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Abstract

The multicanonical method has been proven powerful for statistical investigations of lattice and off-lattice systems
throughout the last two decades. We discuss an intuitive but very efficient parallel implementation of this algorithm
and analyze its scaling properties for discrete energy systems, namely the Ising model and the 8-state Potts model.
The parallelization relies on independent equilibrium simulations in each iteration with identical weights, merging their
statistics in order to obtain estimates for the successive weights. With good care, this allows faster investigations of large
systems, because it distributes the time-consuming weight-iteration procedure and allows parallel production runs. We
show that the parallel implementation scales very well for the simple Ising model, while the performance of the 8-state
Potts model, which exhibits a first-order phase transition, is limited due to emerging barriers and the resulting large
integrated autocorrelation times. The quality of estimates in parallel production runs remains of the same order at same
statistical cost.
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1. Introduction

Monte Carlo simulations are an important tool to in-
vestigate a wide range of theoretical models with respect
to their statistical properties such as phase transitions,
structure formation and more. Throughout the last two
decades, umbrella sampling algorithms like the multicanon-
ical [1, 2] or the Wang-Landau [3] algorithm have been
proven to be very powerful for investigations of statistical
phenomena, especially first-order phase transitions, for lat-
tice and off-lattice models. They have been applied to a
variety of systems with rugged free-energy landscapes in
physics, chemistry and structural biology [4].

Due to the fact that computer performance increases
mainly in terms of parallel processing on multi-core archi-
tectures, a parallel implementation is of great interest, if
the additional cores bring a benefit to the required simu-
lation time. We present the scaling properties of a simple
and straightforward parallelization of the multicanonical
method, which has been reported in a similar way in [5]
without much detail to the performance. This paralleliza-
tion considers independent Markov chains, keeping com-
munication to a minimum. Thus, it can be added on top
of the multicanonical algorithm without much modifica-
tion or system-dependent considerations and is also suit-
able for systems with simple energy calculation. Similar
to this parallelization, there have been previous reports for

∗Corresponding author
Email address: zierenberg@itp.uni-leipzig.de (Johannes

Zierenberg)

the Wang-Landau algorithm [6, 7], which needed a little
more adaption to the algorithm.

2. Multicanonical Algorithm

The multicanonical method allows to sample a system
over a range of canonical ensembles at the same time. This
is possible, because the statistical weights are modified in
such a way that the simulation reaches each configuration
energy of a chosen interval with equal probability, resulting
in a flat energy histogram. To this end, the canonical
partition function, in terms of the density of states Ω(E),
is modified in the following way:

Zcan =
∑
{xi}

e−βE({xi}) =
∑
E

Ω(E)e−βE

→ ZMUCA =
∑
{xi}

W (E ({xi})) =
∑
E

Ω(E)W (E).
(1)

In order that each energy state occurs with the same prob-
ability, as requested above, the statistical weights have to
equal the inverse density of states W (E) = Ω−1(E). After
an equilibrium simulation with those weights, it is possible
to reweight to all canonical ensembles with a Boltzmann
energy distribution covered by the flat histogram. This
can be done for example by time-series reweighting, where
in the average each measured observable is multiplied with
its desired weight and divided by the weight with which it
was measured:

〈O〉β =
〈Oie−βEiW−1 (Ei)〉MUCA

〈e−βEiW−1 (Ei)〉MUCA
. (2)
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Of course, the density of states and consequently the
weights that yield a flat energy histogram are not known
in advance. Therefore the weights have to be obtained
iteratively. In the most simple way consecutive weights
are obtained from the last weights and the current energy
histogram, W (n+1)(E) = W (n)(E)/H(n)(E). More sophis-
ticated methods exist, where the full statistics of previous
iterations is used for a stable and efficient approximation
of the density of states [2]. All our simulations use this re-
cursive version with logarithmic weights in order to avoid
numerical problems.

Parallel Version

The idea of this parallel implementation, similar to [5],
is to distribute the time consuming generation of statistics
on p independent processes. All processes perform equilib-

rium simulations with identical weights W
(n)
i = W (n), i =

1, ..., p, but with different random number seeds, resulting

in similar but independent energy histograms H
(n)
i (E).

The histograms are merged after each iteration and one

ends up with H(n)(E) =
∑
iH

(n)
i (E). According to the

weight modification of choice, the collected histogram is
processed together with the previous weights in order to
estimate the consecutive weightsW (n+1). The new weights
are distributed onto all processes, which run equilibrium
simulations again. That way, the computational effort may
be distributed on several cores, allowing to generate the
same amount of statistics in a fraction of the time. Impor-
tant to notice is that a modification of the program only
influences the histogram merging and the distribution of
the new weights, see Fig. 1. The iterations are indepen-
dent copies run in parallel and the weight modification is
performed on the master process as in the non-parallelized
case.

Figure 1: Scheme of the parallel implementation of the multicanon-
ical algorithm on p cores. After each iteration with independent
Markov chains but identical weights, the histograms are merged, the
new weights are estimated and the weights are distributed onto all
processes again.

3. Systems and Implementation Issues

We consider two discrete two-dimensional spin systems,
namely the well known Ising model and the q-state Potts
model with q = 8, where the Ising model can be mapped

onto the q = 2 Potts model. The Ising model exhibits a
second-order phase transition at β0 = ln

(
1 +
√

2
)
/2 and

the 8-state Potts model exhibits a first-order phase transi-
tion at β0 = ln

(
1 +
√

8
)
. The spins are located on a square

lattice with side length L and interact only between near-
est neighbors. In case of the Ising model, the interaction
is described by the Hamiltonian

H(Ising) = −J
∑
〈i,j〉

sisj , (3)

where J is the coupling constant and si,sj can take the val-
ues {−1, 1}. For the q-state Potts model, where each site
assumes values from {0, . . . , q − 1}, the nearest-neighbors
interaction is described by

H(Potts) = −J
∑
〈i,j〉

δ(si, sj), (4)

where δ(si, sj) is the Kronecker-Delta function which is
only non-zero in case si = sj .

In those two cases the number of discrete energy states
is equal to the number of lattice sites V = L2, such that
the width of the energy range increases quickly with sys-
tem size. The simulations in this study start at infinite
temperature, i.e., β = 1/T = 0 with quite narrow energy
histograms. Because an estimation of successive weights is
only possible for energies with non-zero histogram entries,
the number of iterations may be very large for wide energy
ranges. In order to ensure faster convergence, our imple-
mentation includes after each estimation of weights a cor-
rection function, which linearly interpolates the logarith-
mic weights at the boundaries of the sampled region (with
a range of L bins), allowing the next iteration to sample
a larger energy region. The MUCA weights are converged
if the last iteration covered the full energy range and all
histogram entries are within half and twice the average his-
togram entry. Between convergence of the weights and the
final production run, the systems are thermalized again in
order to yield correct estimates of the observables. In both
cases, each sweep includes V number of spin updates.

4. Performance and Scaling

In order to estimate the performance and the speedup
of the parallel algorithm appropriately, we performed the
analysis in two steps. First, we estimated the optimal
number of sweeps per iteration and core, which we will
refer to as M . To this end, we performed parallel MUCA
simulations over a wide range of M for different lattice
sizes L and number of cores p. The simulations were ther-
malized once in the beginning on every core, continuing
the next iteration with the last state of the previous itera-
tion on that core. This violates the equilibrium condition
a little, as no intermediate thermalization phase was ap-
plied and part of the iteration was needed to reach equi-
librium. This is accepted in order to compare the perfor-
mance equally without an additional parameter to opti-
mize next to M . Furthermore, the physical results were
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Figure 2: (left) Example for the estimation of Mopt for the 8×8 Ising model with 1 and 8 cores. The minimum of the total statistics N̄iterMp

with respect to M yields M̃opt. (right) Plot of M̃opt versus the number of cores p used in the parallel MUCA simulation for the Ising (filled
symbols) and the 8-state Potts (open symbols) model. The system sizes are 8×8 (red squares), 16×16 (green circles), 32×32 (blue triangles)
and 64 × 64 (black diamonds). Fitted to the data points is the power-law dependence (5).

not influenced, because each Markov chain was thermal-
ized before the final production run. We determined the
mean number of iterations until convergence to a flat his-
togram N̄iter as the average over 10 simulations at different
initial seeds. Plotting the total number of sweeps N̄iterMp
versus M , we can estimate the optimal number of sweeps
per iteration and core M̃opt as the minimum of this func-
tion [see Fig. 2(left)]. For a small number of cores, this
curve has a rather broad minimum, introducing a rough
estimate. If, on the other hand, we stretch the curves
along the x-axis with the number of cores, the outcomes
look quite similar.

Selected results of the estimation of M̃opt are shown in
Fig. 2(right). We see that for different lattice sizes and
spin models the dependence on the number of cores may
be described by a 1/p power law, where the amplitudes
seem to depend on the system size and the number of
states (notice that the Potts model curves nearly coincide
with those of the Ising model with 4 times system size). In
order to measure the performance equally, it is convenient
to describe M̃opt by a function of system size L and number

of cores p, M̃opt(L, p) ≈Mopt(L, p) = M1(L)/p, where M1

is the interpolated optimal M for one core. Therefore,
we estimated M̃opt for the square lattice sizes 8, 16, 24,
32, 48, 64, 96 (latter two only for Ising) with p ≤ 32 and
fitted for fixed size Mopt(L, p) = M1(L)/p. The obtained
M1(L) were plotted over L and fitted with a power law
(see Fig. 3). In the end, the optimal number of sweeps per
core and iteration were systematically described by the
functions

M
(Ising)
opt (L, p) = 5.7(5)× L2+0.51(4) 1

p

M
(8Potts)
opt (L, p) = 24(4)× L2+0.67(6) 1

p
,

(5)

which can be justified, considering that a random walk
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Figure 3: The optimal number of sweeps for a single core M1(L)
together with its fit. Each data point is interpolated by fitting
Mopt(p) = M1/p to the estimated M̃opt for p ≤ 32.

through energy space has to depend on the total system
size and the number of spin states. This power-law behav-
ior corresponds roughly to the scaling of the multicanoni-
cal tunneling times in previous works [8, 1]. The explicit
functional dependence (5) is characteristic for our specific
implementation and will be the basis for our performance
study (including larger lattice sizes). Interesting to no-
tice is the prefactor ratio between 8-state Potts and Ising
(which is a 2-Potts model) of about 4, corresponding to
the increase in the number of spin states.

Afterwards, we performed parallel MUCA simulations
with different number of cores for each system size, using
Mopt(L, p) in order to compare the optimal performance at
each degree of parallelization. To this end, we considered
the speedup for p cores, defined in terms of real time tp
until convergence of the MUCA weights,

Sp =
t1
tp
, (6)
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Figure 4: Performance for the Ising model over different system sizes expressed by (left) the speedup factor and (right) the time-independent
statistical speedup factor.
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Figure 5: Performance for the 8-state Potts model over different system sizes expressed by (left) the speedup factor and (right) the time-
independent statistical speedup factor.
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Figure 6: Performance for the multimagnetic simuation of the Ising model at β = (3/2)β0 over different system sizes expressed by (left) the
speedup factor and (right) the time-independent statistical speedup factor.
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as well as the time-independent statistical speedup, de-
fined in terms of total number of sweeps on each core until
convergence N̄iterMopt(L, p),

S∗p =
[N̄iterMopt(L, 1)]1
[N̄iterMopt(L, p)]p

, (7)

where the subscript indicates the number of cores used. In
order to estimate the mean performance, we averaged the
required time and number of sweeps over 32 independent
PMUCA simulations for each data point. The results for
the Ising model are shown in Fig. 4, revealing that the par-
allel implementation of MUCA results in a linear speedup
up to 64 cores already for system sizes L ≥ 24. In case
of small system sizes L = 8, the small Mopt leads to con-
vergence of MUCA weights within milliseconds, which is
difficult to measure precisely. In addition, it can be seen
that the statistical speedup scales linearly for all system
sizes investigated. This means that the total required num-
ber of sweeps until convergence does not increase with the
number of cores (compare also Fig. 2(left)). This indi-
cates no slowdown of the parallelization other than from
communication, which is kept to a minimum.

In case of the 8-state Potts model, the performance
does not scale as linearly with the number of cores, see
Fig. 5, but is still satisfying. The reason for the drop in
performance may be found in the first-order aspect [9] of
the Potts model. In the transition from the disordered
to an ordered phase the model undergoes a droplet-strip
transition [10]. Previous work on multimagnetic simula-
tions of the Ising model [11] showed that such a transition
(and also the droplet-condensation transition) is accom-
panied by “hidden” barriers, which are not directly re-
flected in the multimagnetic or multicanonical histograms
and hence are difficult to overcome. We applied the par-
allel version of the multicanonical method also to a mul-
timagnetic simulation of the Ising model at β = (3/2)β0,
determined Mopt(p) for the lattice sizes L = 8, 16, 24, 32
and measured the speedup factor. The result can be seen
in Fig. 6 and shows the same drop in performance as we
can observe for the 8-state Potts model.

With this picture in mind, the drop in performance
may be explained by the fact that with increasing p we
decreased the number of sweeps per iteration and thus de-
creased the chance to efficiently cross emerging barriers.
When reducing the number of sweeps per iteration as a
consequence of parallelization, this reaches a point where
the number of sweeps are of the order of the integrated
autocorrelation time τ and each Markov chain is strongly
correlated, see also Fig. 7. Exemplary measurements of
τ in the 8-state Potts model for different lattice sizes re-
vealed that it was of the order ofMopt(L, 8) toMopt(L, 16),
verifying the drop in performance for p ≥ 16. This gives a
limit of parallelization depending on the barriers and the
associated autocorrelation times of the system.

From a practical point of view, when simulating com-
plex systems, it may be advantageous to introduce short

τ

τ

τ
p=1

p=4

p=8

Figure 7: Scheme of the number of sweeps per iteration and core in
comparison to the integrated autocorrelation time τ . If the number
of sweeps per core gets smaller than the integrated autocorrelation
time of the Markov chain, the convergence of the MUCA weights
gets worse and the performance drops.

thermalization phases between iterations. Exemplary in-
vestigations of the 8-state Potts model with intermediate
thermalization showed that the number of iterations can
be reduced significantly while introducing additional com-
putation time.

5. Quality

The parallel MUCA weight recursion can be extended
by a parallel production run, acquiring data with indepen-
dent Markov chains. This allows equally good estimation
of observables for a constant number of total measure-
ments, if it is ensured that each Markov chain samples the
desired phase space appropriately. For the Ising model,
we considered the relative deviation from the exact result
Oex [12] and averaged over a temperature range around
the critical temperature

〈dO〉 = (1/N)
∑
βi

|O(βi)−Oex(βi)|
Oex(βi)

. (8)

In this case the range was chosen to be β ∈ [3/10, 6/10]
with N = 300 steps. Figure 8 shows the average deviation
of the specific heat 〈dCV 〉 (CV = β2

(
〈E2〉 − 〈E〉2

)
/V ) for

different sizes of the Ising model. The error was estimated
by averaging over 16 independent runs. In each simula-
tion there was an additional thermalization phase after the
MUCA-weight convergence and the final production run
was performed with 30 ×Mopt(L, p) measurement points
and 50 sweeps between measurements. The decrease of the
relative deviation with increasing lattice size comes from
this choice. From Fig. 8(right) it can be seen that, for a
given system size, the relative deviations remain constant
within the statistical error for all p.

In order to verify the quality of the parallel simula-
tion of the 8-state Potts model, we estimated the scaling
of the order-disorder interface tension σod and compared
it to analytic results [13]. The interface tension can be
approximated in terms of the probability density of the
histograms at the transition temperature [14],

σod = lim
L→∞

1

2L
ln

(
Pmax

Pmin

)
β0

. (9)

5



0.4

0.8

1.2

1.6

2

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

C
V

T

08× 08
16× 16
32× 32
64× 64

0.001

0.01

0.1

1 10 100

〈d
C

V
〉

p

08× 08
16× 16
32× 32
64× 64
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Figure 9: (left) Reweighted normalized mean energy histograms and (right) the scaling of the order-disorder interface tension for the 8-state
Potts model simulated on 64 cores.

This requires to first find the temperature for which the
reweighted energy histogram shows two equally high peaks
[see Fig. 9(left)] and then to estimate the ratio between the
maximum and minimum. Figure 9(right) shows a rough
scaling of the order-disorder interface tension for several
system sizes up to 96 × 96, simulated with 64 cores. The
fit to the larger system sizes yields an infinite lattice limit
σod ≈ 0.045, which is consistent with the exact result [13]
and verifies that the parallel implementation yields correct
results.

6. Conclusion

We presented a straightforward parallel implementa-
tion of the multicanonical algorithm and showed that its
scaling properties with the number of cores are very good
for the Ising model and adequate for the 8-state Potts
model. The latter one suffers from emerging barriers at the
first-order phase transition, resulting in large integrated

autocorrelation times. The parallelization profits from a
minimal amount of communication because histograms are
merged at the end of each iteration. This is the main rea-
son why it is difficult to adapt this method to weight re-
cursions of the Wang-Landau type where the weights are
changed after each spin update. Since it would be interest-
ing to find a similar approach for those weight recursions,
not relying on shared memory, we are currently investi-
gating this problem. The major advantage of the imple-
mentation employed here lies in the fact, that no greater
adjustment to the usual implementation is necessary and
that additional modifications may be carried along. Thus,
it can be easily generalized to complex systems, e.g. (spin)
glasses or (bio) polymers, and allows good convergence if
it is ensured that the number of sweeps per core is greater
than the integrated autocorrelation times.
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