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Abstract

XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from
a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described
in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution
of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed,
portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a
much wider problem space while also producing faster code.
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1. Introduction

The integration of a system of variables from a set of initial
conditions is one of the most widely performed tasks in quanti-
tative simulation. Numerical integration is typically performed
in one of two different styles: high-level methods using general
software tools, or low-level methods using bespoke hand-tuned
source code. The high-level approach requires much less code,
and is therefore fast to develop and comparatively free of cod-
ing errors. However, the low-level approach can provide dra-
matic and necessary performance improvements, can utilise the
full capacity of the computing platform for which it is devel-
oped, and is more customisable. XMDS2 is a software package
whose aim is to provide the key benefits of both approaches [1].

The purpose of XMDS2 is to simplify the process of creat-
ing simulations that solve systems of initial-value partial and
ordinary differential equations. Instead of going through the
error-prone process of hand-writing thousands of lines of code,
XMDS2 enables problems to be described in a simple XML
format. From this XML description XMDS2 generates a C++

simulation that solves the problem using fast algorithms. The
code generated by XMDS2 is typically as fast as, or faster than,
hand-written code, but by using XMDS2 the time taken to pro-
duce the simulation is significantly reduced.

XMDS2 can be used to simulate almost any set of (coupled)
(partial) (stochastic) differential equations in any number of di-
mensions. It can input and output data in a range of data for-
mats, produce programs that can take command-line arguments,
and produce parallelised code suitable for either modern com-
puter architectures or distributed clusters.

Aside from innumerable low-level libraries and high-level
packages for numerical integration, there have also been mul-
tiple previous attempts to automate or semi-automate the pro-
cess of coding low-level numerical simulations, such as [2, 3].
Rather than provide ‘shell code’ that can be edited, an XMDS2
script is effectively a self-contained language written in XML
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which is used to generate a fast C++ simulation.
The first version of XMDS was released in 1997 as an open-

source software package written in C++ which could simulate
a class of stochastic partial differential equations [4]. Over the
next decade, it was then expanded in scope and features by a
growing group of developers. While most of these developers
came from the fields of quantum optics and atom optics, where
its ability to integrate stochastic equations is particularly per-
tinent, the package slowly gained wider popularity. In 2008,
the decision was taken to completely rewrite the package in
Python (although still generating low-level C++ code), with a
re-engineered structure that would allow it to address a much
wider problem space. XMDS2 was released in 2010, and has
recently received its first major update, along with extensive
documentation, installers, and an examples library.

Citing only a few examples, XMDS and increasingly
XMDS2 have been used in the fields of quantum atom optics
[5, 6], quantum optics [7, 8], quantum control [9], predator-
prey dynamics [10] and ecology [11, 12, 13].

2. Problem class

XMDS2 solves systems of initial-value differential equa-
tions. Each differential equation can:

1. have an arbitrary number of dimensions, which may differ
from that of other differential equations in the system,

2. involve integrals of quantities in the differential system, or
3. include stochastic elements either in initial conditions and

filters, or in the dynamical equations themselves.

As an example, property 1 means that XMDS2 can solve sys-
tems in which a partial differential equation is coupled to an or-
dinary differential equation. Property 2 allows the evolution of
the ordinary differential equation to depend upon moments of
the partial differential equation. Property 2 also allows partial
differential equations to depend non-locally on system quanti-
ties. Property 3 permits the integration of systems of stochastic
(partial) differential equations, which are typically written us-
ing either Gaussian noise (via a Wiener process), or a Poisso-
nian noise in which the system changes state in a discontinuous
way.

XMDS2 uses spectral methods [14], which induce two re-
strictions on the problem space. The first is that the geometry
of the simulation domain must be a tensor product of lattices
in each dimension (see Figure 1). The second restriction is that
the boundary conditions must be compatible with the spectral
method used. XMDS2 currently supports periodic, even, odd
and zero boundary conditions. Spectral methods allow the ap-
proximation of spatial derivatives with ‘exponential’ accuracy
(see Section 3.1). In addition, the restriction to tensor product
lattices affords significant computational savings which will be
discussed later. The disadvantage is that XMDS2 cannot be
used to solve problems on arbitrary-shaped domains as is pos-
sible using finite-element methods. This is not a significant lim-
itation for a wide class of problems, as the system is often con-
strained to evolve within a finite domain. Quantum atom optics
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Figure 1: An example of a tensor product lattice. The specific unequal lat-
tice spacing in the x direction is due to the fact that the basis functions in that
dimension have been chosen to be Hermite-Gauss.

problems, for example, have trapping terms in the differential
equation that cause the solution to be non-negligible over a fi-
nite domain.

The use of spectral methods means that XMDS2 represents
the solution as a linear combination of global basis functions
that extend over the entire domain. This is an accurate represen-
tation for solutions which are smooth. Problems which contain
shocks or other spatial discontinuities (including discontinuous
derivatives) are better served by local methods such as finite
difference or finite element methods.

Subject to these caveats, XMDS2 is applicable to a broad
problem class and employs efficient and accurate algorithms for
the solution of these problems.

3. Algorithms employed

XMDS2 employs efficient algorithms in its generated simu-
lations. These include:

1. Spectral methods for computing spatial derivatives,
2. Fast spatial-to-spectral transforms including FFTs and

parity-exploiting matrix transforms,
3. Distributed memory parallelism,
4. Gaussian quadrature for spatial integration,
5. Method-of-lines explicit temporal integration schemes,

and
6. Interaction picture methods for exactly solving linear parts

of the problem.

3.1. The spectral method

XMDS2 spatially discretises the problem by applying the
spectral method [14]. This method decomposes the solution as
a weighted sum of a finite set of orthonormal basis functions.
For example, the quantity f (x, y) is represented as

f (x, y) =
∑
n,m

Fn,mXn(x)Ym(y), (1)
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where Fn,m is a matrix of coefficients, Xn(x) is the nth basis
function for the x dimension, and Ym(y) is the mth basis func-
tion for the y dimension. The coefficients Fn,m fully describe
the solution and are the spectral representation of the solution.
Typically in XMDS2, the number of basis functions is equal to
the number of grid points in each dimension. In this case, the
spectral representation is equivalent to the spatial representa-
tion f (xi, y j), the values of the solution at the grid points. The
two representations are linked by the linear transformation (1)
and its inverse.

Spectral methods approximate spatial derivatives using the
decomposition (1) and using analytic expressions for the deriva-
tives of the basis functions,

∂p

∂xp

∂q

∂yq f (x, y) =
∑
n,m

Fn,m
dpXn(x)

dxp

dqYm(y)
dyq . (2)

Spatial derivatives approximated in this manner are ‘expo-
nentially’ accurate. In general, an optimal M-point method
to calculate a k-order derivative of a function will have error
O(hM−k) where h is the grid-point spacing. As h ∝ 1/N where
N is the number of grid points, such a method will converge
like O(1/NM−k) for a k-order derivative. In spectral methods
the value of the solution at all grid points is used when com-
puting spatial derivatives, hence M = N. In this case M in-
creases as the number of grid points N increases resulting in a
method whose order effectively increases as the number of grid
points increases. The asymptotic error of a spectral method is
O(1/NN−k) which converges exponentially.

The basis functions are typically chosen to make part of the
differential equation diagonal in the spectral basis. XMDS2
supports the following spectral methods for each dimension:

• Fourier modes (complex exponentials),

Xn(x) = eikn x.

This method imposes periodic boundary conditions. The
basis functions are eigenfunctions of the Cartesian spatial
derivative operator. This is a general purpose method.

• Cosine / sine functions,

Xn(x) = cos(knx) or Xn = sin(knx).

These methods impose even and odd boundary conditions
respectively at the ends of the domain. The basis functions
are eigenfunctions of the Laplacian in Cartesian coordi-
nates. This method is useful when the problem has even
or odd reflection symmetry about a plane.

• ‘Cylindrical’ Bessel functions,

Rn(r) = Jm(knr),

where Jm(r) is the order-m Bessel function of the first kind.
This method imposes analytic boundary conditions at the
origin and zero Dirichlet boundary conditions at the outer
boundary. The basis functions are eigenfunctions of the
radial component of the Laplacian in cylindrical coordi-
nates. This method is useful for problems with rotational
symmetry. See [15] for more details.

• ‘Spherical’ Bessel functions,

Rn(r) =

√
π

2r
Jl+ 1

2
(knr).

This method imposes analytic boundary conditions at the
origin and zero Dirichlet boundary conditions at the outer
boundary. The basis functions are eigenfunctions of the ra-
dial component of the Laplacian in spherical coordinates.
This method is useful for problems with spherical symme-
try.

• Hermite-Gauss functions,

ψn(x) = (2nn!σ
√
π)−1/2e−x2/2σ2

Hn(σx), where:

Hn(x) = (−1)nex2 dn

dxn

(
e−x2)

This method requires that the solution decay as e−x2/2σ2
in

the limit x → ±∞. The basis functions are eigenfunctions
of the Schrödinger equation for the harmonic oscillator:

−
~2

2m
∂2ψn

∂x2 +
1
2

mω2x2ψn(x) = ~ω
(
n +

1
2

)
ψn(x), (3)

with σ =
√
~/(mω). This method is useful for solving

problems similar to (3) with nonlinear terms.

XMDS2 permits the use of different spectral methods in
each dimension. Figure 1 is an example of a lattice us-
ing a Hermite-Gauss decomposition in the x dimension and a
Fourier decomposition in the y dimension. As discussed in Sec-
tion 3.4, the grid spacing is determined by the choice of spectral
method. Full documentation of the spectral methods supported
by XMDS2 and their uses is available from the XMDS2 website
[1].

3.2. Fast spatial-to-spectral transforms

In any nonlinear simulation, both the spatial and spectral rep-
resentations of the solution will be required, as the problem will
not be diagonal in either representation. Typically, the spa-
tial representation is used for calculating the nonlinear terms,
and the spectral representation for calculating derivatives. The
two are linked by a linear transformation which can in general
be performed with a matrix multiplication. The computational
complexity of this operation is O(N2) for a single dimension.
In higher dimensions, the use of a tensor product lattice (see
Figure 1) enables the matrix multiplication to be factorised for
each dimension. In two dimensions for example, the computa-
tional complexity of a general spatial-to-spectral transformation
is O(N2

1 N2 + N1N2
2 ). Without the use of a tensor product lattice,

this cost would be O(N2
1 N2

2 ).
There are two cases in which we can reduce this computa-

tional cost: when we can use the Fast Fourier Transform (FFT)
algorithm, or when the basis functions alternate in parity.

Spectral methods using complex exponentials, cosines or
sines enable the use of the FFT algorithm and its variants

3



for transformations between spatial and spectral representa-
tions. These cost only O(N log N) in one dimension or
O(N2N1 log N1 + N1N2 log N2) in two dimensions.

If the basis functions have explicit, alternating parity
Xn(−x) = (−1)nXn(x) like the Hermite-Gauss functions, the Par-
ity Matrix Multiplication Transform (PMMT) [14] can be used
which is faster than a direct matrix multiplication in each di-
mension. The idea is to separately transform the even and odd
components of the solution, each of which costsO

(
(N/2)2

)
giv-

ing a total cost of O(N2/2). This factor of two reduction does
not improve the overall scaling but can be a significant improve-
ment for simulations dominated by the cost of the spatial-to-
spectral transforms.

3.3. Distributed memory parallelism

The use of a tensor product lattice permits the problem to be
parallelised by distributing a single dimension across the avail-
able processes (see Figure 2). The advantage of this method is
that as the spatial-to-spectral transform can be factorised across
different dimensions, when the problem is decomposed across
the x dimension (as in Figure 2(a)), the transform over the y di-
mension can be performed as a purely local operation to each
process.

To perform the spatial-to-spectral transform over the x di-
mension, the problem must instead be decomposed across in
the y dimension (as in Figure 2(b)). As simulations typically
require spatial-to-spectral transforms to be performed over all
dimensions, a distributed transpose operation is used to link
different problem decompositions (see Figure 2). This enables
transforms to be performed over any dimension in a distributed
simulation.

3.4. Gaussian quadrature

Gaussian quadrature is an exponentially accurate method for
integrating functions. The key idea is to approximate∫

f (x) dx ≈
∑

i

f (xi) wi, (4)

where xi are the interpolation points and wi are weight factors.
Gaussian quadrature takes advantage of the fact that the inter-
polation points xi do not need to be equally spaced. This means
the 2N degrees of freedom {xi,wi} can be chosen to exactly in-
tegrate 2N functions f (x), while it would only be possible to
exactly integrate N functions if the wi were the only degrees of
freedom. Further details about Gaussian quadrature are avail-
able from [14, 16].

3.5. Method-of-lines explicit temporal integration

In method-of-lines integration, each grid point is considered
to have its own ODE and the problem is integrated as a system
of coupled ODEs. XMDS2 employs a range of explicit integra-
tion schemes for deterministic and stochastic problems:

• semi-implicit method (deterministic order 2, stochastic or-
der 1) [17],
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Figure 2: An example of problem parallelisation on a tensor product lattice.
The problem is distributed across the (a) x or (b) y dimensions. These two
problem decompositions are linked by a distributed transpose operation.
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• fourth-order Runge-Kutta (deterministic order 4, stochas-
tic order 1/2) [18, §3.7(v)],

• ninth-order Runge-Kutta (deterministic order 9, stochastic
order 1/2) [19],

• adaptive fourth-fifth order Runge-Kutta (deterministic
only), [20] and

• adaptive eighth-ninth order Runge-Kutta (deterministic
only) [19].

XMDS2’s fixed-step method-of-lines integration methods
support integrating stochastic differential equations that de-
pend on Wiener (Gaussian) or jump (counting) processes.
These stochastic differential equations must be entered in
Stratonovich, not Itô form [21].

Although the fourth-order Runge-Kutta and ninth-order
Runge-Kutta algorithms have lower order stochastic conver-
gence than the semi-implicit method, we find that they can be
useful for problems where the noise terms are a perturbation on
the ‘deterministic’ dynamics.

XMDS2 can run multiple paths (possibly distributed across
multiple processors) to compute moments of the stochastic pro-
cess. XMDS2 can also test the effect on the strong conver-
gence [22] of the discretisation error of the propagation dimen-
sion. This requires sampling the same stochastic trajectory with
timesteps of multiple sizes.

3.6. Interaction picture method
The method-of-lines integration schemes are supported by

the interaction picture method [23, 24] which exactly solves a
linear part of the differential equation.

The idea is very similar to the interaction picture in quantum
mechanics. The differential equation is split into two parts: a
linear, exactly solvable component, and the remaining possibly
nonlinear components. The differential equation is then trans-
formed to remove the exactly solvable component.

For a PDE of the form

∂ f
∂t

= L[ f ] + g(x, y, f ), (5)

where L is a linear operator that doesn’t depend on time, the
differential equation is transformed by defining the new quan-
tity f̃ = e−Lt f which evolves as

∂ f̃
∂t

= e−Ltg(x, y, eLt f̃ ). (6)

The new quantity f̃ essentially has the simple dynamics due to
L removed.

The interaction picture method is advantageous when the lin-
ear operator L has a faster characteristic timescale than the re-
mainder of the differential system, which means that the func-
tion f̃ varies more slowly in time than the original f . This
means that by solving the faster component separately and ex-
actly, larger time-steps may be used on the remaining part of
the differential equation while achieving the same solution ac-
curacy.

For example, for the nonlinear Schrödinger equation,

i~
∂ψ

∂t
= −

~2

2m
∂2ψ

∂x2 + V(x)ψ + U |ψ|2 ψ, (7)

the spatial derivative term can have a faster characteristic
timescale than the remainder of the system for high spatial res-
olutions, corresponding to high momentum components. In the
Fourier basis, the spatial derivative term in Eq. (7) becomes

~2k2
x

2m
ψ(kx, t). (8)

If we do not use the interaction picture, the maximum value of
kx increases linearly with the number of grid points, and the
time step used must decrease as ∆t ∝ 1/N2 in order to be able
to resolve the evolution of those terms. The interaction picture
method alleviates this problem by solving the spatial deriva-
tive term exactly. Using the interaction picture method to solve
for the evolution of the spatial derivative term enables (7) to
be solved with a time-step which is independent of the spatial
resolution.

The effect of the interaction picture method can be seen by
solving (7) with an adaptive temporal integration method and
comparing the number of time steps needed to achieve a given
accuracy to that needed when calculating the derivatives explic-
itly (but still using a spectral method). The results in Figure 3
demonstrate that the number of steps needed to solve the PDE
using the interaction picture method is essentially independent
of the spatial resolution, while for the explicit method, the num-
ber of steps needed increases quadratically.

The computational cost of the interaction picture method is
small if the linear operator L is local in either the spatial or
spectral basis. In this case, the application of e±Lt to the quan-
tity f can be calculated by transforming f to the appropriate
basis (spatial or spectral), performing a local multiplication,
and transforming back to the original basis. For fixed time-step
algorithms, calculating the exponential function at every time
step can be avoided by essentially redefining f̃ at each time
step so that only the quantities e±L∆t are needed.

To make best use of the interaction picture method, the basis
functions should be chosen to make all derivative terms local in
the spectral basis. This ensures optimal scaling of the compu-
tational effort with spatial resolution.

Although the interaction picture method can be used with any
integration software by applying the transformation manually,
XMDS2 makes its use particularly easy by allowing the differ-
ential equation to be entered in a form equivalent to (5) with
XMDS2 automatically making the transformation to (6). This
also enables easy comparisons to be made between the interac-
tion picture and explicit methods.

4. Examples

In order to show the syntax of an XMDS2 script, as well
as to demonstrate the ease with which simulations can be ex-
tended, we consider the behaviour of a Bose-Einstein conden-
sate (BEC) in a harmonic magnetic trap.
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Figure 3: Comparison of the scaling of the interaction picture and ‘explicit’
methods with grid resolution for computing the evolution due to spatial deriva-
tive terms. Both methods were used to integrate the PDE (9) with a fixed ac-
curacy using an adaptive integrator. As the resolution is increased, the num-
ber of steps remains approximately steady for the interaction picture method,
while it increases quadratically (due to the second order spatial derivatives in
(9)) for the ‘explicit’ method. As the computational cost of each time step
for both methods increases with resolution as O(N log N) due to the use of
Fourier transforms, the overall running time for the interaction picture method
scales as O(N log N) compared to O(N3 log N) for the ‘explicit’ method. The
XMDS2 scripts used can be found in examples/cpc ip scaling.xmds and
example/cpc ex scaling.xmds in the XMDS2 distribution.

4.1. Example 1: Nonlinear Schrödinger equation
(examples/cpc example1.xmds)

Under a semiclassical approximation, the dynamics of the
BEC will be governed by the nonlinear Schrödinger equation
with a harmonic trapping potential. In dimensionless units this
equation is written

i
∂ψ

∂t̄
= −

1
2
∂2ψ

∂x̄2 +
1
2

x̄2ψ + U |ψ|2 ψ, (9)

where x̄ =
√

mω/~ x, t̄ = ωt, m is the atomic mass, ω is the
trapping frequency and U is the nonlinear energy in units of ~ω.
XMDS2 is capable of solving much more complicated (sets) of
PDEs, but this serves as a illustrative example.

Our initial condition will specify the wavefunction at t = 0,
and we choose

ψ(x̄, 0) =
√

N π−1/4 exp(−x̄2/2) (10)

which is the ground state solution to Eq. (9) in the absence of
the nonlinearity, normalized to N atoms in total.

We initially solve in one dimension, using a fourth-fifth or-
der adaptive Runge-Kutta algorithm, evolving the system for a
time t̄ = 2π/ω (one trap period), sampling 50 times and out-
putting the real and imaginary parts of the wavefunction in po-
sition space at every grid point. An XMDS2 script to solve this
problem is shown in Figure 4.

When XMDS2 is run on this script, it produces an optimized
binary nonlinear_SE which is run to carry out the simulation.
The result is shown in Figure 6.

Changing parameters such as the domain or number of grid
points, the number of sample points, integration interval, output

moments, algorithm and precision used and so on is simply a
matter of changing the contents of an XML tag, then re-running
XMDS2 on the script to produce the new executable. While it
is trivial to change such parameters, it is also easy to extend the
simulation in more complex ways.

4.2. Example 2: Higher dimensions
(examples/cpc example2.xmds)

If one wished to run the simulation in two dimensions rather
than one, all that is required is adding the element

<dimension name="y" lattice="512"

domain="(-7, 7)" />

to the transverse_dimensions element, changing the basis="x"

attribute of the sampling_group element to basis="x y", adding a
"0.5*y*y" term to the potential "V" and initial condition, and adding
a "-i*0.5*ky*ky" term to the kinetic energy operator "T".

4.3. Example 3: Different transforms
(examples/cpc example3.xmds)

This problem is obviously symmetric about x = 0, so it is a waste
of computational resources to simulate the problem on both sides of
the origin. Since the differential equation and the boundary conditions
are symmetric, by using the discrete cosine transform rather than the
default exponential Fourier transform, we need only carry out the sim-
ulation on half the interval, and use only half the number of grid points
for the same accuracy. This is accomplished simply by changing the
content of the transverse_dimensions element to be

<dimension name="x" lattice="256"

domain="(0, 7)" transform = "dct"/>

4.4. Example 4: Easy parallelization with MPI
(examples/cpc example4.xmds)

As this is a deterministic simulation, if it has two or more di-
mensions, one can parallelize the simulation simply by adding the
<driver name="distributed-mpi" /> tag to the script. This
would result in a binary that could be run across, for example, four
CPUs with the command

mpirun -n 4 nonlinear_SE

The fact that two- or higher-dimensional deterministic simulations,
as well as stochastic simulations of any dimension, can be trivially
parallelized using a single line in a script, without spending days (or
weeks) writing and debugging bespoke code, is one of XMDS2’s most
powerful features. The runtime scaling of this simulation with the
number of processes is illustrated in Figure 5.

4.5. Example 5: Non-local terms
(examples/cpc example5.xmds)

Many problems will involve non-local interactions that occur in the
form of a convolution

∫
f (r − r′)g(r′) dr′. For example, within the

context of the current problem, if the BEC were charged there would
be an additional potential of the form

V(x) =
e2Z2

4πε0

∫
1

|x − x′|
|ψ(x′)|2 dx′ (11)

where eZ is the charge associated with each particle. While this term
could be explicitly integrated within XMDS2 it is more efficient to
make use of convolutions and the speed of fast Fourier transforms.
This is done using <computed_vector> elements, which are de-
scribed in detail on our website [1].
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<simulation xmds-version="2">
  <name> nonlinear_SE </name>
  
  <features>
    <globals>
      <![CDATA[
        real N = 10.0; // number of atoms
        real g = 1.0;  // nonlinear coupling
      ]]>
    </globals>
  </features>
  
  <geometry>
    <propagation_dimension> t </propagation_dimension>
    <transverse_dimensions>
      <dimension name="x" lattice="512"
                 domain="(-7, 7)" />
    </transverse_dimensions>
  </geometry>

  <vector name="potential" type="real">
    <components> V </components>
    <initialisation>
      <![CDATA[
        V = 0.5*x*x;
      ]]>
    </initialisation>
  </vector>
  
  <vector name="wavefunction" type="complex">
    <components> psi </components>
    <initialisation>
      <![CDATA[
        psi = sqrt(N) * pow(M_PI, -0.25) * exp(-x*x/2);
      ]]>
    </initialisation>
  </vector>

  <sequence>
    <integrate algorithm="ARK45" interval="6.28" 
                                 tolerance="1e-5">
      <samples> 50 </samples>
   
      <operators>
        <operator kind="ip" >
          <operator_names> T </operator_names>
          <![CDATA[
            T = -i * 0.5 * kx * kx;
          ]]>
        </operator>

        <integration_vectors>
          wavefunction 
        </integration_vectors> 
        <dependencies> potential </dependencies>
        <![CDATA[
          dpsi_dt = T[psi] - i * V * psi
                           - i * g * mod2(psi) * psi;
        ]]>
      </operators>
    </integrate>
  </sequence>

  <output format="hdf5">
    <sampling_group initial_sample="yes" basis="x">
      <dependencies> wavefunction </dependencies>
      <moments> psireal psiimag </moments>
      <![CDATA[
        psireal = Re(psi);
        psiimag = Im(psi);
      ]]>
    </sampling_group>
  </output>
</simulation>

V (x) =
1

2
x2

 (x, t = 0) =
p

N⇡�1/4 exp(�x2/2)

T = �i
1

2
k2

x

d 

dt
= T [ ] � iV (x) � ig | |2  

Define the potential:

Simulation constants

Define the wavefunction initial condition:

Integration method, interval and tolerance

Sample output 50 times

Evolve the wavefunction in time

We need the potential below:

Define the interaction picture operator:

Define the evolution equation:

Output in HDF5 format
Sample at t=0
Sample the spatial representation

Output the real and imaginary 
parts of 

Define the geometry

 

The potential is real

The wavefunction is complex

Figure 4: Annotated example XMDS2 script for integrating equation (9). This script can be found in examples/cpc example1.xmds in the XMDS2 distribution.
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Figure 5: Example runtime scaling using MPI on (a) a single com-
puter, and (b) a supercomputer. Figure (a) demonstrates the simulation
examples/cpc example4.xmds run on a Linux computer with two Xeon
5675 CPUs running at 3.07GHz. Each CPU has 6 execution cores. Figure
(b) demonstrates the simulation examples/cpc example4 3D.xmds run on
the NCI National Facility supercomputer, ‘vayu’. The modified simulation is
extended to three dimensions with 256 points in each to demonstrate perfor-
mance on larger problems. Note that optimal parallelisation for these problems
is achieved when the number of grid points in the first dimension (256) is divis-
ible by the number of processes.

4.6. Example 6: Stochastics
(examples/cpc example6.xmds)

As a final tweak to this example, we will make use of XMDS2’s
stochastic features to add noise. XMDS2 has a number of fast random
number generators built in, which are capable of producing Gaussian,
Poissonian and uniform probability distributions, and applying them as
Wiener or jump processes during stochastic integration. This enables
the simulation of stochastic differential equations, which are useful in
fields such quantum field theory, mathematical finance, and many oth-
ers. For this example we will simply use noise to model perturbations
of the magnetic trap — that is, the trapping potential will be slightly
noisy, due to it moving around. To do this we define a noise vector

<noise_vector name="trapNoise" kind="wiener"

type="real" method="dsfmt">

<components> noise_x </components>

</noise_vector>

change the potential term in the equation of motion in the script to

- i * (V + g * mod2(psi) + alpha*noise_x) * psi

where alpha is a constant governing the magnitude of the noise,
and add a <dependencies>trapNoise</dependencies> tag to the
<initialisation> block of the potential vector. This would add
a time-dependent Gaussian-distributed noise to the potential. If we
wished to average over many different realisations of this noise, we
could add the tag

<driver name="mpi-multi-path" paths="100" />

to the script, which would run the simulation 100 times, and average
over whichever results were requested in <output> section. Such a
simulation could be trivially run over any number of CPU cores with
near perfect scaling.

Note that the mpi-multi-path driver should only be used for
stochastic simulations where individual realisations are independent,
in contrast, the distributed-mpi driver parallelises a single de-
terministic simulation. As the different components of a determin-
istic simulation will in general be coupled, the distributed-mpi

driver necessarily incurs a larger communication overhead than the
mpi-multi-path driver. In general, the distributed-mpi driver
can be used to parallelise a single realisation of a stochastic simula-
tion, but if many paths are needed, the mpi-multi-path driver will
be preferable.

5. Software used

XMDS2 makes use of the following external libraries in its gener-
ated C++ simulations:

• FFTW3 [25] for FFTs and MPI distributed transpose operations,

• dSFMT [26] for random number generation,

• MPI for inter-process communication,

• HDF5 for data input and output, and

• GNU Scientific Library for special function evaluation.

XMDS2 itself also uses the following Python libraries when generat-
ing simulations: Cheetah, pyparsing, lxml, h5py, mpmath, and numpy.
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Figure 6: Solution to the nonlinear Schrödinger equation given by Eq. (9). The
density |ψ(x, t)|2 is shown evolving over one trap period.

6. Conclusion

Using XMDS2 for simulations accelerates development time, pro-
duces code that executes extremely quickly, and also produces a self-
documenting workflow, as output data is wrapped with the compact
XML code used to produce it.

XMDS2 particularly excels at providing a smooth transition from
a low-dimensional simulation to a higher-dimensional one, from a de-
terministic simulation to a stochastic one, or from a single-processor
simulation to a distributed simulation running in parallel across mul-
tiple computers (or on a supercomputer). In hand-written codes, un-
less they were initially written with such a potential future extension
in mind, each such change would require significant effort in rewrit-
ing the code. In XMDS2 such changes require only minimal change
to the input script. This encourages users to create test simulations
of a simpler system (e.g. reduced dimensionality), which makes the
code run faster, allowing problems in the input script to be found and
fixed more quickly. Later, the simulation can be scaled up to the full
problem. Fundamentally, the ease with which codes can be generated
encourages experimentation with different types of simulations, as the
time taken to create the code is no longer the rate-limiting factor.

The installers, documentation and examples for XMDS2 can be
found at the website [1]. This same documentation is available in the
documentation/ directory of the XMDS2 distribution.
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