
Dynamic Load Balancing for Petascale Quantum Monte

Carlo Applications: The Alias Method

C.D. Sudheera, S. Krishnanb, A. Srinivasanb, P. R. C. Kentc

aDept. of Mathematics and Computer Science, Sri Sathya Sai Institute of Higher
Learning,

Prasanthi Nilayam, India
bDept. of Computer Science, Florida State University, Tallahassee, FL 32306

cCenter for Nanophase Materials Sciences and Computer Science and Mathematics
Division, Oak Ridge National Lab, Oak Ridge, TN 37831

Abstract

Diffusion Monte Carlo is a highly accurate Quantum Monte Carlo method for
the electronic structure of materials, but it requires frequent load balancing
or population redistribution steps to maintain efficiency on parallel machines.
This step can be a significant factor affecting performance, and will become
more important as the number of processing elements increases. We propose
a new dynamic load balancing algorithm, the Alias Method, and evaluate it
theoretically and empirically. An important feature of the new algorithm is
that the load can be perfectly balanced with each process receiving at most
one message. It is also optimal in the maximum size of messages received
by any process. We also optimize its implementation to reduce network
contention, a process facilitated by the low messaging requirement of the
algorithm: a simple renumbering of the MPI ranks based on proximity and
a space filling curve significantly improves the MPI Allgather performance.
Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL
showing up to 30% improvement in performance on 120,000 cores. The load
balancing algorithm may be straightforwardly implemented in existing codes.
The algorithm may also be employed by any method with many near identical
computational tasks that requires load balancing.

Email addresses: cdsudheerkumar@sssihl.edu.in (C.D. Sudheer),
krishnan@cs.fsu.edu (S. Krishnan), asriniva@cs.fsu.edu (A. Srinivasan),
kentpr@ornl.gov (P. R. C. Kent)

Preprint submitted to Computer Physics Communications August 20, 2012

Keywords: Quantum Monte Carlo, Parallel Computing, Load Balancing

1. Introduction

Quantum Monte Carlo (QMC) is a class of quantum mechanics-based
methods for electronic structure calculations [1, 2, 3]. These methods can
achieve much higher accuracy than well-established techniques such as Den-
sity Functional Theory (DFT) [4] by directly treating the quantum-mechanical
many-body problem. However, this increase in accuracy comes at the cost
of substantially increased computational effort. The most common QMC
methods are nominally cubic scaling, but have a large prefactor, making
them several orders of magnitude more costly than the less-accurate DFT
calculation. On the other hand, QMC can today effectively use the largest
parallel machines, with O(105) processing elements, while DFT can not use
these machines routinely. However, with the expected arrival of machines
with orders of magnitude more processing elements than common today, it
is important that all the key algorithms of QMC are optimal and remain
efficient at scale.

Diffusion Monte Carlo (DMC) is the most popular modern QMC tech-
nique for accurate predictions of materials and chemical properties at zero
temperature. It is implemented in software packages such as CASINO [5],
CHAMP [6], QMCPack [7], and QWalk [8]. Unlike some Monte Carlo ap-
proaches, this method is not trivially parallel and requires communications
throughout the computation.

The DMC computation involves a set of random walkers, where each
walker represents a quantum state. At each time step, each walker moves to
a different point in the configuration space, with this move having a random
component. Depending on the energy of the walker in this new state relative
to the average energy of the set of walkers (or a reference energy related to the
average), the walker might be either terminated or new walkers created at the
same position. Alternatively, weights may be associated with each walker,
and the weights increased or decreased appropriately. Over time, this process
creates a load imbalance, and the set of walkers (and any weights) must be
rebalanced. For optimum statistical efficiency, this rebalancing should occur
every single move [9].

DMC is parallelized by distributing the set of walkers over the available
compute cores. The relative cost of load balancing the walkers as well as the

2

inefficiency from the statistical fluctuations in walker count can be minimized
if the number of walkers per compute element is kept large. This approach
has typically been used on machines with thousands to tens of thousands of
cores. However, with increasing core count the total population of walkers is
increased. This is undesirable since (1) there is an equilibration time for each
walker that does not contribute to the final statistics and physical result, (2)
it is usually preferable to simulate walkers for longer times, enabling any long
term trends or correlations to be determined, (3) the amount of memory per
compute element is likely to reduce in future, necessitating smaller popula-
tions per compute element. On the highest-end machines, it is desirable to
use very few walkers (one or two) per compute element and assign weights
to the walkers, instead of adding or subtracting walkers, to avoid excessively
large walker counts and to avoid the large fluctuations in computational effort
that would result from even minor fluctuations in walker count.

Since load balancing is in principle a synchronous, blocking operation,
requiring communication between all compute elements, it is important that
the load balancing method is highly time efficient and makes very effective
use of the communications network, minimizing the number and size of mes-
sages that must be sent. It is also desirable that the algorithm is simple to
enable optimization of the messaging for particular networks, and to simplify
use of latency hiding techniques through overlap of computation and com-
munications. We note that CASINO [5] recently transitioned [10] to using
asynchronous communications and suspect that other codes may use some of
these techniques, but apart from [10], they have not been formally described.

In this paper we discuss a new load balancing algorithm which can be used
to load balance computations involving near identical independent tasks such
as those in DMC (we consider each random walker a task in the description
of our load balancing algorithm). The algorithm has the interesting feature
that each process needs to receive tasks from at most one other process.
We optimize this algorithm on the peta-flop Cray XT5 supercomputer at
Oak Ridge National Laboratory and show, using data from the simulation
of the Cr2 molecule, that it improves performance over the existing load
balancing implementation of the QWalk code by up to 30% on 120,000 cores.
Moreover, due to the optimal nature of the algorithm we expect its utility
and effectiveness to increase with the multiple orders of magnitude increase
in compute elements expected in the coming years.

3

1.1. Load Balancing Model Definitions

Dynamic load balancing methods often consist of the following three
steps. (i) In the flow computation step, we determine the number of tasks
that need to be sent by each process to other processes. (ii) In the task
identification step, we identify the actual tasks that need to be sent by each
process. (iii) In the migration step, the tasks are finally sent to the desired
processes. Since we deal with identical independent tasks, the second step is
not important; any set of tasks can be chosen. Our algorithm determines the
flow (step (i)) such that step (iii) will be efficient, under certain performance
metrics.

We assume that a collection of P processes need to handle a set of T iden-
tical tasks (that is, each task requires the same computation time), which can
be executed independently. Before the load balancing phase, the number of
tasks with process i, 1 ≤ i ≤ P , is Ti. After load balancing, each process will
have at most dT/P e tasks (we are assuming that the processors are homo-
geneous, and therefore process tasks at the same speed). This redistribution
of tasks is accomplished by having each process i send tij tasks to processes
j, 1 ≤ i, j ≤ P , where non-zero values of tij are determined by our algorithm
for flow computation, which we describe in § 3. Of course, most of the tijs
should be zero, in order to reduce the total number of messages sent. In fact,
at most P − 1 of the possible P (P − 1) values of tij will be non-zero in our
algorithm.

The determination of tijs is made as follows. The processes perform an
“all-gather” operation to collect the number of tasks on each process. Each
process k independently implicitly computes the flow (all non-zero values of
tij, 1 ≤ i, j ≤ P) using the algorithm in § 3, and then explicitly determines
which values of tkj and tjk are non-zero, 1 ≤ j ≤ P .

The algorithm to determine non-zero tijs takes O(P) time, and is fast
in practice. We wish to minimize the time taken in the actual migration
step, which is performed in a decentralized manner by each process. In some
load balancing algorithms [11], a process may not have all the data that it
needs to send, and so the migration step has to take place iteratively, with a
process sending only data that it has in each iteration. In contrast, the tijs
generated by our algorithm never require sending more data than a process
initially has, and so the migration step can be completed in one iteration.
In fact, no process receives a message from more than one process, though
processes may need to send data to multiple processes.

4

The outline of the rest of the paper is as follows. We summarize related
work in § 2. In § 3, we describe our algorithm for dynamic load balancing. We
first describe the algorithm when T is a multiple of P , which is the ideal case,
and then show how the algorithm can be modified to deal with the situation
when T is not a multiple of P . In § 4, we define a few metrics for the time
complexity of the load re-distribution step, and theoretically evaluate our
algorithm in terms of those. In particular, we show that it is optimal in the
maximum number of messages received by any process and in the maximum
size of messages received by any process. We then report results of empirical
evaluation of our method and comparisons with an existing QMC dynamic
load balancing implementation, in § 5. We finally summarize our conclusions
in § 6.

2. Related Work

Load balancing has been, and continues to be, an important research
issue. Static partitioning techniques try to assign tasks to processes such
that the load is balanced, while minimizing the communication cost. This
problem is NP-hard in most reasonable models, and thus heuristics are used.
Geometric partitioning techniques can be used when the tasks have coordi-
nate information, which provide a measure of distance between tasks. Graph
based models abstract tasks as weighted vertices of a graph, with weights
representing computational loads associated with tasks. Edges between ver-
tices represent communication required, when one task needs information
on another task. A variety of partitioning techniques have been studied,
with popular ones being spectral partitioning [12, 13] and multi-level tech-
niques [14, 15, 16, 17], and have been available for a while in software such
as Chaco and Metis.

Dynamic load balancing schemes start with an existing partition, and
migrate tasks to keep load balance, while trying to minimize the communi-
cation cost of the main computation. A task is typically sent to a process
that contains neighbors of the task in the communication graph, so that the
communication cost of the main computation is minimized1. Other schemes
make larger changes to the partitions, but remap the computation such that
the cost of migration is small [18].

1When tasks are fairly independent, as in QMC, it is reasonable to model it as a
complete graph, indicating that a task can be migrated to any process.

5

The diffusion scheme is a simple and well-known scheme sending data to
neighboring processes [19, 20, 21, 22]. Another scheme, proposed in [11], is
also based on sending tasks to neighbors. It is based on solving a linear system
involving the Laplacian of the communication graph. Both these schemes
require the tasks to be arbitrarily divisible for the load balancing to work.
For example, one should be able to send 0.5 tasks, 0.1 tasks, etc. Modified
versions of diffusive type schemes have also been proposed which remove
restrictions on arbitrary divisibility [23]. Multi-level graph partitioning based
dynamic schemes are also popular [24]. Hyper-graphs generalize graphs using
hyper-edges, which are sets of vertices with cardinality not limited to two.
Hyper-graph based partitioning has also been developed [25]. Software tools,
such as, JOSTLE [26], ParMetis, and Zoltan are available, implementing a
variety of algorithms.

Apart from general purpose algorithms, there has also been interest in
the development of algorithms for specific applications, such as [27]. There
has also been work performed on taking factors other than communication
and computation into account, such as IO cost [28].

There has been much work performed on load balancing independent
tasks (bag of tasks) in the distributed and heterogeneous computing fields [29,
30, 31, 32]. Many of the scheduling algorithms try to minimize the makespan,
which can be considered a type of load balancing. They consider issues such
as differing computing power of machines, online scheduling, etc.

Within the context of QMC and DMC, we are not aware of any published
work specifically focusing on the algorithms used for load balancing, although
optimizations to existing implementations have been described [10]. Since all
QMC codes must perform a load balancing step, each must have a reason-
ably efficient load balancing implementation, at least for modest numbers
of compute elements. However, the methods used have not been formally
described and we do not believe any existing methods share the optimality
features of the algorithm described below.

3. The Alias Method Based Algorithm for Dynamic Load Balanc-
ing

Our algorithm is motivated by the alias method for generating samples
from discrete random distributions. We therefore refer to our algorithm as
the Alias method for dynamic load balancing. There is no randomness in
our algorithm. It is, rather, based on the following observation used in a

6

deterministic pre-processing step of the alias method for the generation of
discrete random variables. If we have P bins containing kP objects in total,
then it is possible to re-distribute the objects so that each bin receives objects
from at most one other bin, and the number of objects in each bin, after the
redistribution, is exactly k. Walker [33] showed how this can be accomplished
in O(P logP) time. This time was reduced to O(P) by [34] using auxiliary
arrays. In Algorithm 1 below, we describe our in-place implementation that
does not use auxiliary arrays, except for storing a permutation vector.

We assume that the input to Algorithm 1 is an integer array A containing
the number of objects in each bin. Given A, we can compute k easily in
O(P) time, and will also partition it around k in O(P) time so that all
entries with A[i] < k occur before any entry with A[j] > k. We will assume
that A[i] 6= k, because other bins do not need to be considered – they have
the correct number of elements already, and our algorithm does not require
redistribution of objects to or from a bin that has k objects. If we store the
permutation while performing the partitioning, then the actual bin numbers
can easily be recovered after Algorithm 1 is completed. This algorithm runs
only with P ≥ 2, because otherwise all the bins already have k elements
each. We assume that a pre-processing step has already accomplished the
above requirements in O(P) time.

Algorithm 1:
Input: An array of non-negative integers A[1 · · ·P] and an integer k > 0,

such that
∑P

i=1 A[i] = kP , entries of A have been partitioned around k, and
P ≥ 2. A[i] gives the number of objects in bin i, and A[i] 6= k.

Output: Arrays S[1 · · ·P] and W [1 · · ·P], where S[i] gives the bin from
which bin i should get W [i] objects, if S[i] 6= 0.

Algorithm:

1. Initialize arrays S and W to all zeros.

2. s← 1.

3. l← min{j|A[j] > k}.
4. while l > s

(a) S[s]← l.
(b) W [s]← k − A[s].
(c) A[l]← A[l]−W [s].
(d) if A[l] < k then

i. l← l + 1.

7

(e) s← s + 1.

It is straightforward to see the correctness of Algorithm 1 based on the
following loop invariants at the beginning of each iteration in step 4: (i)
A[i] ≥ k, l ≤ i ≤ P , (ii) 0 ≤ A[i] < k, s ≤ i ≤ l − 1, and (iii) A[i] + W [i] =
k, 1 ≤ i ≤ s − 1. Since bin l needs to provide at most k objects to bin
s, it has a sufficient number of objects available, and also as a consequence
of the same fact, A[l] will not become negative after giving W [s] objects
to bin s. The last clause of the loop invariant proves that all the bins will
have k objects after the redistribution. We do not formally prove the loop
invariants, since they are straightforward.

In order to evaluate the time complexity, note that in the while loop in
step 4, l and s can never exceed P . Furthermore, each iteration of the loop
takes constant time, and s is incremented once each iteration. Therefore, the
time complexity of the while loop is O(P). Step 3 can easily be accomplished
in O(P) time. Therefore the time complexity of this algorithm is O(P).

Load balancing when T is a multiple of P . Using Algorithm 1, a process
can compute tijs as follows, if we associate each bin with a process2 and the
number of objects with the number of tasks:

tS[i]i ← W [i], S[i] 6= 0. (1)

All other tijs are zero. Of course, one needs to apply the permutation ob-
tained from the partitioning before performing this assignment. Note that
the loop invariant mentioned for Algorithm 1 also shows that a process al-
ways has sufficient data to send to those that it needs to; it need not wait to
receive data from any other process in order to have sufficient data to send,
unlike some other dynamic load balancing algorithms [11].

Load balancing when T is not necessarily a multiple of P . The above case
considers the situation when the total number of tasks is a multiple of the
total number of processes. We can also handle the situation when this is not
true, using the following modification. If there are T tasks and P processes,
then let k = dT/P e. For balanced load, no process should have more than

2In our algorithm, processes that already have a balanced load do not participate in
the redistribution of tasks to balance the load. Therefore, we use P to denote the number
of processes with unbalanced loads in the remainder of the theoretical analysis.

8

k tasks. We modify the earlier scheme by adding kP − T fake “phantom”
tasks. This can be performed conceptually by incrementing A[i] by one for
kP − T processes before running Algorithm 1 (and even before the pre-
processing steps involving removing entries with A[i] = k and partitioning).
The total number of tasks, including the phantom ones, is now kP , which is
a multiple of P . So Algorithm 1 can be used on this, yielding k tasks per
process. Some of these are phantom tasks, and so the number of tasks is at
most k, rather than exactly k. We can account for the phantom tasks by
modifying the array S as follows, after completion of Algorithm 1. Let F be
the set of processes to which the fake phantom tasks were added initially (by
incrementing their A entry). For each j ∈ F , define rj = min{i|S[i] = j}.
If rj exists, then set W [rj] ← W [rj] − 1. This is conceptually equivalent to
making each process that initially had a phantom task to send this task to
the first process to whom it sends anything. Note that on completion of the
algorithm, no process has more than two phantom tasks, because in the worst
case, it had one initially, and then received one more. So the total number
of tasks on any process after redistribution will vary between k−2 to k. The
load is still balanced, because we only require that the maximum load not
exceed dT/P e after the redistribution phase3. This modified algorithm can
be implemented with the same time complexity as the original algorithm.

4. Theoretical Analysis

We next analyze the performance of the migration step of the load bal-
ancing algorithm, when using the tijs as computed by Algorithm 1 in § 3.
We define a few performance metrics, and give the approximation ratio of
our algorithm (that is, an upper bound on the ratio of the time taken by
our algorithm to that of an optimal one, in the metric considered). The
results are summarized in Table 1. We assume that P ≥ 2 in Algorithm 1;
otherwise no load redistribution is performed, either by our algorithm or an
optimal one, and the approximation ratio, 0/0 under any of our metrics, is
undefined. The analyses below consider the case where T is a multiple of
P . If T is not a multiple of P , then all the bounds still hold, except in the
Maximum-Tasks-Received metric, where our algorithm may have a value one
more than the optimal.

3In our implementation, the phantom tasks are not actually sent, and they do not even
exist in memory.

9

Maximum-Receives:. In this metric, the time taken in the migration step
is the maximum number of messages received by any process. Formally, it
is given by maxj |{i|tij 6= 0}|. This metric is reasonable to use if sending
can be performed asynchronously, and if the latency overhead of sending a
message is very high, as is common in many distributed environments. The
receive operation still blocks until the message is received, and so this cost
can dominate if the data size is not very large.

In the alias algorithm, any process receives at most one message. An
optimal algorithm too requires at least one message to be received on some
process, since the load is unbalanced. So the approximation ratio is 1 .

Maximum-Tasks-Received:. In this metric, the time taken is estimated as the
largest number of tasks received by any process. That is, it is maxj

∑P
i=1 tij,

which is the largest total sizes of messages received by any process. This met-
ric is reasonable to use if sends are asynchronous as above, receives blocking,
and message sizes fairly large.

Let d = maxi T/P−Ti. That is, it is the largest deficit in number of tasks
initially on any process. The optimal algorithm needs to have the process
with this deficit receive at least d tasks. So the optimal solution is at least
as large as d.

We will next show that the alias based scheme can redistribute the load
with the maximum-tasks-received being d, thereby being optimal in this met-
ric. Assume that this is not true, and that the alias-based algorithm takes
greater than d. Let i be the smallest indexed process with W [i] > d. Let
W [i] = d̂. Process i cannot be one that initially had a deficit, because from
Algorithm 1, one can see that a process with an initial deficit never sends
tasks to any process. So its deficit will never increase beyond its initial one,
which is at most d, because W [i] = k − A[i] ≤ d for such processes, where
k = T/P . So i must be a process that initially had an excess (that is, i
is at least as large as the initial value of l in Algorithm 1). Process i must
have contributed to the W [j] of some process j in order to later experience
a deficit of d̂. Consider the situation just before the last time it contributed
to some W [j]. A[i] ≥ k at that time. After the contribution, W [j] ≤ d
because i is the smallest indexed process with W entry greater than d, and
in Algorithm 1, processes contribute only to lower indexed processes. So,
A[i] ≥ k−d after the contribution. The deficit it experiences is thus at most
d, and so W [i] must be at most d. Thus the assumption is false, and W [i] ≤ d
for all i. This shows optimality of the alias method-based algorithm in this

10

metric, and so its approximation ratio is 1 .

Total-Messages:. In this metric, we count the total number of messages,∑
j |{i|tij 6= 0}| or

∑
i |{j|tij 6= 0}|. That is, we count the total number

of sends or the total number of receives. This can be a reasonable metric
if many messages are being sent. In that case, we want to reduce conges-
tion on the network, which may be reduced by reducing the total number of
messages.

The optimal solution sends at least P/2 messages for the following reason.
Let us partition the processes into sets D and E, where D consists of all
processes that have an initial deficit, and E consists of all processes that
have an initial excess. Each process in D must receive at least one message
to balance its load, and each process in E must send at least one message
to balance its load. Thus max{|D|, |E|} is a lower bound on the cost of the
optimal solution. But |D| + |E| = P . Therefore max{|D|, |E|} ≥ P/2, and
so the cost of the optimal solution is at least P/2. The alias-based scheme
has each process receive at most 1 message. So the total number of messages
received (or, equivalently, sent) is at most P (in fact, it is P − 1, if we
note, from Algorithm 1, that process P cannot receive a message). So the
approximation ratio is 2 .

Example 1: We next show that the above bound is tight. Consider P = 2n
processes for some sufficiently large n, with T1 · · ·Tn−1 = n−1, Tn = 2, Tn+1 =
2n − 2, Tn+2 · · ·T2n = n + 1. It is possible to balance the load by having
process n+1 send n−2 tasks to process n, and having processes n + 2 · · · 2n
send one tasks each to processes 1 · · ·n− 1 respectively. The total number
of messages sent will be n = P/2, which is also the best possible, as shown
above. In the alias method-based algorithm, process n + 1 sends one task
each to processes 1 · · ·n− 1, process n + 2 sends n − 2 tasks to process n,
process n + 3 sends one task to process n + 1 and n − 3 tasks to process
n + 2, and each process n + i sends n − (i − 1) tasks to process n + i− 1,
4 ≤ i ≤ n. Each process other than process 2n receives one messages, and so
the total number of messages is 2n − 1 = P − 1. The approximation factor
is (P − 1)/(P/2) = 2(1− 1/P). Since P can be arbitrarily large, the bound
is tight.

Total-Tasks-Sent:. In this metric, we count the total number of tasks,
∑

i

∑
j tij

sent. This is a reasonable metric to use if we send several large messages,
because these can then congest the network.

11

The approximation factor is unbounded , as can be seen from Example 1
above. In that example, there are n − 1 messages of length 1 each from
process n + 1, one message of length n− 2 from process n + 2, one message
of length 1 and one message of length n−3 from process n− 3, and messages
of length 1, 2, · · · , n−3 from processes 2n, 2n− 1, · · · , n + 4 respectively. So,
the total number of tasks sent is 3n − 5 + (n − 3)(n − 2)/2. An optimal
flow for this example in the Maximum-Tasks metric sends 2n − 3 tasks, as
explained above, and so the optimal schedule for the Total-Tasks metric sends
at most 2n− 3 tasks. The approximation ratio is then Ω(n) = Ω(P), which
is unbounded, because the number of processes, P , is unbounded.

Maximum-Sends and Maximum-Tasks-Sent:. We have earlier defined met-
rics that use the number and sizes of messages received by a process. In
analogy with those, we now discuss metrics that are based on the number
and sizes of messages sent. In the Maximum-Sends metric, we count the
maximum number of messages sent by any process. The approximation fac-
tor is unbounded in this metric, as can be seen from Example 1. An optimal
schedule for the Total-Messages metric sends a maximum of 1 message from
each process for this example, as described above. The alias-based algorithm
has process n + 1 send n− 1 = P/2− 1 messages. Since P can be arbitrarily
large, the approximation factor is unbounded in this metric.

In the Maximum-Tasks-Sent metric, we count maxi

∑
j tij, which is the

largest total sizes of messages sent by any process. The approximation factor
is unbounded here too, as can be seen from the following example.

Example 2: Let T1 = 1, T2 · · ·TP = P + 1. It is possible to balance the
load by having processes 2, · · · , P send one task each to process 1, for this
metric to have value 1. It is easy to see that this is also optimal. In the
alias method-based algorithm, process 2 sends a message with P − 1 tasks
to process 1, and each process 3, 4, · · · , P sends messages of size P − 2, P −
3, · · · , 1 to process 2, 3, · · · , P − 1 respectively. The maximum size is sent by
process 2 with value P − 1, yielding an approximation factor of P − 1, which
is unbounded, because P can be arbitrarily large.

5. Empirical Results

5.1. Experimental Setup

The experimental platform is the Cray XT5 Jaguar supercomputer at
ORNL. It contains 18,688 dual hex-core Opteron nodes running at 2.6GHz

12

Method Approximation factor

Maximum-Receives 1
Total-Messages 2
Maximum-Tasks-Sent ∞
Maximum-Sends ∞
Total-Tasks-Sent ∞
Maximum-Tasks-Received 1

Table 1: Approximation factors under different metrics.

with 16GB memory per node. The peak performance of the machine is 2.3
petaflop/s. The nodes are connected with SeaStar 2+ routers having a peak
bandwidth of 57.6GB/s, with a 3-D torus topology. Compute Node Linux
runs on the compute nodes.

In running the experiments, we have two options regarding the number
of processes per node. We can either run one process per node or one process
per core. QMC software packages were originally designed to run one MPI
process per core. The trend now is toward one MPI process per node, with
OpenMP threads handling separate random walkers on each core. Qmcpack
already has this hybrid parallelization implemented, and some of the other
packages are expected to have it implemented in the near future. We assume
such a hybrid parallelization, and have one MPI process per node involved
in the load balancing step.

In our experiments, we consider a granularity of 24 random walkers per
node, that is, 2 per core. This is a level of granularity that we desire for QMC
computations in the near future. Such scalability is currently limited by the
periodic collective communication and load balancing that is required.

Both these are related in the following manner. The first step leads to
termination or creation of new walkers, which in turn requires load balancing.
There is some flexibility in the creation and termination of random walkers.
Ideally, the load balancing results both in reduced wall clock time per step
(of all walkers) and an improved statistical efficiency.

We note that there is some flexibility in the creation and termination of
random walkers. Ideally the load balancing is performed after every time
step, to obtain the best statistical error and to minimize systematic errors
due to the finite sized walker population. However, the overhead on large
parallel machines can hinder this, and so one may perform them every few

13

iterations instead. Our goal is to reduce these overheads so that these steps
can be performed after every time step. For large physical systems where the
computational cost per step is very high, these overheads may be relatively
small compared with the computation cost. However, for small to moderate
sized physical systems, these overheads can be large, and we wish to effi-
ciently apply QMC even to small physical systems on the largest parallel
computational systems.

We consider a small system, a Cr2 molecule, with an accurate multideter-
minant trial wavefunction. The use of multideterminants increases computa-
tional time over the use of a single determinant. However, it provides greater
accuracy, which we desire when performing a large run. The computation
time per time step per walker is then around 0.1 seconds. The two collec-
tive steps mentioned above consume less than 10% of the total time on a
large machine (the first step does not involve just collective communication,
but also involves other global decisions, such as branching). Even then, on
100,000 cores, this is equivalent to wasting 10,000 cores. We can expect these
collective steps to consume a larger fraction of time at even greater scale.

In evaluating our load balancing algorithm, we used samples from the load
distribution observed in a long run of the above physical system. Depending
on the details of the calculations, the amount of data to be transferred for
each random walker can vary from 672B to 32KB for Cr2. We compared
our algorithm against the load balancing implementation in QWalk. The
algorithm used in QWalk is optimal in the maximum number of tasks sent
by any processor and in the total number of tasks sent by any processor, but
not on the maximum or total number of messages sent; these are bounded by
the maximum imbalance and the sum of load imbalances respectively. One
may, therefore, expect that algorithm to be more efficient than ours for a
sufficiently large task sizes, and ours to be better for small sizes. Also, the
time taken for the flow computation in QWalk is O(P + total load), where
P is the number of nodes.

Each experiment involved 11 runs. As we show later, inter-job contention
on the network can affect the performance. In order to reduce its impact, we
ignore the results of the run with the largest total time. In order to avoid
bias in the result, we also drop the result of the run with the smallest time.
For a given number of nodes, all runs for all task sizes for both algorithms
are run on the same set of nodes, with one exception mentioned later.

14

5.2. Results

Our testing showed that the time taken for the alias method is linear in
the number of nodes, as expected theoretically (not shown). The maximum
time taken by any node can be considered a measure of the performance the
algorithm, because the slowest processor limits the performance. Figure 1
shows the average, over all the runs, of the maximum time for the following
components of the algorithm. (We refer to it in the figure caption as the
’basic alias method’, in order to differentiate it from a more optimized imple-
mentation described later.) Note that the maximum for each component may
occur on different cores, and so the maximum total time for the algorithm
over all the cores may be less than the sum of the maximum times of each
component. We can see that communication operations consume much of
the time, and the flow computation is not the dominant factor, even with a
large number of nodes. The MPI Isend and MPI Irecv operations take little
time. However MPI Waitall and MPI Allgather consume a large fraction of
the time. It may be possible to overlap computation with communication to
reduce the wait time. However, the all-gather time is still a large fraction of
the total time.

In interpreting the plot in Figure 1, one needs to note that it is drawn
on a semi-log scale. The increase in time, which appears exponential with
the number of cores, is not really so. A linear relationship would appear
exponential on a semi-log scale. On the other hand, one would really ex-
pect a sub-linear relationship for the communication cost. The all-gather
would increase sub-linearly under common communication cost models. In
the absence of contention, the cost of data transfer need not increase with
the number of cores for the problem considered here; the maximum imbal-
ance is 4, each node has 6 communication links, and so, in principle, if the
processes are ideally ordered, then it is possible for data to travel on different
links to nearby neighbors which would be in need of tasks. The communica-
tion time can, thus, be held constant. We can see from this figure that the
communication cost (essentially the wait time) does increase significantly.
The communication time for 12,000 cores is 2-3 times the time without con-
tention, and the time with 120,000 cores is 4-6 times that without contention.
The cause for contention is that the routing on this machine uses fixed paths
between pairs of nodes, and sends data along the x coordinate of the torus,
in the direction of the shortest distance, then in the y direction, and finally

15

10
3

10
4

10
5

0

1

2

3

4

5
x 10

−3

Number of cores

T
im

e
(s

)

Start send/recv

Find flow

All gather

Wait for recv

Figure 1: Maximum time taken for different components of the basic Alias method with
task size 8KB.

in the z direction4. Multiple messages may need to share a link, which causes
contention.

In fig. 2, we consider the mean value of the different components in each
run, and plot the average of this over all runs. We can see that the wait time
is very small. The reason for this is that many of the nodes have balanced
loads. The limiting factor for the load balancing algorithm is the few nodes
with large work.

We next optimize the alias method to reduce contention. We would like
nodes to send data to nearby nodes. We used a heuristic to accomplish this.
We obtained the mapping of node IDs to x, y, and z coordinates on the 3-D
torus. We also found a space-filling Hilbert curve that traverses these nodes.
(A space-filling curve tries to order nodes so that nearby nodes are close
by on the curve.) At run time, we obtain the node IDs, and create a new
communicator that ranks the nodes according to their relative position on
the space-filling curve. We next changed the partitioning algorithm so that it
preserves the order of the space-filling curve in each partition. We also made
slight changes to the alias algorithm so that it tries to match nodes based on

4Personal communication from James Buchanan, OLCF, ORNL.

16

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3
x 10

−3

Number of cores

T
im

e
(s

)

Start send/recv

Find flow

All gather

Wait for recv

Figure 2: Mean time taken for different components of the basic Alias method with task
size 8KB.

their order in the space filling curve. The creation of a new communicator is
performed only once, and the last two steps don’t have any significant impact
on the time taken by the alias method. Thus, the improved algorithm is no
slower than the basic algorithm. Figure 3 shows that the optimized algorithm
has much better performance than the basic algorithm for large core counts.
It is close to 30% better with 120,000 cores, and 15-20% better with 1,200
and 12,000 cores.

We next analyze the reason for the improved performance. Figure 4 con-
siders the average over all runs for the maximum time taken by different
components of the algorithm. As with the analysis of the basic algorithm,
the total maximum time is smaller than the sum of the maximum times of
each component. We can see that the wait time is smaller than that of the
basic algorithm shown in fig. 1, which was the purpose of this optimization.
The improvement is around 60% with 120,000 cores and 20% on 12,000 core.
Surprisingly, the MPI Allgather time also reduces by around 30% on 120,000
cores and 20% on 12,000 cores. It appears that the MPI implementation does
not optimize for the topology of the nodes that are actually allocated for a
run, and instead uses process ranks. The ranks specified by this algorithm
happens to be good for the MPI Allgather algorithm. This improvement

17

10
2

10
4

10
6

0

1

2

3

4
x 10

−3

Number of cores

T
im

e
(s

)

Optimized
Basic

Figure 3: Comparison of optimized Alias method against the basic method with task size
8KB.

depends on the nodes allocated. In the above experiment, with 120,000
cores, the set of allocated nodes consisted of six connected components. In
a different run, we obtained one single connected component. The use of
MPI Allgather with the optimized algorithm did not provide any benefit in
that case. It is possible that the MPI implementation optimized its commu-
nication routines under the assumption of a single large piece of the torus.
When this assumption is not satisfied, perhaps its performance is not that
good.

The performance gains are smaller with smaller core counts, which can
be explained by the following observations. Figure 5 shows the node allo-
cation for the 12,000 core run. We can see that we get a large number of
connected components. Thus, inter-job contention can play an important
role. Each component is also not shaped close to a cube. Instead, we have
several lines and 2-D planes, long in the z direction. This makes it hard to
avoid intra-job contention, because each node is effectively using fewer links,
making contention for links more likely. It is perhaps worthwhile to consider
improvements to the node allocation policy. For 120 and 1,200 cores, typi-
cally each connected component is a line (or a ring, due to the wrap-around
connections), which would lead to contention if there were several messages

18

10
3

10
4

10
5

0

1

2

3

4

5
x 10

−3

Number of cores

T
im

e
(s

)

Start send/recv

Find flow

All gather

Wait for recv

Figure 4: Maximum time taken for different components of the Optimized Alias method
with task size 8KB.

sent. However, the number of nodes with imbalance is very small, and con-
tention does not appear to affect performance in the load migration phase.
Consequently, improvement in performance is limited to that obtained from
the all-gather operation.

We next compare the optimized alias implementation against the QWalk
implementation in Fig. 6, Fig. 7, and Fig. 8. The new algorithm improves
the performance by up to 30-35% in some cases, and is typically much bet-
ter for large numbers of cores. The improved performance is often due to

Figure 5: Allocation of nodes on the grid for a run with 12,000 cores.

19

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Number of cores

T
im

e
(s

)
Alias max

Alias mean

QMC max

QMC mean

Figure 6: Comparison of the optimized Alias algorithm against the existing QWalk imple-
mentation with task size 672B.

10
2

10
3

10
4

10
5

10
6

0

1

2

3

4

5

6
x 10

−3

Number of cores

T
im

e
(s

)

Alias max

Alias mean

QMC max

QMC mean

Figure 7: Comparison of the optimized Alias algorithm against the existing QWalk imple-
mentation with task size 2KB.

20

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Number of cores

T
im

e
(s

)

Alias max

Alias mean

QMC max

QMC mean

Figure 8: Comparison of Alias algorithm with the existing QWalk implementation with
task size 32KB.

improvement in different components of the algorithm and its implementa-
tion: all-gather, task migration communication cost, and to a smaller extent,
time for the flow computation. We can see from these figures that the time
for 2KB tasks is higher on 120,000 cores than that for larger messages, es-
pecially with the QWalk algorithm. This was a consistent trend across the
runs with QWalk. The higher time with the Alias method is primarily the
result of a couple of runs taking much larger time than the others. These
could, perhaps, be due to inter-job contention. We did not ignore this data
as an outlier, because if such a phenomenon occurs 20% of the time, then we
believe that we need to consider it a reality of the computations in realistic
conditions.

We know that the alias method is optimal in the maximum number of
messages received by any node, and find (not shown) that QWalk requires an
increasing maximum number of receives with increasing core count. However,
when we measure the mean number of tasks sent per core, Fig.9, we find that
QWalk is optimal. The alias method is approximately a factor of two worse
in terms of the number of messages sent. Although we do not see this in tests
with realistic message sizes, for sufficiently large messages it is clear that there
must be a cross-over in the preferred load balancing algorithm. At some point

21

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

Number of cores

T
as

ks
 m

ig
ra

te
d

Alias
QMC

Figure 9: Mean number of tasks sent per core.

the existing QWalk algorithm will be preferred since the communications will
be bandwidth bound.

6. Conclusions

We have proposed a new dynamic load balancing algorithm for compu-
tations with independent identical tasks, which has some good theoretical
properties. We have shown that it performs better than the current methods
used in Quantum Monte Carlo codes in empirical tests. We have also opti-
mized the implementation and demonstrated that it has better performance
due to reduced network contention. The relative performance of the algo-
rithm to existing methods is expected to increase with the increased compute
element count of upcoming machines.

Our future work will be along two directions: (i) developing better algo-
rithms and (ii) improving performance of the current implementation. We
note that our algorithm is optimal in terms of the maximum number of
messages received by a process and also in terms of the maximum size of
messages received. However, it is not optimized in terms of the total sizes
of the messages on the network. This limitation can reduce performance
by increasing the likelihood of network congestion. However, the simplicity
of the messaging in the current algorithm and implementation demonstra-

22

bly allows for communications network contention to be reduced, by using a
ranking based on a space filling curve or based on specific knowledge of the
hardware layout. In future, we expect the simplicity of the messaging will al-
low for straightforward overlap of communication and computation, allowing
much of the communications overhead to be hidden, while using very simple
code. The data migration cost can also be hidden, provided that at least two
walkers are used per compute element and that the transfer/communications
time remains less than the computation cost of a single walker. Finally, we
note that the flow computation can itself be parallelized, a step that will be
required as machines with millions of compute elements become available.

Acknowledgments

We acknowledge the ORAU/ORNL HPC program for partial funding, and
the INCITE program for computing time. Research by PRCK was conducted
at the Center for Nanophase Materials Sciences, which is sponsored at Oak
Ridge National Laboratory by the Scientific User Facilities Division, U.S.
Department of Energy.

References

1. Lester WA, Reynolds P, Hammond BL. Monte Carlo methods in ab
initio quantum chemistry. Singapore: World Scientific; 1994. ISBN
9789810203214.

2. Foulkes WMC, Mitas L, Needs RJ, Rajagopal G. Quantum Monte Carlo
simulations of solids. Reviews of Modern Physics 2001;73(1):33.

3. Luchow A. Quantum Monte Carlo methods. Wiley Interdisciplinary
Reviews: Computational Molecular Science 2011;1(3):388–402.

4. Martin RM. Electronic Structure: Basic Theory and Practical Methods.
Cambridge University Press; 2004. ISBN 0521782856.

5. Needs RJ, Towler MD, Drummond ND, Rios PL. Continuum variational
and diffusion quantum Monte Carlo calculations. Journal of Physics:
Condensed Matter 2010;22:023201.

6. CHAMP . http://pages.physics.cornell.edu/ cyrus/champ.html. 2011.

23

7. QMCPACK . http://qmcpack.cmscc.org/. 2011.

8. Wagner LK, Bajdich M, Mitas L. Qwalk: A quantum Monte Carlo
program for electronic structure. Journal of Computational Physics
2009;228:3390–3404.

9. Nemec N. Diffusion Monte Carlo: Exponential scaling of computational
cost for large systems. Physical Review B 2010;81(3):035119.

10. Gillan MJ, Towler MD, Alfe D. Petascale computing open new vistas
for quantum Monte Carlo. In: Psi-K Newsletter ; vol. 103. 2011: 32.

11. Hu YF, Blake RJ, Emerson DR. An optimal migration algorithm
for dynamic load balancing. Concurrency: Practice and Experience
1998;10:467–483.

12. Pothen A, Simon HD, Liou K. Partitioning sparse matrices with eigen-
vectors of graphs. SIAM Journal on Matrix Analysis and Applications
1990;11:430–452.

13. Barnard ST, Simon HD. A fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems. Concurrency:
Practice and Experience 1994;6:101–107.

14. Karypis G, Kumar V. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing
1998;20:359–92.

15. Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing 1998;48:96–129.

16. Karypis G, Kumar V. A parallel algorithm for multilevel graph parti-
tioning and sparse matrix ordering. Journal of Parallel and Distributed
Computing 1998;48:71–95.

17. Karypis G, Kumar V. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Tech. Rep. 95-035; University of Minnesota;
1995.

18. Oliker L, Biswas R. PLUM: Parallel load balancing for adaptive un-
structured meshes. Journal of Parallel and Distributed Computing
1998;51:150–177.

24

19. Cybenko G. Journal of parallel and distributed computing. Dynamic
load balancing for distributed memory multiprocessors 1989;7:279–301.

20. Diekmann R, Frommer A, Monien B. Efficient schemes for nearest neigh-
bor load balancing. Parallel Computing 1999;25(7):789–812.

21. Hu YF, Blake RJ. An improved diffusion algorithm for dynamic load
balancing. Parallel Computing 1999;25:417–444.

22. Ghosh B, Muthukrishnan S, Schultz MH. First and second order dif-
fusive methods for rapid, coarse, distributed load balancing. Theory of
Computing Systems 1998;31:331–354.

23. Elsasser R, Monien B, Schamberger S. Distributing unit size workload
packages in heterogeneous networks. Journal of Graph Algorithms and
Applications 2006;10:51–68.

24. Schloegel K, Karypis G, Kumar V. A unified algorithm for load-
balancing adaptive scientific simulations. In: Proceedings of the
IEEE/ACM SC2000 Conference. IEEE Computer Society; 2000:.

25. Catalyurek U, Boman E, Devine K. A repartitioning hypergraph model
for dynamic load balancing. Journal of Parallel and Distributed Com-
puting 2009;69:711–724.

26. Walshaw C, Cross M. Dynamic mesh partitioning and load-balancing
for parallel computational mechanics codes. In: Topping BHV, ed. Com-
putational Mechanics Using High Performance Computing. Edinburgh:
Saxe-Coburg Publications; 1999:.

27. Li X, Parashar M. Hierarchical partitioning techniques for structured
adaptive mesh refinement applications. The Journal of Supercomputing
2003;28:278.

28. Qin X. Performance comparison of load balancing algorithms for i/o-
intensive workloads on clusters. Journal of Network and Computer Ap-
plications 2008;31:32–46.

29. Iosup A, Sonmez O, Anoep S, Epema D. The performance of bags-of-
tasks in large-scale distributed systems. In: Proceedings of the HPDC.
2008:.

25

30. Fujimoto N, Hagihara K. Near-optimal dynamic task scheduling of inde-
pendent coarse-grained tasks onto a computational grid. In: Proceedings
of the International Conference on Parallel Processing. 2003:391–398.

31. Maheswaran M, Ali S, Siegal H, Hensgen D, Freund R. Dynamic map-
ping of a class of independent tasks onto heterogeneous computing
systems. In: Proceedings of the Heterogeneous Computing Workshop.
1999:30–44.

32. Dhakal S, Hayat M, Pezoa J, Yang C, Bader D. Dynamic load balanc-
ing in distributed systems in the presence of delays: A regeneration-
theory approach. IEEE Transactions on Parallel and Distributed Sys-
tems 2007;18:485–497.

33. Walker AJ. An efficient method for generating discrete random variables
with general distributions. ACM Transactions on Mathematical Software
1977;3:253–256.

34. Kronmal RA, Peterson AV. On the alias method for generating ran-
dom variables from a discrete distribution. The American Statistician
1979;33:214–218.

26

