν [L,Λ3] =

∫ ∞
−∞

ρ
(`);glob
ν [Lσ,Λ3]

1 + exp(L− Lσ)
dLσ , (34a)

A(`);glob
ν [L,Λ3] =

∫ ∞
L

ρ(`);globν [Lσ,Λ3] dLσ , (34b)

4. FAPT Procedures

In our package FAPT.m we use the following realizations for the spectral densities.
RhoBar`[L, nf , ν] returns `-loop spectral density ρ̄

(`)
ν (` = 1, 2, 3, 3P, 4) of fractional-power

ν at L = ln(Q2/Λ2) and at fixed number of active quark flavors nf :

RhoBar`[L, k, ν] = ρ̄(`)ν [L;nf = k] , (` = 1÷ 4, 3P ; k = 3÷ 6) , (35a)

whereas RhoGlob`[L, ν,Λ3] returns the global `-loop spectral density ρ̄
(`);glob
ν [L; Λ3] (` =

1, 2, 3, 3P, 4) of fractional-power ν at L = ln(Q2/Λ2
3), cf. and with Λ3 being the QCD

nf = 3-scale:

RhoGlob`[L, ν,Λ3] = ρ̄(`);globν [L; Λ3] , (` = 1÷ 4, 3P) , (35b)

Analogously, AcalBar`[L, nf , ν] returns `-loop (` = 1, 2, 3, 3P, 4) analytic image of

fractional-power ν coupling Ā(`)
ν [L;nf ] in Euclidean domain,

AcalBar`[L, k, ν] = Ā(`)
ν [L;nf = k] , (` = 1÷ 4, 3P ; k = 3÷ 6) , (36a)

and UcalBar`[L, nf , ν] returns `-loop (` = 1, 2, 3, 3P, 4) analytic image of fractional-power

ν coupling Ā
(`)
ν [L, nf ] in Minkowski domain,

UcalBar`[L, k, ν] = Ā(`)
ν [L;nf = k] , (` = 1÷ 4, 3P ; k = 3÷ 6) , (36b)
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In global case AcalGlob`[L, ν,Λ3] returns `-loop analytic image of fractional-power ν

coupling A(`);glob
ν [L,Λ3] in Euclidean domain,

AcalGlob`[L, ν,Λ3] = A(`);glob
ν [L,Λ3] , (` = 1÷ 4, 3P) , (37a)

and UcalGlob`[L, ν,Λ3] returns `-loop analytic image of fractional-power ν coupling

A
(`);glob
ν [L,Λ3] in Minkowski domain,

UcalGlob`[L, ν,Λ3] = A(`);glob
ν [L,Λ3] , (` = 1÷ 4, 3P) . (37b)

We consider here an example of using this quantities in case of Mathematica 7. We
assume that the two-loop QCD scale Λ3 is fixed at the value Λ3 = 0.387 GeV defined at
the end of section 2.1.

In[1]:= <<FAPT.m;

In[2]:= L23=0.387;

We determine the value of the two-loop QCD scale L23APT = Λ
(2);APT

3 in APT, corre-
sponding to the same value 0.119 as before, but now for the global analytic coupling:

In[3]:= MZ = MZboson /. NumDefFAPT

Out[3]= 91.19

In[4]:= L23APT=lx/.FindRoot[AcalGlob2[Log[MZ^2/lx^2],1,lx]

== 0.119,{lx,0.35,0.45}];

Out[4]= 0.379788

Now we evaluate the value of A(2);glob
ν [L,L23APT] for L = −5.0, −3.0, −1.0, 1.0, 3.0, 5.0

with indication of the needed time:

In[5]:= {L0=-5., AcalGlob2[L0,1,L23APT]}//Timing

Out[5]= {0.734, {-5., 0.929485}}

In[6]:= {L0=-3., AcalGlob2[L0,1,L23APT]}//Timing

Out[6]= {0.421, {-3.,0.786904}}

In[7]:= {L0=-1., AcalGlob2[L0,1,L23APT]}//Timing

Out[7]= {0.422, {-1.,0.60986}}

In[8]:= {L0=1., AcalGlob2[L0,1,L23APT]}//Timing

Out[8]= {0.437, {1.,0.434041}}

In[9]:= {L0=3., AcalGlob2[L0,1,L23APT]}//Timing

Out[9]= {0.469, {3.,0.301442}}

13



-2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

L

A
(2);glob
ν [L]

-2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

L

�(2);glob
ν

[L]

Figure 4: Left panel: Graphics produced in Out[10] for A(2);glob
ν [L,L23APT] as a function of L. Right

panel: Graphics produced in Out[11] for A
(2);glob
ν [L,L23APT] as a function of L.

In[10]:= {L0=5., AcalGlob2[L0,1,L23APT]}//Timing

Out[10]= {0.531, {5.,0.219137}}

Now we create a two-dimensional plot of A(2);glob
ν [L,L23APT] and A

(2);glob
ν [L,L23APT] for

L ∈ [−3, 11] with indication of the needed time:

In[11]:= Plot[AcalGlob2[L,1,L23APT],{L,-3,11},MaxRecursion->1]//Timing

Out[11]= {19.843, Graphics (see in the left panel of Fig.\,4)}

In[12]:= Plot[UcalGlob2[L,1,L23APT],{L,-3,11},MaxRecursion->1]//Timing

Out[12]= {14.656, Graphics (see in the right panel of Fig.\,4)}

5. Interpolation

The calculation of the spectral integrals is a computational task requiring a long time,
especially if one is using the result in another numerical integration procedure. Therefore,
it seems reasonable to pre-compute analytic images of couplings for a fixed set of argument
values, consisting of N points for each argument. For example we will consider in what
follows the case of A(1);glob

ν [L, ν,Λ
(1)
3 ]. We will be interested in the following ranges of

arguments: L ∈ [−5, 5], Λ
(1)
3 ∈ [0.2, 0.5], and ν =∈ [0.5, 1.5]. Then

Lmin = −5 ; Lmax = 5 ; DL = (Lmax− Lmin)/(N − 1) ;
νmin = 0.5 ; νmax = 1.5 ; Dν = (νmax− νmin)/(N − 1) ;
Λmin = 0.2 ; Λmax = 0.5 ; DΛ = (Λmax− Λmin)/(N − 1) .

(38)

The table of calculated values is generated by Mathematica using the following command

DATA = Flatten[Table[{{Li, νj,Λk}, AcalGlob1[Li, νj,Λk]}, {i, N}, {j,N}, {k,N}], 2]

where Li = Lmin + (i− 1)DL, νj = νmin + (j − 1)Dν, and Λk = Λmin + (k − 1)DΛ. Then
we save all calculated results in the file “AcalGlob1i.dat”:
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In[2] : XY = N[DATA]; {outFile = OpenWrite["AcalGlob1i.dat"],

Write[outFile, XY], Close[outFile]}

Out[2]: {OutputStream["AcalGlob1i.dat", 15], Null, "AcalGlob1i.dat"}

After that we can read them and use interpolation to reproduce function A(1);glob
ν [L, ν,Λ

(1)
3 ]

in the considered ranges of arguments values:

In[3] : DATA = Read["AcalGlob1i.dat"];

AcalGlob1Interp = Interpolation[DATA]

in order to select the appropriate value of N . Now we can analyze the accuracy of inter-
polation. In Fig 5 we show the dependencies of interpolation errors on the number of
the used points N . One can see, that using the interpolation at N = 6 for A(`);glob

ν and
A

(`);glob
ν provided accuracy not worse 0.005%.

In the previous case we investigated the dependence of the accuracy of interpolation
on the number of points at fixed L, ν and Λ3. Let us now consider how the accuracy of
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Figure 5: Relative errors of the interpolation procedure for A(`);glob
ν (left panel) and A

(`);glob
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panel) calculated at various loop orders with fixed L = 3.5, ν = 1.1 and Λ3 = 0.36 GeV.
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the interpolation depends on the L. These results are shown in Fig. 6. From the last
figure one can see that the maximum error of interpolation corresponds to the region
L = 0÷ 5. The error in A(1);glob

ν=0.6 is less than in A
(1);glob
ν=1.1 . In any case, using N = 11 points

for interpolation of pre-computed data for each parameter L, ν and Λ3 provides an error
less than 0.01 %.

To obtain the results much faster one can use module FAPT Interp.m which consists of
procedures AcalGlob`i[L, ν,Λ3] and UcalGlob`i[L, ν,Λ3]. They are based on interpolation
using the basis of the precalculated data in the ranges L = [−5; 13]; ν1-loop = [0.5; 4.0] and
Λ1-loop
nf=3 = [0.150; 0.300]; ν2-loop = [0.5; 5.0] and Λ2-loop

nf=3 = [0.300; 0.450]; ν3-loop = [0.5; 6.0]

and Λ3-loop
nf=3 = [0.300; 0.450]; ν4-loop = [0.5; 7.0] and Λ4-loop

nf=3 = [0.300; 0.450]. For example,
in the four-loop case module FAPT Interp.m contains procedures

AcalGlob4i = Interpolation[Read[".\\sources\\AcalGlob4i.dat"]];

UcalGlob4i = Interpolation[Read[".\\sources\\UcalGlob4i.dat"]];

which should be used with the same arguments L, ν, and Λ3 as the original procedures
AcalGlob`[L, ν,Λ3] and UcalGlob`[L, ν,Λ3]. They provide much faster results of calcula-
tions with high enough accuracy:

In[1]:= Timing[AcalGlob4i[1, 1.1, 0.36]]

Out[1]= {0., 0.39298}

In[2]:= Timing[AcalGlob4[1, 1.1, 0.36]]

Out[2]= {0.405, 0.392964}

In[3]:= Timing[UcalGlob4i[1, 1.1, 0.36]]

Out[3]= {0., 0.375421}

In[4]:= Timing[UcalGlob4[1, 1.1, 0.36]]

Out[4]= {0.359, 0.375372}
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Appendix A. Numerical parameters

Here we shortly describe numerical parameters used in the package.
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First, in FAPT.m we use the pole masses of heavy quarks and Z-boson, collected in the
set NumDefFAPT:

MQ4 : Mc = 1.65 GeV , MQ5 : Mb = 4.75 GeV ;
MQ6 : Mt = 172.5 GeV , MZboson : MZ = 91.19 GeV .

(A.1)

Note here that all mass variables and parameters are measured in GeVs. That means,
for example, that in all procedures of our package the following value MQ4 = 1.65 is used.
The package RunDec of [70] is using the set NumDef with slightly different values of these
parameters (Mc = 1.6 GeV, Mb = 4.7 GeV, Mt = 175 GeV, MZ = 91.18 GeV).

Second, we collect in the set setbetaFAPT the following rules of substitutions bi →
bi(nf ), cf. Eq. (3),

b0 : b0 → 11− 2

3
nf , b1 : b1 → 102− 38

3
nf ,

b2 : b2 →
2857

2
− 5033

18
nf +

325

54
n2
f , (A.2)

b3 : b3 →
149753

6
− 1078361

162
nf +

50065

162
n2
f +

1093

729
n3
f

+

[
3564− 6508

27
nf +

6472

81
n2
f

]
ζ[3] .

Here we follow the same substitution strategy as in [70], but our bi differ from theirs bCKS
i

by factors 4i+1: bi = 4i+1 bCKS
i . In parallel, the set setbetaFAPT4Pi defines substitutions

bi → bi(nf )/(4π) which are more appropriate to determine coefficients ci(nf ).

Appendix B. Description of the main procedures

Here we shortly describe the main procedures of our package which can be useful for
practical calculations.

• RhoBar`[L,Nf,Nu]:

general: it computes the `-loop spectral density ρ̄(`)[Lσ, nf , ν];

input: the logarithmic argument L=Lσ = ln[σ/Λ2], the number of active flavors
Nf=nf , and the power index Nu=ν;

output: ρ̄(`);

example: In order to compute the value of the four-loop spectral density
ρ̄(4)[3.95, 4, 1.62] = 0.0247209 one has to use the command
RhoBar4[3.95, 4, 1.62].

• RhoGlob`[L,Nu,Lam]:

general: it computes the `-loop global spectral density ρ(`);glob[Lσ, ν,Λnf=3];
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input: the logarithmic argument L=Lσ = ln[σ/Λ2
nf=3], the power index Nu=ν, and

the QCD scale parameter Lam=Λnf=3 (in GeV);

output: ρ(`);glob;

example: In order to compute the value of the four-loop spectral density
ρ(4);glob[3.95, 1.62, 0.350] = 0.0221662 one has to use the command
RhoGlob4[3.95, 1.62, 0.35].
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• AcalBar`[L,Nf,Nu]:

general: it computes the `-loop nf -fixed analytic coupling Ā(`)
ν [L, nf ] in Euclidean

domain;

input: the logarithmic argument L=ln[Q2/Λ2], the number of active flavors Nf=nf ,
and the power index Nu=ν;

output: Ā(`)
ν ;

example: In order to compute the value of the three-loop spectral density
Ā(3)

1.62[3.95, 4] = 0.11352 one has to use the command
AcalBar3[3.95, 4, 1.62].

• UcalBar`[L,Nf,Nu]:

general: it computes the `-loop nf -fixed analytic coupling Ā
(`)
ν [L, nf ] in Minkowski

domain;

input: the logarithmic argument L=ln[s/Λ2], the number of active flavors Nf=nf ,
and the power index Nu=ν;

output: Ā
(`)
ν ;

example: In order to compute the value of the three-loop spectral density
Ā

(3)
1.62[3.95, 4] = 0.1011 one has to use the command

UcalBar3[3.95, 4, 1.62].

• AcalGlob`[L,Nu,Lam]:

general: it computes the `-loop global analytic coupling A(`);glob
ν [L, ν,Λnf=3] in

Euclidean domain;

input: the logarithmic argument L=Lσ = ln[σ/Λ2
nf=3], the power index Nu=ν, and

the QCD scale parameter Lam=Λnf=3 (in GeV);

output: A(`);glob
ν ;

example: In order to compute the value of the two-loop analytic coupling
A(2);glob

1.62 [3.95, 0.350] = 0.103858 one has to use the command
AcalGlob2[3.95, 1.62, 0.35].

• UcalGlob`[L,Nu,Lam]:

general: it computes the `-loop global analytic coupling A
(`);glob
ν [L, ν,Λnf=3] in

Minkowski domain;

input: the logarithmic argument L=ln[s/Λ2
nf=3], the power index Nu=ν, and the

QCD scale parameter Lam=Λnf=3 (in GeV);

output: A
(`);glob
ν ;
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example: In order to compute the value of the two-loop analytic coupling
A

(2);glob
1.62 [3.95, 0.350] = 0.0932096 one has to use the command

UcalGlob2[3.95, 1.62, 0.35].

All Λnf=3 are in GeV, all squared momentum transfer Q2 (Euclidean), central-of-mass
energy squared s (Minkowski), and spectral-integration variables σ are in GeV2. The
number of loops ` is everywhere specified in the name of a procedure.
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