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Abstract
We describe the new version 2.00d of the code hfbtho that solves the nuclear Skyrme

Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the cylindri-
cal transformed deformed harmonic oscillator basis. In the new version, we have implemented
the following features: (i) the modified Broyden method for non-linear problems, (ii) optional
breaking of reflection symmetry, (iii) calculation of axial multipole moments, (iv) finite temper-
ature formalism for the HFB method, (v) linear constraint method based on the approximation
of the Random Phase Approximation (RPA) matrix for multi-constraint calculations, (vi) block-
ing of quasi-particles in the Equal Filling Approximation (EFA), (vii) framework for generalized
energy density with arbitrary density-dependences, and (viii) shared memory parallelism via
OpenMP pragmas.

PACS numbers: 07.05.T, 21.60.-n, 21.60.Jz

NEW VERSION PROGRAM SUMMARY

Title of the program: hfbtho v2.00d

Catalogue number: ....

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland (see
application form in this issue)

Reference in CPC for earlier version of program: M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz,
P. Ring, Comput. Phys. Commun. 167 (2005) 43-63.

Catalogue number of previous version: ADFL v2 1

1E-mail: schunck1@llnl.gov
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Licensing provisions: GPL v3

Does the new version supersede the previous one: Yes

Computers on which the program has been tested: Intel Pentium-III, Intel Xeon, AMD-Athlon,
AMD-Opteron, Cray XT5, Cray XE6

Operating systems: UNIX, LINUX, Windowsxp

Programming language used: FORTRAN-95

Memory required to execute with typical data: 200 Mwords

No. of bits in a word: 8

Has the code been vectorised?: Yes

Has the code been parallelized?: Yes

No. of lines in distributed program: 11 387

Keywords: Hartree-Fock; Hartree-Fock-Bogolyubov; Nuclear many-body problem; Skyrme in-
teraction; Self-consistent mean field; Density functional theory; Generalized energy density func-
tional; Nuclear matter; Quadrupole deformation; Octupole deformation; Constrained calcula-
tions; Potential energy surface; Pairing; Particle number projection; Nuclear radii; Quasiparticle
spectra; Harmonic oscillator; Coulomb field; Transformed harmonic oscillator; Finite tempera-
ture; Shared memory parallelism.

Nature of physical problem
The solution of self-consistent mean-field equations for weakly-bound paired nuclei requires a
correct description of the asymptotic properties of nuclear quasiparticle wave functions. In
the present implementation, this is achieved by using the single-particle wave functions of the
transformed harmonic oscillator, which allows for an accurate description of deformation effects
and pairing correlations in nuclei arbitrarily close to the particle drip lines.

Method of solution
The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to
expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov
Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interac-
tions until a self-consistent solution is found. A previous version of the program was presented
in: M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167
(2005) 43-63.

Summary of revisions

1. The modified Broyden method has been implemented,
2. Optional breaking of reflection symmetry has been implemented,
3. The calculation of all axial multipole moments up to λ = 8 has been implemented,
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4. The finite temperature formalism for the HFB method has been implemented,
5. The linear constraint method based on the approximation of the Random Phase Approx-

imation (RPA) matrix for multi-constraint calculations has been implemented,
6. The blocking of quasi-particles in the Equal Filling Approximation (EFA) has been imple-

mented,
7. The framework for generalized energy density functionals with arbitrary density-dependence

has been implemented,
8. Shared memory parallelism via OpenMP pragmas has been implemented.

Restrictions on the complexity of the problem
Axial- and time-reversal symmetries are assumed.

Typical running time
Highly variable, as it depends on the nucleus, size of the basis, requested accuracy, requested
configuration, compiler and libraries, and hardware architecture. An order of magnitude would
be a few seconds for ground-state configurations in small bases Nmax ≈ 8− 12, to a few minutes
in very deformed configuration of a heavy nucleus with a large basis Nmax > 20.

Unusual features of the program
The user must have access to (i) the LAPACK subroutines dsyevd, dsytrf and dsytri, and
their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices,
(ii) the LAPACK subroutines dgetri and dgetrf, which invert arbitrary real matrices, and
(iii) the BLAS routines dcopy, dscal, dgemm and dgemv for double-precision linear algebra
(or provide another set of subroutines that can perform such tasks). The BLAS and LA-
PACK subroutines can be obtained from the Netlib Repository at the University of Tennessee,
Knoxville: http://netlib2.cs.utk.edu/.

LONG WRITE-UP

1 Introduction

The method to solve the Skyrme Hartree-Fock-Bogolyubov equations in the transformed har-
monic oscillator basis was presented in [1]. The present paper is a long write-up of the new
version of the code HFBTHO. This extended version contains a number of new capabilities
such as the breaking of reflection symmetry, the calculation of axial multipole moments, multi-
constraint calculations and the readjustment of the corresponding Lagrange parameters using
the cranking approximation of the RPA matrix, the blocking prescription in odd-even and odd-
odd nuclei, the finite-temperature formalism, and generalized Skyrme-like energy functionals.

In addition to releasing a new version of the solver for general applications in nuclear science,
the goal of this paper is to establish a number of precise benchmarks for nuclear structure
calculations with Skyrme functionals. To this end, we devote an entire section to comparing
various calculations performed with the spherical HOSPHE version 2.00 [2, 3], axially-deformed
HFBTHO v2.00d, and symmetry-unrestricted HFODD version 2.56 [4, 5, 6] nuclear density
functional theory (DFT) solvers. Also, in order to facilitate the development of future versions
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of HFBTHO as well as to enable deeper integration with the next releases of HFODD, backward
compatibility of input and output files has been broken between the version 1.66 of [1] and the
current version 2.00d. Unless indicated otherwise, details about the methods presented in [1]
still apply.

In section 2, we review the new capabilities of the code. In section 3, we present a num-
ber of numerical benchmarks between HFBTHO and the aforementioned DFT solvers. Such
benchmarks are very important in view of the future development of these programs.

2 Modifications introduced in version 2.00d

We present in this section the major new features added to the code between version 1.66 and
2.00d. Minor improvements and bug fixes are not discussed here, the full history of changes can
be found in the source code.

2.1 Modified Broyden Method

In HFBTHO v2.00d, the matrix elements of the HFB matrix are updated at each iteration
using the modified Broyden method, instead of the traditional linear mixing of version 1.66.
Details of the implementation, results of convergence tests, and comparisons with alternative
implementations can be found in [7].

2.2 Axial multipole moments

In HFBTHO v2.00d, the expectation value of axial multipole moments Q̂l ≡ Q̂l0 = rlYl0(θ, ϕ) on
the HFB ground-state is computed for all moments up to lmax = 8. We recall that in spherical
coordinates, the multipole moment Q̂l of order l reads

Q̂l(r, θ, ϕ) = rl
√

2l + 1

4π
Pl(cos θ), (1)

where Pl is the Legendre polynomial of order l [8]. Spherical and cylindrical coordinate systems
are related through r2 = ρ2 + z2 and r cos θ = z. Recurrence relations on Legendre polynomials
give an analytical expression for Q̂l(r, z, ϕ) for l = 0, . . . , 8 [8]. Multipole moments can also be
used as constraints. In this case, the matrix elements of Q̂l in the HO basis need to be computed.
They are evaluated numerically on the Gauss-Laguerre and Gauss-Hermite nodes of integration
used throughout the code [1].

2.3 Finite-temperature HFB method

The code HFBTHO v2.00d solves the finite temperature HFB (FT-HFB) equations. The numer-
ical implementation is similar to that of HFODD v2.49t in [5]. Let us recall that the FT-HFB
equations take the same form as the HFB equations at T = 0, only the one-body density matrix
and pairing tensor now depend on the Fermi-Dirac occupation fµ of quasi-particle states µ.
Assuming axial- and time-reversal symmetry, all density matrices are real and read

ρ = UfUT + V (1 − f)V T

κ = UfV T + V (1 − f)UT ,
(2)
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with U, V the matrices of the Bogolyubov transformation. In HFBTHO, these matrices are
block-diagonal. As in HFODD, the Fermi level λ is not treated explicitly as the Lagrange
parameter for the multipole operator Q̂00 alongside other multipole moments Q̂lm. Instead, it
is determined directly at each iteration from the conservation of particle number and is based
on the BCS formula

N(λ) =
∑

µ

[

vµ(λ)2 + (u2
µ(λ) − v2µ(λ))fµ(λ)

]

. (3)

The BCS occupations are given by the traditional formulae

v2µ =
1

2

[

1 − εµ − λ

EBCS
µ

]

, u2
µ = 1 − v2µ, (4)

with EBCS
µ =

√

(εµ − λ)2 + ∆2
µ and εµ and ∆µ are the equivalent single-particle energies and

pairing gaps, see appendix B in [9]. The Fermi-Dirac occupation factors are given by

fµ(λ) =
1

1 + eβE
BCS
µ

. (5)

When using the Newton-like method to solve the equation N(λ) = N,Z for each type of particle
at T > 0, one must now include the contribution ∂fµ/∂λ in the derivative of the function N(λ).

2.4 Linear constraints and the RPA method

Multi-constraint calculations are possible in HFBTHO v2.00d. The code implements the linear
constraint method, where the quantity to be minimized is

E ′ = E −
∑

a

λa

(

〈Q̂la〉 −Qla

)

, (6)

where Q̂la is the multipole moment operator for the constraint a and λa is the related Lagrange
parameter. Lagrange parameters are readjusted at each iteration according to the procedure
presented in [10] and also used in the latest release of HFODD [5]. The philosophy of the method
is to associate the variation of the Lagrange parameters with a first-order perturbation of the
generalized density matrix.

As a reminder, we start with the variations δR of the generalized density matrix, which
induce variations of the HFB matrix δH and of the Lagrange parameters δλ = (δλ1, . . . , δλN),
(up to first order). Neglecting the variations of the HFB matrix with respect to the generalized
density matrix is equivalent to working at the so-called cranking approximation, and it reduces
the HFB equation with the perturbed quantities to

[

δR,H(0)
]

− 1

2

∑

a

δλa

[

R(0),Qla

]

= 0, (7)

with R(0) and H(0), respectively, the unperturbed generalized density matrix and HFB Hamilto-
nian, δλa the perturbation of the Lagrange parameter for the constraint a, and Qla the matrix
of the constraint in the doubled s.p. basis. This equation gives the desired relation between
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δR and δλ. The Lagrange parameter can then be readjusted at each iteration by interpreting
the deviation δQla = 〈Q̂la〉 − Qla from the requested value Qla as caused by a variation of the
generalized density matrix δR,

δQla =
1

2
Tr (QlaδR) . (8)

Knowing the deviation δQla , we obtain δR, and thereby deduce the δλa needed to reproduce the
requested value. Calculations are performed in the q.p. basis, since the unperturbed generalized
density and HFB matrix take a very simple form. The computational cost of the method thus
comes essentially from transforming all relevant matrices into this basis. In HFBTHO, this
operation can be performed separately for each Ω−block. The method can also be extended
to finite-temperature in a straightforward manner by using the Fermi-Dirac occupation factors.
Details of this extension are presented elsewhere [4].

2.5 Quasi-particle blocking

Odd-even and odd-odd nuclei can now be computed with HFBTHO v2.00d using the blocking
of quasi-particle states [11]. Because time-reversal symmetry is built into the code, the equal
filling approximation (EFA) has to be used [12]. However, it was shown in [11] that the EFA
is an excellent approximation to exact blocking. The identification of the blocking candidate is
done using the same technique as in HFODD [13]: the mean-field Hamiltonian h is diagonalized
at each iteration and provides a set of equivalent single-particle states. Based on the Nilsson
quantum numbers of the requested blocked level provided in the input file, the code identifies
the index of the q.p. to be blocked by looking at the overlap between the q.p. wave-function
(both lower and upper component separately) and the s.p. wave-function. The maximum overlap
specifies the index of the blocked q.p.

2.6 Generalized energy density functionals

The kernel of the HFBTHO solver has been rewritten to enable the use of generalized Skyrme
functionals that are not necessarily derived from an effective pseudo-potential such as the Skyrme
force. Generalized Skyrme functionals are defined here as being the most general scalar, iso-
scalar, time-even functional H of the one-body local density matrix ρ(r) up to second-order in
spatial derivatives of ρ [14, 15]. Assuming time-reversal symmetry, such functionals thus take
the form

Ht[ρ] = Cρρ
t [ρ]ρ2t + Cρτ

t [ρ]ρtτt + CJ2

t [ρ]J2
t + Cρ∆ρ

t [ρ]ρt∆ρt + Cρ∇J
t [ρ]ρt∇ · Jt, (9)

where t stands for the isoscalar (t = 0) or isovector (t = 1) channel, and τt and Jt are the kinetic
energy and spin current density in each channel. The terms Cuu′

t [ρ] are (possibly arbitrary)
functions of the local isoscalar density ρ0(r). Note that all commonly used Skyrme forces or
functionals fall into this category because of the phenomenological density-dependent term.
Although most Skyrme functionals have been fitted “as a force”, the recent parameterizations
UNEDF0 and UNEDF1 have looked at the problem more from a functional perspective [16,
17]. Microscopically-derived EDF obtained, for example, from the density matrix expansion of
effective nuclear potentials, are less trivial examples of these generalized functionals, since the
density-dependence of the coupling constants can be significant [15].
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In the current version, the code only implements 2nd-order generalized Skyrme functionals
and it is left to the user to code more advanced functionals. The subroutine calculate U parameters()

in module UNEDF provides a general template for such an implementation. Required are the form
of the energy functional and at least its first partial derivatives with respect to the isoscalar ρ0
and isovector ρ1 density matrices. Second-order partial derivatives are also necessary to compute
nuclear matter properties.

2.7 Shared memory parallelism with OpenMP

To facilitate large-scale applications of the HFBTHO solver on leadership class computers, the
original source file has been split into a DFT solver kernel and a calling program. In version
2.00d, we have also parallelized a number of time-intensive routines using OpenMP pragmas.
The routine hfbdiag diagonalizes the Ω−blocks of the HFB matrix: these diagonalizations are
now done in parallel. The routine coulom computes the direct Coulomb potential VC(r, r′) at the
first iteration: this step is carried out in parallel but saves time at the first iteration only. The
routine gamdel reconstructs the HFB matrix in configuration space for each Ω−block by com-
puting on-the-fly the various one-dimensional integrals that define the matrix elements: shared
memory parallelism is implemented for the outermost loop corresponding to the Ω−blocks.

  0   1   2   3   4   5   6   7   8   9
Number of Threads
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Figure 1: Time per iteration of a HFB calculation in a full spherical basis of Nmax = 20 shells
as a function of the number of threads, see text for additional details.

Figure 1 shows the performance improvement when using multi-threading. The test was
performed on an 8-core Intel Xeon E5-2670 at 2.6 GHz using the Intel Fortran compiler 13.0
and the MKL library 10.3.11 for 120Sn in a full spherical basis of Nmax = 20 shells, with the
SLy4 interaction and a cutoff of Ecut = 60 MeV for the q.p. In version 1.66, the number
of Gauss-Hermite and Gauss-Laguerre points are hard-coded in the program and are set to
NGH = NGL = 22, and the number of Gauss-Legendre points is set to NGH = 30. We used the
same numbers in our test with the version 2.00d.
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We note that version 2.00d is slightly slower (per iteration) than version 1.66 if only one
thread is used. This additional overhead comes from the calculation of the densities and fields
required for generalized Skyrme functionals, combined with the use of the Broyden method,
which uses additional linear algebra at each iteration. In general, it is difficult to compare
directly the overall performance of the two versions of the code. In version 1.66, calculations
at Nmax > 14 are warm-started automatically with a preliminary calculation at Nmax = 14. On
the other hand, version 2.00d implements the Broyden method, which reduces the number of
iterations significantly, see [7]. We emphasize that HFBTHO makes use of BLAS and LAPACK
routines and benefits from a threaded implementation of these libraries. Nested parallelism must
be supported by the compiler.

3 Benchmarks and Accuracy

There exist several comparisons of HFBTHO with other DFT solvers in the literature in both
even-even [18, 19] and odd nuclei [20, 11]. In some cases, these benchmarks compare different
approaches to solving the HFB equations, in others the emphasis is put on validation of the
solver. Here, we want to gather in one place a comprehensive set of validation and performance
evaluations that can be used as reference in later developments of the code.

3.1 Benchmarks in spherical nuclei: 208Pb and 120Sn

In spherical nuclei, HFBTHO was benchmarked against the spherical DFT solver HOSPHE
(version 2.00 of [2]) and the symmetry-unrestricted DFT solver HFODD (version 2.56 of [4]). We
study the Hartree-Fock approximation in 208Pb and the Hartree-Fock-Bogolyubov approximation
with density-dependent delta pairing forces in 120Sn.

3.1.1 Hartree-Fock computation of 208Pb

In table 1, we present the results of the benchmarks between the three solvers for the spherical
HF point in 208Pb for the SLy5 Skyrme functional of [21]. Calculations were performed in
Nmax = 16 full spherical oscillator shells with a constant oscillator length of b = 2.0 fm. In a
spherical basis, the oscillator length is related to the oscillator frequency by

b =

√

h̄

mω
. (10)

In the codes HFODD and HOSPHE, the oscillator frequency is set via a multiplicative factor f
such that ω = fω0, with ω0 = 41/A1/3. The oscillator length is related to f through

f =
1

b2
h̄2c2

mc2
/

41

A1/3
, (11)

with mc2 = 938.90590 MeV, h̄c = 197.328910 MeV.fm. An oscillator length of b = 2.0 fm
thus corresponds to f = 1.49831558 in 208Pb. The number of Gauss-Legendre points for the
integration of the Coulomb potential was NLeg = 80, the number of Gauss-Hermite and Gauss-
Laguerre integration points was NGH = NGL = 40, and the Coulomb length scale was L = 50
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HOSPHE HFBTHO HFODD
Without Coulomb

Etot [MeV] -2445.930216 -2445.930216 -2445.930215

E
(n)
kin [MeV] 2614.806852 2614.806852 2614.806852

E
(p)
kin [MeV] 1438.160641 1438.160641 1438.160641

ESkyrme [MeV] -6498.897708 -6498.897708 -6498.897706
ESO [MeV] -109.091691 -109.091691 -109.091691

r
(n)
rms [fm] 5.519846 5.519846 5.519846

r
(p)
rms [fm] 5.249812 5.250015 5.250015

With Coulomb
Etot [MeV] -1632.591419 -1632.591495 -1632.591454

E
(n)
kin [MeV] 2535.409641 2535.409735 2535.409639

E
(p)
kin [MeV] 1340.663301 1340.663408 1340.663312

ESkyrme [MeV] -6306.660514 -6306.660740 -6306.660527
ESO [MeV] -98.293331 -98.293340 -98.293331

E
(dir)
Cou [MeV] 829.308809 829.308760 829.308776

E
(exc)
Cou [MeV] -31.312656 -31.312658 -31.312656

r
(n)
rms [fm] 5.608237 5.608237 5.608237

r
(p)
rms [fm] 5.448516 5.448711 5.448711

Table 1: Benchmark of the three solvers HOSPHE, HFBTHO and HFODD for a spherical
Hartree-Fock calculation in 208Pb with the SLy5 Skyrme functional in a full spherical basis of
Nmax = 16 shells with oscillator length b = 2.0 fm. See introduction of section 3 for additional
numerical information.

fm, see also section 3.6 below for a detailed discussion. The Skyrme energy is defined from
HFBTHO outputs as

ESkyrme = Evol + Esurface + ESO + Etensor (12)

Without Coulomb potentials included, we note that the difference with HFODD is not greater
than 2 eV on energies (ESkyrme), and the radii agree up to at least the 6th digit. Comparisons
with HOSPHE show the difference in energies is less than 1 eV, while the proton radius differs
by 0.0002 fm. This unexpected deviation may be caused by corrections related to the finite
proton size which are first added to the proton radius and then afterwards subtracted. Let us
note that the kinetic energy contribution to the total energy is probably the most sensitive to
the details of the numerical implementation. With the Coulomb potential included (both direct
and exchange), the discrepancy on the total energy is of the order of 100 eV (see also section
3.6 below).

3.1.2 Hartree-Fock-Bogolyubov computation of 120Sn with the Lipkin-Nogami pre-
scription

In table 2, we present the results of the benchmarks between the three solvers for the spherical
HFB point in 120Sn for the UNEDF0 Skyrme functional of [16]. Calculations were performed
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HOSPHE HFBTHO HFODD
Without Coulomb

Etot [MeV] -1374.087678 -1374.087663 -1374.087631

E
(n)
kin [MeV] 1384.055506 1384.055495 1384.055733

E
(p)
kin [MeV] 885.705977 885.705972 885.705875

ESkyrme [MeV] -3628.923716 -3628.923682 -3628.924197
ESO [MeV] -58.837670 -58.837667 -58.837805

r
(n)
rms [fm] 4.678179 4.678179 4.678179

r
(p)
rms [fm] 4.455211 4.455761 4.455760

Epair [MeV] -12.646024 -12.646023 -12.645709
∆(n) [MeV] 0.910071 0.910071 0.910072
∆(p) [MeV] 0.531364 0.531364 0.531338
λ(n) [MeV] -7.333339 -7.333339 -7.333340
λ(p) [MeV] -21.406069 -21.406069 -21.406063

λ
(n)
2 [MeV] 0.081422 0.081422 0.081422

λ
(p)
2 [MeV] 0.633305 0.633305 0.633309

With Coulomb
Etot [MeV] -1021.265363 -1021.265407 -1021.265377

E
(n)
kin [MeV] 1345.226437 1345.226497 1345.226444

E
(p)
kin [MeV] 837.571445 837.571518 837.571444

ESkyrme [MeV] -3538.591673 -3538.591798 -3538.591661
ESO [MeV] -48.652094 -48.652102 -48.652100

E
(dir)
Cou [MeV] 367.071215 367.071165 367.071184

E
(exc)
Cou [MeV] -19.140103 -19.140104 -19.140103

r
(n)
rms [fm] 4.733892 4.733892 4.733892

r
(p)
rms [fm] 4.585076 4.585610 4.585609

Epair [MeV] -11.125231 -11.125231 -11.125231
∆(n) [MeV] 0.864875 0.864875 0.864875
∆(p) [MeV] 0.481236 0.481237 0.481236
λ(n) [MeV] -7.989573 -7.989572 -7.989573
λ(p) [MeV] -8.286703 -8.286703 -8.286704

λ
(n)
2 [MeV] 0.100481 0.100481 0.100481

λ
(p)
2 [MeV] 0.675087 0.675087 0.675086

Table 2: Benchmark of the three solvers HOSPHE, HFBTHO and HFODD for a spherical
Hartree-Fock-Bogolyubov calculation in 120Sn with the UNEDF0 functional (thus including the
Lipkin-Nogami) prescription with a spherical basis of Nmax = 16 shells with oscillator scale
b = 2.0 fm (f = 1.49831558 in 120Sn). See introduction of section 3 for additional numerical
information.

with the same basis and integration characteristics as in the previous section. The pairing
channel was parameterized by a density-dependent delta-pairing force with mixed volume and
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surface features, of the general type

V
(n,p)
pair (r) = V

(n,p)
0

(

1 − 1

2

ρ0(r)

ρc

)

δ(r − r
′), (13)

with V
(n,p)
0 the pairing strength for neutrons (n) and protons (p), ρ0(r) the isoscalar local

density, and ρc the saturation density, fixed at ρc = 0.16 fm−3. Let us recall that in the case
of the UNEDF parameterizations, the pairing strengths should not be adjusted by the user
since they were fitted together with the Skyrme coupling constants. Recommended values are,
respectively, V

(n)
0 = −170.374 MeV and V

(n)
0 = −199.202 MeV. Because of the zero-range of the

pairing force, a cutoff in the q.p. space has to be introduced, and we chose Ecut = 60 MeV in
this example. When compatibility with HFODD is required, this cutoff is sharp, namely all q.p.
with E > Ecut are discarded from the calculation of the density.

3.2 Benchmarks in even-even deformed nuclei: 240Pu

Next, we present the benchmark of HFBTHO in deformed even-even nuclei against HFODD. Ac-
curate HFB calculations in deformed nuclei require the use of a suitably deformed, or stretched,
HO basis. Such a basis is characterized by its oscillator frequencies, ωx 6= ωy 6= ωz in Cartesian
coordinates, and ω⊥ 6= ωz in cylindrical coordinates, as well as by the total number of states
retained. The goal of this section is to compare basis truncation schemes between HFBTHO
and HFODD in a realistic case.

Stretched basis in HFBTHO - It is determined by applying the general prescription
given in [22] to the particular case of an axially-deformed prolate basis. Let us recall that the
starting point is an ellipsoid characterized by radii Rx, Ry and Rz . Introducing the spherical
radius R0 and the (β, γ) Bohr quadrupole deformation parameters, we have

Rx = R0 exp

{

√

5

4π
β cos

(

γ − 2π

3

)

}

,

Ry = R0 exp

{

√

5

4π
β cos

(

γ +
2π

3

)

}

,

Rz = R0 exp

{

√

5

4π
β cos(γ)

}

.

(14)

The deformation of the basis is characterized, equivalently, by the two parameters p and q such
that

q =
b2z
b2x
, p =

b2y
b2x
, (15)

with bµ the oscillator length for coordinate µ. It is then assumed that

q =
Rz

Rx
, p =

Ry

Rx
. (16)

In the special case of an axially-deformed basis (β > 0, γ = 0o), we find

q = e−3
√

5
16π

β, p = 1. (17)
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From the volume conservation condition (b2
⊥
bz = b30), Eq. (17) leads to

b⊥ = b0q
−1/6, bz = b0q

+1/3. (18)

Given a “spherical” oscillator length b0 and the deformation β of the basis, the formula (18)
uniquely defines the HO lengths of the stretched basis.

Stretched basis in HFODD - The starting point is a general nuclear shape parameterized
by a surface Σ characterized by the deformation parameters αλµ through

R(θ, ϕ) = R0 c(α)

[

1 +
λmax
∑

λ=2

λ
∑

µ=−λ

αλµYλµ(θ, ϕ)

]

, (19)

where R0 = r0A
1/3, c(α) is computed to ensure volume conservation, Yλµ(θ, ϕ) are the spherical

harmonics, and the αλµ are the deformation parameters. The surface defined by (19) encloses
a volume V and the radius of this “ellipsoid” along the direction µ (=x, y, z) is determined
according to

Rµ ≡
√

〈x2
µ〉 =

1

V

∫

x2
µd

3
r. (20)

Frequencies of the HO along each Cartesian direction satisfy ω3
0 = ωxωyωz with

ωx = ω0(RxzRyz), ωy = ω0(Rxz/Rxy)
−1/3, ωz = ω0(RxyRxz)

1/3, (21)

with the geometrical ratios Rµν = Rµ/Rν .
Discussion - It is straightforward to see that in the particular case of a prolate ellipsoid (β >

0, γ = 0o, Rxy = 1/p, Rxz = Ryz = 1/q), both HFODD and HFBTHO prescriptions to choose
the oscillator frequencies are in principle identical. In practice, however, the determination of
the radii from Eq.(20) in HFODD produce small numerical deviations compared to the analytic
formula (14). This will induce systematic differences between the HO frequencies computed in
the two codes, which will in turn alter the selection of the basis states. Figure 2 quantifies this
statement in an extreme case.

Figure 2 shows the numerical difference between the two codes for the total energy in 240Pu
computed for Nmax = 16 and Nstates = 500 as a function of the deformation β of the basis.
Calculations are done with a spherical oscillator length b0 = 2.3 fm (f = 1.18829312 for 240Pu),
the SLy4 parameterization of the Skyrme functional, identical pairing strengths of Vpair = −300
MeV for both protons and neutrons, and quadrature precisions of NGL = NGH = 40 and
NLeg = 80. The configuration chosen was obtained by putting a constraint on the quadrupole

moment 〈Q̂20〉 = 150 b and hexadecapole moment 〈Q̂40〉 = 30 b2; expectation values of Q̂60 and
Q̂80 vary with the deformation of the basis.

For a configuration with such large deformations, a basis with only 500 states and Nmax = 16
is not sufficient to reach convergence. In particular, important intruder orbitals are missing. As
a result, all physical observables depend quite significantly on basis parameters such as its
deformation or frequencies. It is therefore a good test-bench for numerical comparisons and is
an illustration of the worst-case scenario.

Two sets of results, with and without Coulomb potentials included, are presented. In contrast
to the much simpler cases of section 3.1, the difference between the two codes reaches up to
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Figure 2: Difference between HFBTHO and HFODD total energy for a very deformed configu-
ration in 240Pu (see details in text) as a function of the axial deformation of the basis β.

300 keV, even without Coulomb terms. This discrepancy is entirely attributable to the slightly
different HO frequencies/lengths, the impact of which is magnified by the large deformation
of the requested configuration combined with the relatively small size of the HO basis. As an
example, for β = 0.7, the oscillator lengths are b⊥ = 2.0803 fm and bz = 2.8114 fm in HFODD,
to be compared with b⊥ = 2.0596 fm and bz = 2.8682 fm in HFBTHO. The Coulomb term does
not qualitatively change this picture. Most importantly, if HO lengths are manually enforced
to be numerically identical in the two codes, or in the case of a spherical basis, the agreement
between the two sets of calculations without Coulomb goes back to the 1 eV level as in the
previous sections.

3.3 Benchmark in deformed odd nuclei: 159Ba

The new version of HFBTHO enables blocking calculations in odd-even or odd-odd nuclei.
Since by construction HFBTHO conserves time-reversal symmetry, the blocking prescription is
implemented in the equal filling approximation, and the time-odd fields of the Skyrme functional
are identically zero. In [11], a detailed comparison of blocking calculations between the HFBTHO
and HFODD solvers was presented for the case of 121Sn, with a spherical HO basis and identical
HO oscillator scales. The goal of this section is to present a benchmark result for an odd-
even nucleus in a deformed basis. As in the previous section, we do not manually enforce
identical oscillator scales. Instead, we use the same basis selection rules in their respective
implementations.

Calculations were performed in the nucleus 159Ba using 158Ba as the even-even core, with the
SLy4 Skyrme functional, a mixed surface-volume pairing force with V0 = −300 MeV for both
protons and neutrons, and a q.p. cutoff of Ecut = 60 MeV. The HO basis was characterized by
the oscillator length b = 2.2 fm (f = 1.13221574 in 159Ba), Nmax = 16 shells, a deformation
of β = 0.2, and NStates = 500. The number of Gauss-Laguerre and Gauss-Hermite quadrature
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points was NGL = NGH = 40. In HFODD calculations, time-odd fields were zeroed. Results are
presented in Table 3.3.

Total energy [MeV]
q.p. HFBTHO HFODD

[512]5/2 -1236.982565 -1236.985082
[633]7/2 -1237.317554 -1237.316510
[503]7/2 -1236.608320 -1236.608662
[510]1/2 -1236.445682 -1236.448800
[521]1/2 -1235.724052 -1235.726439
[523]5/2 -1235.445642 -1235.449199
[660]1/2 -1236.293614 -1236.293434
[514]7/2 -1235.799601 -1235.799806
[651]3/2 -1235.433781 -1235.434053

Table 3: Results of blocking calculations in HFBTHO and HFODD in 159Ba in a stretched HO
basis with β = 0.2 (see text for more details).

Numerical agreement is of the order of 1 keV, with maximum deviations of up to 3.6 keV.
Such an agreement is in line with the results shown in the previous two sections. Since the
nucleus is not as heavy as 240Pu and the requested configuration is much less deformed than the
one considered in 3.2, basis truncation effects are mitigated, and the small discrepancy between
the calculated HO oscillator scales does not have as drastic an effect as in the previous section.
Again, we note that if identical HO scales are manually enforced, the numerical agreement is of
the order of a few eV as shown in [11].

3.4 Transformed harmonic oscillator basis: 90Ni

One of the characteristic features of HFBTHO is the implementation of the transformed har-
monic oscillator (THO) basis. We recall that the THO basis functions are generated by applying
a local scale transformation (LST) f(R) to the HO single-particle basis functions. The LST
transforms every point (ρ, z) by

ρ → ρ′ = ρ
f(R)

R ,

z → z′ = z
f(R)

R ,

(22)

with the scale R = R(ρ, z) defined locally as

R =

√

ρ2

b2
⊥

+
z2

b2z
. (23)

The LST function f is chosen in such a way as to enforce the proper asymptotic conditions
(exponential decay) for the density, according to the general procedure outlined in [23, 24]. We
refer to [1] for the details of the implementation of the THO method in HFBTHO.
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HFBTHO N. Michel’s Code
ESkyrme [MeV] -2349.547912 -2349.511233
ESO [MeV] -61.590852 -61.590694

E
(n)
kin [MeV] 1190.962911 1190.985716

E
(n)
pair[MeV] -58.593263 -58.664803

∆(n) [MeV] 1.915093 1.916030
λ(n) [MeV] -0.195904 -0.196557

r
(n)
rms [fm] 4.717331 4.717375

Table 4: Results of THO calculations in HFBTHO and the spherical code of [26] in 90Ni (see
text for more details).

The purpose of this section is to complete our collection of benchmarks by comparing the
results obtained in the THO basis produced with HFBTHO with an independent implementa-
tion of the method written by one of us (N. Michel) and used in particular in [25, 26]. This
program assumes spherical symmetry and has been developed independently: comparing the
two implementations is a particularly stringent test. To do it, we used HFBTHO to generate
the LST function f(R) and its partial derivatives on a spatial mesh Rk with 0 ≤ R ≤ 40 fm by
steps of 0.02 fm. These functions were then read numerically by the spherical code.
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Figure 3: Radial profile of the neutron density in 90Ni. Black plain line: results from HFBTHO;
red dashed line: results from the spherical code.

The test was carried out in the neutron-rich nucleus 90Ni, for the SLy4 Skyrme functional
and a pure surface pairing force characterized by V

(n)
0 = V

(p)
0 = −519.9 MeV with a pairing

cutoff of Ecut = 60 MeV. Both the HO basis used to generate the THO basis and the THO
basis itself were spherical and contained Nmax = 20 full shells. The oscillator length was fixed
at b = 2.0 fm (f = 1.13326033 in 90Ni). The number of Gauss-Laguerre and Gauss-Hermite
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quadrature points was NGL = NGH = 40. Both the direct and exchange Coulomb terms were
neglected in these tests. We present in Table 3.4 various quantities that are good indicators of
potential numerical discrepancies.

Overall, the agreement between the two implementations is very good. Indeed, we recall
that the matrix elements of the Hamiltonian in the THO basis depend not only on the LST
but also on its derivatives ∂f/∂R. Using a numerically generated LST in the spherical code is,
therefore, bound to lead to systematic deviations. We show in figure 3 the radial profile of the
corrected neutron density after the LST in both HFBTHO and the spherical code. The tiny
deviations beyond r = 8 fm are the consequence of quantizing the LST in HFBTHO, and using
this numerical function in the spherical code instead of a native LST.

3.5 Benchmark at finite temperature: 50Cr

The new version of HFBTHO implements the finite-temperature HFB equations. Table 3.5
shows the comparison between HFBTHO and HFODD for a simple finite-temperature calcula-
tion in 50Cr. The characteristics of the test run (included with the submitted program) were
the following: the calculation was performed in a full spherical basis of Nmax = 12 shells,
with an oscillator length of b0 = 1.7622146 fm (equivalent to f = 1.2), for the SLY4 interac-
tion in the particle-hole channel and the standard surface-volume pairing force of Eq.(13) with

V
(n)
0 = V

(p)
0 = −300.0 MeV and a cutoff of Ecut = 60.0 MeV. The temperature was set at

T = 1.5 MeV. We note that there is a bug in HFODD version 2.49t: the value of the entropy
should be multiplied by a factor 2.

HFBTHO HFODD
Etot [MeV] -423.459451 -423.459431

E
(n)
kin [MeV] 461.530478 461.530458

E
(p)
kin [MeV] 402.309730 402.309693

ESkyrme [MeV] -1386.929749 -1386.929684
ESO [MeV] -36.600077 -36.600071

r
(n)
rms [fm] 3.591964 3.591964

r
(p)
rms [fm] 3.594830 3.594830

λ(n) [MeV] -11.806442 -11.806442
λ(p) [MeV] -6.886468 -6.886468
S(n) [MeV] 6.915625 6.915625
S(p) [MeV] 6.995155 6.995158

Table 5: Results of finite-temperature HFB calculations in HFBTHO and HFODD in 50Cr in a
spherical HO basis of Nmax = 12 shells (see text for more details).

3.6 Precision of the Coulomb term

In this section, we discuss in greater detail the precision of the direct term of the Coulomb
potential to the total energy. In HFBTHO, the direct term is computed by the Gaussian
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substitution method. A less accurate method based on the Laplacian substitution method is
also available [28].

3.6.1 The Gaussian substitution method

The direct term V
(dir)
Cou (r) of the Coulomb potential reads

V
(dir)
Cou (r) = e2

∫

d3r′
ρp(r′)

|r − r′| , (24)

with ρp the proton density. In HFBTHO, the direct term is computed by introducing the
following expansion,

1

|r − r′| =
2√
π

∫

∞

0

e−(r−r
′)2/µ2 dµ

µ2
=

2√
π

∫

∞

0

e−(r−r
′)2a2da. (25)

Denoting

Ia(r) =

∫

d3r′ e−(r−r
′)2a2ρp(r′), (26)

we can write

V
(dir)
Cou (r) = e2

2√
π

∫

∞

0

Ia(r)da. (27)

The integral over the range a can be performed by Gauss-Legendre quadrature if we introduce
the variable 0 ≤ ξ < 1 such that

a =
1

L

ξ
√

1 − ξ2
, (28)

with L > 0 an arbitrary length scale. This leads to

V
(dir)
Cou (r) = e2

2√
π

1

L

∫ 1

0

Ia(ξ)(r)

(1 − ξ2)3/2
dξ. (29)

The Coulomb direct energy is then given by

ECou =
1

2

∫

d3r V
(dir)
Cou (r)ρp(r) =

∫ 1

0

ECou(ξ)dξ, (30)

with the integrand

ECou(ξ) = e2
1√
π

1

L

∫

d3r
Ia(ξ)(r)ρp(r)

(1 − ξ2)3/2
, (31)

Let us note that the choice (28) for the change of variables is only a particular case of

a =
1

L

ξ

(1 − ξα)1/α
, (32)

with α any positive real number. In principle, α could be tuned to maximize the convergence
of the Coulomb energy with respect to both the length scale L and/or the number of points in
the Legendre quadrature, see below. In practice, the choice α = 2 gives the best compromise
between accuracy and speed.
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3.6.2 Practical implementation in HFBTHO

In practice, the integral (29) is computed numerically by introducing NLeg quadrature abscissae
ξℓ and weights wℓ,

V
(dir)
Cou (r) = e2

2√
π

1

L

NLeg
∑

ℓ=1

wℓ

Ia(ξℓ)(r)

(1 − ξ2ℓ )3/2
. (33)

In HFBTHO, all integrals over r = (ρ, z, ϕ) are computed by Gauss quadrature, with NGL

Gauss-Laguerre points for the coordinate η = b2
⊥
ρ2 and NGH Gauss-Hermite points for the

coordinate ξ = bzz (see notations in [1]). Following the work of Vautherin [28], the code uses
a general method known in electronic structure theory as the pseudospectral representation of
the HFB equations [29]. While the HFB equations are solved in the HO basis, i.e. in Fock
(or spectral) space, the HF and pairing fields, as well as all expectations values of observables,
are computed directly on the quadrature grid, implying constant transformation from/to Fock
to/from coordinate space.

Following this philosophy, the calculation of the Coulomb field and energy is somewhat
accelerated by introducing the following matrix at the first iteration,

Vki = e2
2√
π

1

L
ωi

NLeg
∑

ℓ=1

wℓ
e−(rk−r

′

i)
2a(ξℓ)

2

(1 − ξ2ℓ )3/2
, (34)

with L the length scale mentioned in the previous section, k, i compound indexes running from
1 to NGL×NGH, and ωi the product of the weights for both types of quadrature, ωi ≡ wGLwGH.
With this notation, the Coulomb field on the grid is obtained at each iteration by vector mul-
tiplication Vk =

∑

i Vkiρi, with ρi the vector containing the proton density on the grid. The
energy is then obtained by another vector multiplication ECou =

∑

k ωkVkρk.
It is important to bear in mind that the matrix Vik is a quantized form of the true potential

1/|r − r
′| on the quadrature grid. When the original potential has a singularity, dealing with

such quantized representations generate a systematic error that can become arbitrarily large
near the singularity. This phenomenon is known as “aliasing” in electronic structure theory
[29]. In principle, the error should decrease as the grid becomes larger and larger (closer to the
exact integration). In any practical calculation, however, it will always be non-zero.

3.6.3 Numerical accuracy

Mathematically, expressions (27) and (29) are strictly equivalent. In particular, they do not
depend on the length scale L. However, the use of finite quadrature for both the Gauss-Legendre
integration of the 1/|r − r

′| function and the spatial integration over coordinates r and r
′

introduce an alias, as mentioned above. In our case, the practical consequence of having an
aliased integration is that the Coulomb energy will depend, possibly in a significant way, on
the length scale L and the number of Gauss-Legendre quadrature points NLeg, but also on the
number of Gauss-Hermite and Gauss-Laguerre points NGH and NGL.

In the left panel of figure 4, we show the direct Coulomb energy in 208Pb as a function of the
number of Gauss-Legendre quadrature points for different length scales L. Calculations were
done in a full spherical HO basis with Nmax = 16 oscillator shells and the SLy5 interaction
with NGH = NGL = 30. The dependence on L is clearly marked. In particular, there is no
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Figure 4: Left: Direct Coulomb energy as a function of the number of Gauss-Legendre integration
points for different values of the length scale L (see text). Right: Same for L = 5 fm and different
values of the Gauss-Hermite and Gauss-Laguerre quadrature points. All calculations done in
208Pb for Nmax = 16 shells and the SLy5 Skyrme functional.

asymptotic convergence to the true value of the Coulomb potential as the number of Legendre
integration points increases. Instead, one observes a plateau condition, the range of which
increases with L. In the right panel of figure 4, we fix the length scale to L = 5 fm, and
increase the precision of both Gauss-Hermite and Gauss-Laguerre integrations (by convenience,
we choose NGH = NGL ≡ NG). This clearly mitigates the dependence of the Coulomb energy
on the Legendre quadrature.
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Figure 5: Left: Integrand ECou(ξ) of the Coulomb potential at convergence as function of the
Gauss-Legendre integration variable ξ (see text). Right: Close-up on the ξ ∈ [0.9, 1.0[ interval.

It thus appears that the error is not really related to the Legendre integration of Eq.(33)
itself. Instead, it seems to be a consequence of using a finite quadrature for spatial integrations,
i.e. of dealing with a spurious alias. This effect can be visualized in the behavior of the integrand
(31). In figure 5, we show the integrand as a function of the variable of integration ξ for two
types of quadrature meshes (NG = 20 or NG = 70) and three different numbers of Legendre
integration points (NLeg = 10, 20, 30). All calculations were done with a length scale L = 5 fm.
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We recall that the integrand should tend to 0 as ξ → 1 (equivalent to a → +∞). While the
precision of the quadrature mesh does not really play a role for most of the interval of variation
of ξ, we observe that for ξ → 1, the function begins to bend up for coarse quadrature grids (see
right panel). This behavior is clearly nonphysical and is the manifestation of the alias. It can
be mitigated by increasing the precision of the quadrature grid, as shown by the dashed lines.

In HFBTHO, we have set L = 50 fm and NLeg = 80 as default values. For calculations
of ground-state properties, it is sufficient to use the default values NGH = NGL = 40. For
calculations of very deformed configurations such as in fission, it is recommended to increase the
precision of Gauss integrations. In future releases of the code, we will implement the calculation
of both the direct and exchange Coulomb field in Fock space using Moshinsky transformations,
which will eliminate all aliasing errors.

4 Input data file

The input data file format has been entirely changed from version 1.66 to the current version
2.00d. The number of additional features in the new version was the reason to adopt a more
flexible format for inputs.

4.1 Sample input file

The new format uses Fortran namelist structure. An example is shown below,

&HFBTHO_GENERAL

number_of_shells = 10, oscillator_length = -1.0, basis_deformation = 0.0,

proton_number = 24, neutron_number = 26, type_of_calculation = 1 /

&HFBTHO_ITERATIONS

number_iterations = 100, accuracy = 1.E-5, restart_file = -1 /

&HFBTHO_FUNCTIONAL

functional = ’SLY4’, add_initial_pairing = F, type_of_coulomb = 2 /

&HFBTHO_PAIRING

user_pairing = F, vpair_n = -300.0, vpair_p = -300.0,

pairing_cutoff = 60.0, pairing_feature = 0.5 /

&HFBTHO_CONSTRAINTS

lambda_values = 1, 2, 3, 4, 5, 6, 7, 8,

lambda_active = 0, 0, 0, 0, 0, 0, 0, 0,

expectation_values = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /

&HFBTHO_BLOCKING

proton_blocking = 0, 0, 0, 0, 0, neutron_blocking = 0, 0, 0, 0, 0 /

&HFBTHO_PROJECTION

switch_to_THO = 0, projection_is_on = 0,

gauge_points = 1, delta_Z = 0, delta_N = 0 /

&HFBTHO_TEMPERATURE

set_temperature = F, temperature = 0.0 /

&HFBTHO_DEBUG

number_Gauss = 40, number_Laguerre = 40, number_Legendre = 80,
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compatibility_HFODD = F, number_states = 500, force_parity = T,

print_time = 0 /

4.2 Description of input data

We now define the classes of input used in version 2.00d.

Keyword: HFBTHO GENERAL

• number of shells = 10: The principal number of oscillator shells N . If the basis is spherical
(see below), it is made of the Nstates = (N + 1)(N + 2)(N + 3)/6 states corresponding to N full
shells. If the basis is deformed, the code searches for the lowest Nstates, with possible intruder
contributions from up to the Nmax = 90 HO shell. Default: 10.

• oscillator length = -1.0: The oscillator length in fm, denoted b0 in this manuscript, cor-
responding to the spherical basis. It is related to the HO frequency by b0 =

√

h̄/mω0. If the
basis is deformed, the code uses the constant volume condition to define the bz and b⊥ oscillator
lengths such that b30 = bzb

2
⊥

. For negative values of b0, the code automatically sets b0 by using
h̄ω0 = 1.2 × 41/A1/3. Default: -1.0.

• basis deformation = 0.0: The axial deformation β2 of the basis. Only axial quadrupole
deformations are possible. Negative values correspond to an oblate basis and are allowed. De-
fault: 0.0.

• proton number = 24: Number of protons for this run. Only even values are allowed, see item
proton blocking under keyword HFBTHO BLOCKING for dealing with odd-proton nuclei. Default:
24.

• neutron number = 26: Number of neutrons for this run. Only even values are allowed, see
item neutron blocking under keyword HFBTHO BLOCKING for dealing with odd-neutron nuclei.
Default: 26.

• type of calculation = 1: Defines the type of calculation to be performed for this run.
If equal to 1, standard HFB calculations will be performed. If equal to -1, the code will do
HFB+LN, where approximate particle-number projection is handled by the Lipkin-Nogami pre-
scription in the seniority pairing approximation following [5]. Default: 1.

Keyword: HFBTHO ITERATIONS

• number iterations = 100: The maximum number of iterations in the self-consistent loop.
Default: 100.

• accuracy = 1.E-5: Iterations are stopped when the norm of the HFB matrix between two it-
erations, max||H(n)−H(n−1)||, is lower than accuracy, or the number of iterations has exceeded
number iterations. Default: 1.E-5.
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• restart file = -1: This key can take the values ±1,±2,±3. If it is negative, calculations will
be restarted from an existing solution stored in a HBFTHO compatible binary file. The name of
this file will always take the form [shape][neutron number] [proton number].[extension],
where [shape] is ‘s’ for the value ±1, ‘p’ for the value ±2 and ‘o’ for the value ±3, and
[extension] is either ‘hel’ for regular HO calculations or ‘tel’ for THO calculations. If the
value of the key is positive, calculations will be started from scratch by solving the Schrödinger
equation for a Woods-Saxon potential with (possibly) an axial deformation β2 defined by the
value of the constraint on Q2, see below. Default: -1.

Keyword: HFBTHO FUNCTIONAL

• functional = ‘SLY4’: This key with 4 letters indicates the Skyrme functional to be used.
Possible values are: ‘SIII’, ‘SKM*’, ‘SKP’, ‘SLY4’, ‘SLY5’, ‘SLY6’, ‘SLY7’, ‘SKI3’, ‘SKO’,
‘SKX’, ‘HFB9’, ‘UNE0’, ‘UNE1’. Default: ‘SLY4’.

• add initial pairing = F: In restart mode (see restart file ), this boolean variable de-
cides if a small number will be added to all pairing matrix elements. This option can be useful
to ensure that pairing correlations remain non-zero even when restarting from a nucleus where
they have collapsed, such as a doubly-magic nucleus. Default: F.

• type of coulomb = 2: Chooses how the Coulomb potential is treated. If 0, both the direct
and exchange terms are neglected. If 1, only the direct Coulomb potential is included in the
calculation. If 2, both the direct and exchange Coulomb potentials are included, the exchange
term being treated in the Slater approximation. Default: 2.

Keyword: HFBTHO PAIRING

• user pairing = T: When this keyword is set to T, some characteristics of the pairing inter-
action can be set by the user. It is always assumed that the pairing force reads

V n,p
pair(r) = V n,p

0

(

1 − α
ρ(r)

ρc

)

δ(r − r
′). (35)

Parameters that can be adjusted are the value of the pairing strength for protons and neutrons
V n,p
0 (which can be different), the cutoff in energies defining the q.p. entering the calculation of

the densities, and the type of pairing force defined by the parameter α. When this keyword is
set to F, a pre-defined pairing force is used for each Skyrme functional. Default: F.

• vpair n = -300.0: The value of the pairing strength (in MeV) for neutrons V n
0 in Eq.(35).

Default: depends on the Skyrme force.

• vpair p = -300.0: The value of the pairing strength (in MeV) for protons V p
0 in Eq.(35).

Default: depends on the Skyrme force.
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• pairing cutoff = 60.0: The energy cutoff (in MeV) in q.p. space: all q.p. with energy lower
than the cutoff are taken into account in the calculation of the densities. Default: 60.0 MeV.

• pairing feature = 0.5: The factor α in Eq.(35). This parameter enables one to tune the
properties of the pairing force: If equal to 0, the pairing force has pure volume character and
does not depend on the isoscalar density; if set to 1, the pairing force is only active at the
surface, since in the interior, ρ(r) ≈ ρc; if set to 0.5, the pairing force has mixed volume-surface
characteristics. Only values between 0 and 1 are possible. Default: 0.5.

Keyword: HFBTHO CONSTRAINTS

• lambda values = 1, 2, 3, 4, 5, 6, 7, 8: This series of 8 integers define the multipolar-
ity of the multipole moment constraints. It is informational only and is not meant to be changed.

• lambda active = 0, 0, 0, 0, 0, 0, 0, 0: This line defines which of the multipole mo-
ments operator Q̂l, for l = 1, . . . , 8, will be used as constraints. When 0, the corresponding
multipole is not used as constraint. When 1 it is used, and the resulting constrained HFB
calculation is initialized from the diagonalization of the Woods-Saxon potential with the basis
deformations. The user can also set this key to -1, which triggers the kickoff mode: the code first
performs up to 10 iterations with the constraints specified by the keyword expectation values

below, then releases all constraints so as to reach the nearest unconstrained solution. Default:
(/ 0, 0, 0, 0, 0, 0, 0, 0 /) (unconstrained calculations).

• expectation values = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0: This line complements
the preceding one by specifying the value of the constraint for each multipolarity l. Internally,
the units for the multipole moment of order l are 10l×fml. Example: In order to obtain a
constraint value of Q3 = 5 b3/2 = 5000 fm3, the third number must be set to 5.0. Default: (/

0, 0, 0, 0, 0, 0, 0, 0 /).

Keyword: HFBTHO BLOCKING

• proton blocking = 0, 0, 0, 0, 0: This group of 5 integers defines the blocking config-
uration for protons. It takes the form 2Ω, π, N, nz, nr, where [N, nz, nr]Ω

π is the traditional
Nilsson label. Recall that with time-reversal symmetry, states +Ω and −Ω are degenerate, and
HFBTHO only considers states with positive values of Ω by default: the sign of 2Ω given above
is not related to the actual value of Ω, but to the nucleus in which the blocking is performed.
Specifically,

• If 2Ω = 0, the entire group is disregarded (no blocking).

• If 2Ω > 0, blocking is carried out in the nucleus with Z + 1 protons, where Z is the
value given by the flag proton number. In practice, it means the resulting HFB solution
corresponds to the (Z + 1, N) nucleus.

• If 2Ω < 0, blocking is carried out in the nucleus with Z − 1 protons, where Z is the value
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given by the flag proton number. In practice, it means the HFB solution corresponds to
the (Z − 1, N) nucleus.

Additionally, the user may request all blocking configurations within 2 MeV of the Fermi level
in the even-even core to be computed. This automatization is activated by setting the parity π
to 0 instead of ±1. For example, the line 1, 0, 0, 0, 0 would compute all blocking configura-
tions in the (Z + 1, N) nucleus, while the line -7, -1, 3, 0, 3 would yield the configuration
[303]7/2− in the (Z − 1, N) nucleus. Refer to the examples included with the program for a
practical application. Default: (/ 0, 0, 0, 0, 0 /).

• neutron blocking = 0, 0, 0, 0, 0: This group of 5 integers defines the blocking configu-
ration for neutrons. It obeys the same rules as for the protons. Default: (/ 0, 0, 0, 0, 0 /).

Keyword: HFBTHO PROJECTION

• switch to THO = 0: This switch controls the use of the transformed harmonic oscillator basis.
If equal to 0, then the traditional HO basis is used; if equal to -1, then the code first performs
a calculation in the HO basis before automatically restarting the calculation in the THO basis
after the local scale transformation has been determined; if 1, the code runs the calculation
in the THO basis only. Note that the use of the THO option requires a large enough basis,
typically with at least Nmax = 20. Default: 0.

• projection is on = 0: Particle number projection (after variation) is activated by switching
this integer to 1. Default: 0.

• gauge points = 1: The implementation of particle number projection is based on the dis-
cretization of the integration interval over the gauge angle. The number of gauge points is given
here. Default: 1.

• delta Z = 0: If particle projection is on, HFB results will be projected on Z + δZ, where Z
is the actual number of protons in the nucleus and δZ is specified here. Default: 0

• delta N = 0: If particle projection is on, HFB results will be projected on N + δN , where N
is the actual number of neutrons in the nucleus and δN is specified here. Default: 0

Keyword: HFBTHO TEMPERATURE

• set temperature = F: For finite-temperature HFB calculations, set temperature must be
set to T. Default: F.

• temperature = 0.0: In finite-temperature HFB calculations, the value of the nuclear temper-
ature is given here, in MeV. If set temperature = F, but the nuclear temperature is positive,
the code overwrites the flag set temperature. Default: 0.0.
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Keyword: HFBTHO DEBUG

• number Gauss = 40: Number of Gauss-Hermite integration points for integrations along the
z-axis (elongation axis). Default: 40 (conserved parity), 80 (broken parity).

• number Laguerre = 40: Number of Gauss-Laguerre integration points for integrations along
the perpendicular axis. Default: 40.

• number Legendre = 80: Number of Gauss-Legendre integration points for the calculation of
the direct Coulomb potential, see section 3.8 of [1] and section 3.6 in this manuscript. If this
number is negative, the Laplacian substitution method is used instead of the Gaussian substi-
tution method, see [28]. Default: 80.

• compatibility HFODD = F: This boolean flag enforces the same HO basis as in HFODD. In
practice, it is only meaningful in deformed nuclei. Default: F.

• number states = 500: When compatibility with HFODD conventions is enforced, this pa-
rameter gives the total number of states in the basis. Default: Inactive.

• force parity = T: This boolean flag enforces the conservation or breaking of parity depend-
ing on the multipolarity of the multipole moments used as constraints. Default: T.

• print time = 0: If 1, the time taken by some of the major routines will be printed in the
output. Default: 0.

5 Program HFBTHO v2.00d

The program HFBTHO comes in the form of two files:

• hfbtho 200d.f90 - Main file containing the self-contained HFBTHO solver. This file
contains several Fortran modules, see below.

• main 200d.f90 - Calling program.

The programming language of most of the code is Fortran 95, while legacy code is still written, in
part or totally, in Fortran 90 and Fortran 77. The code hfbtho requires an implementation of
the BLAS and LAPACK libraries to function correctly. Shared memory parallelism is available.

5.1 Fortran Source Files

The main file hfbtho 200d.f90 contains the following Fortran modules:

• HFBTHO VERSION: informational module only containing the change log;

• HFBTHO utilities: definition of integer and real number types;

• linear algebra: collection of various routines dealing with interpolation;
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• UNEDF: module computing the Skyrme-like energy density and the corresponding Hartree-
Fock fields at a given density ρ;

• HFBTHO: module storing all public variables used throughout the code;

• HFBTHO gauss: collection of routines and functions dealing with the integration meshes
(contains several Fortran 77 legacy routines);

• HFBTHO THO: module in charge of the THO transformation;

• EllipticIntegral: module that provides the elliptic integral of the second kind;

• bessik: module that provides the modified Bessel function of integer order.

The rest of the routines are not stacked into a module.

5.2 Compilation

The program is shipped with a Makefile that is preset for a number of Fortran compilers. The
user should choose the compiler and set the path for the BLAS and LAPACK libraries. To
compile, type: “make”.

5.3 Code execution

Assuming an executable named main and a Linux system, execution is started by typing

“./main < /dev/null >& main.out ”

The program will attempt to read the file named hfbtho NAMELIST.dat in the current di-
rectory. The user is in charge of assuring this file is present and readable. The code will automati-
cally generate a binary file of the form [shape][neutron number] [proton number].[extension]

where:

• [shape] is one of the letters ‘s’, ‘p’, ‘o’, which refers to spherical, prolate or oblate shape
respectively. The choice of this letter is left to the user through the keyword restart mode.
This format remains for backward compatibility;

• [neutron number] is a 3-integer number giving the neutron number (left-padding with
zero if necessary);

• [proton number] is a 3-integer number giving the proton number (left-padding with zero
if necessary);

• [extension] is either ‘hel’ (normal HO run) or ‘tel’ (THO run).
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