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Abstract

We have investigated the time-dependent regime of a two-dimensional metamagnetic model at its tricritical point
via Monte Carlo simulations. First of all, we obtained the temperature and magnetic field corresponding to the
tricritical point of the model by using a refinement process based on optimization of the coefficient of determination
in the log-log fit of magnetization decay as function of time.With these estimates in hand, we obtained the dynamic
tricritical exponentsθ andz and the static tricritical exponentsν andβ by using the universal power-law scaling
relations for the staggered magnetization and its moments at early stage of the dynamic evolution. Our results at
tricritical point confirm that this model belongs to the two-dimensional Blume-Capel model universality class for
both static and dynamic behaviors, and also they corroborate the conjecture of Janssen and Oerding for the dynamics
of tricritical points.

In the study of phase transitions and critical phenomena, systems which exhibit multicritical behavior have been

the subject of a great number of works. Theoretically, the tricritical phase transition of the Blume-Capel [1] model

is one of the most studied. However, there are other models showing the existence of such multicritical points,

for instance, the metamagnetic model [2], the Blume-Capel model with antiferromagnetic exchange interaction and

external magnetic field added [3], and the random-field Isingmodel [4]. In order to investigate these phenomena,

several techniques have been employed, including series expansions [5], linked-cluster expansion [6], mean-field

theory [7], renormalization group [8, 9, 10, 11], transfer matrix [12, 13, 14, 15], Monte Carlo simulations [16, 17,

18, 19], and Monte Carlo renormalization group methods [20,21, 22]. Experimentally, the phase transitions of

metamagnetic systems such as in the compound FeBr2 [23, 24] have also been studied in order to understand the

tricritical behavior that appears as a consequence of a competition between the antiferromagnetic and ferromagnetic
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coupling constants present in this magnetic system.

The two-dimensional spin− 1
2 metamagnetic model is defined by the Hamiltonian

H = J1∑
nn

σiσ j − J2 ∑
nnn

σiσk+H ∑
i

σi (1)

whereJ1, J2 > 0 andσi = ±1 are the spin variables. The considered model has two sublattices where the first sum

extends over all nearest-neighbor pairs (intersublattice) and second one over all next-nearest neighbor pairs (intra-

sublattice), respectively. The parametersJ1 andJ2 are the antiferromagnetic and ferromagnetic coupling constants,

respectively, andH is the external magnetic field.

The order parameter of the model is the staggered magnetization, conveniently defined by

M(t) =
1
N

L

∑
i=1

L

∑
j=1

(−1)i+ jσi, j = M1(t)−M2(t), (2)

whereN = L2, L is the linear size of the square lattice. HereM1(t) =
2
N ∑L

i=1 ∑L
j=1 σi, j δmod(i+ j ,2),0 andM2(t) =

2
N ∑L

i=1 ∑L
j=1σi, j δmod(i+ j ,2),1 denote the magnetizations of the respective sublattices. This definition shows that there

is an inversion of the meaning of ordered and disordered state. In order to obtain an ordered state, it is necessary to

occupy the sites of the lattice with spins+1 (−1) where the sumi+ j is odd (even), or vice-versa. On the other hand,

the null magnetization may be obtained when all sites are occupied with the spins of the same kind.

On the contrary of the Blume-Capel model, the phase diagram of the metamagnetic model has not yet been com-

pletely understood. This is due to the controversial results between the experimental and theoretical works concerning

the phase transitions of the system. If on the one hand, this model exhibits a rich phase diagram in the temperature-

field plane with a line of second-order phase transitions, a line of first-order phase transitions and a tricritical point

which is located at the point where the first and second order transition lines join each other with the same slope, one

the other hand the mean-field theory [25] predicts that such tricritical point depends on the value of the ratio between

the coupling constants. They only predicted the existence of a tricritical point forR= J2/J1 > 3/5, while forR< 3/5

in the mean field approximation the model exhibits two Ising-like critical points: a critical endpoint corresponding to

a point that ends at the first order line coming from the secondorder line and a double critical endpoint (bicritical)

that corresponds to the terminal point of the first order transition line. Although for the three-dimensional metamag-

netic model Herrmann et al. [26] showed via Monte Carlo Renormalization group that such critical endpoints exist,

experimental works have not found those points in any real metamagnetic system, and also there is no evidence of

such points for the two-dimensional metamagnetic systems as verified in different works (see for example [13], [27]).

Similarly, Santos e Figueiredo [28] by using master equation formalism on the context of dynamical pair aproxima-

tion, also in two dimensions, did not find any evidence for thedecomposition of the tricritical point into the critical

and bicritical end points as predicted by the mean field theory. More recently, other authors exclude the possibility

of existence of these two critical endpoints even for three dimensions – Geng et al. [29], by using effective field the-

ory, showed that there is no fourth-order critical point or reentrant phenomenon in the phase diagram. Finally, other

authors [30] by performing MC simulations showed that thereis no evidence of such a decomposition in a critical

endpoint and a bicritical endpoint and such simulations produce a tricritical behaviour even for a coupling ratio as

small asR= 0.01.

Although the previous estimates of the critical exponents for this model support the assertion that it belongs to the

same universality class of the Blume-Capel model, the nonequilibrium critical behavior of this system has not been

completely investigated up to date. Santos and Figueiredo [31] studied a similar layered metamagnetic model far from

equilibrium by using short-time Monte Carlo simulations. They estimated the static critical exponentsβ andν and
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the dynamic critical exponentzon the continuous transition line, but the tricritical exponents were not obtained. They

also showed that although the critical exponentν remains the same along the continuous transition line, the exponent

β departs from the expected value as we approach the tricritical point of the model.

The study of the dynamic critical properties of statisticalsystems has been a subject of considerable interest in non-

equilibrium physics after the works by Janssen, Schaub and Schmittmann [32], and Huse [33]. By using, respectively,

renormalization group techniques and numerical calculations, they showed that universality and scaling behavior are

already present in systems since their early stages of the time evolution after quenching from high temperatures to

the critical one. As a result, the study of the critical properties of statistical systems became in some sense simpler,

because they allow to circumvent the well-known problem of critical slowing down, characteristic of the long-time

regime.

The dynamic scaling relation obtained by Janssenet al. for thek-th moment of the magnetizationM, extended to

systems of finite size [34, 35], is written as

〈Mk〉(t,τ,L,m0) = b−kβ/ν〈Mk〉(b−zt,b1/ντ,b−1L,bx0m0), (3)

wheret is the time,b is an arbitrary spatial rescaling factor,τ = (T −Tc)/Tc is the reduced temperature andL is the

linear size of the lattice. Here, the operator〈. . .〉 denotes averages over different configurations due to different possi-

ble time evolution from each initial configuration compatible with a given initial magnetizationm0. The exponentsβ
andν are the equilibrium critical exponents associated to the order parameter and the correlation length respectively,

andz is the dynamic exponent characterizing time correlations at equilibrium.

After choosing the scalingb−1L= 1 at theT = Tc (τ = 0), andk= 1, we obtain〈M〉(t,L,m0)= L−β/ν〈M〉(L−zt,Lx0m0).

Denotingu= tL−z andw= Lx0m0, one has:〈M〉(u,w) = 〈M〉(L−zt,Lx0m0). The derivative with respect toL is:

∂ 〈M〉
∂L

= (−β/ν)L−β/ν−1〈M〉(u,w)+

L−β/ν
[

∂ 〈M〉
∂u

∂u
∂L

+
∂ 〈M〉
∂w

∂w
∂L

]
,

where∂u/∂L = −ztL−z−1 and∂w/∂L = x0m0Lx0−1. In the limit L → ∞, ∂L〈M〉 → 0, one has:x0w∂ 〈M〉
∂w − zu∂ 〈M〉

∂u −
β/ν〈M〉 = 0. The separability of the variablesu andw in 〈M〉(u,w) = M1(u)M2(w) leads tox0wM′

2/M2 = β/ν +

zuM′
1/M2, where the prime means the derivative with respect to the argument. Since the left-hand side of this equation

depends only onw and the right-hand side depends only onu, they must be equal to a constantc. Thus,M1(u) =

u(c/z)−β/(νz) andM2(w) = wc/x0, resulting in〈M〉 (u,w) = mc/x0
0 Lβ/ν t(c−β/ν)/z. Returning to the original variables,

one has:〈M〉(t,L,m0) = mc/x0
0 t(c−β/ν)/z.

On one hand, choosingc= x0 and denotingθ = (x0−β/ν)/z, at criticality (τ = 0), we obtain the algebraically

behavior of the magnetization,

〈M〉(t)∼ m0t
θ . (4)

This can be observed by a finite time scalingb = t1/z, Eq. (3), at critical temperature (τ = 0), which leads to

〈M〉 (t,m0) = t−β/(νz)〈M〉(1, tx0/zm0). Definingx= tx0/zm0, an expansion of the averaged magnetization aroundx= 0

results in:〈M〉(1,x) = 〈M〉(1,0)+ ∂x〈M〉|x=0x+O(x2). By construction〈M〉(1,0) = 0, sincex = tx0/zm0 ≪ 1 and

∂x〈M〉|x=0 is a constant. Discarding the quadratic terms we obtain the expected power law behavior〈M〉m0 ∼ m0tθ ,

which is valid only for a characteristic time scalet < tmax∼ m−z/x0
0 .

Then, in this new universal regime, in addition to the familiar set of critical exponents described above, a new

dynamic critical exponentθ is found. This exponent, independent of the previously known ones, characterizes the so

called “critical initial slip”, the anomalous behavior of the magnetization when the system is quenched to the critical
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temperatureTc. In addition, a new critical exponentx0 is introduced to describe the dependence of the scaling behavior

on the initial conditions. This exponent represents the anomalous dimension of the initial magnetizationm0 and is

related to the exponentθ asx0 = θz+β/ν.

On the other hand, the choicec= 0 corresponds to the case which the system does not depend on the initial trace

and in whichm0 = 1 leads to simple power law:

〈M〉m0=1 ∼ t−β/(νz), (5)

which corresponds to decay of magnetization at long times (t > tmax).

Unlike the second-order phase transition, the behavior of athermodynamic system is more complex at a tricritical

point and the corresponding exponentθ may assume negative values. This assertion was theoretically deduced by

Janssen and Oerding [36] and numerically confirmed by da Silva et al. [37] through short-time Monte Carlo simula-

tions at the tricritical point of the Blume-Capel model. However, as shown by some researchers, negative values of

the exponentθ can be also found in systems exhibiting continuous phase transitions, as for instance, the Baxter-Wu

[38, 39], multispin [40], and 4-state Potts models [41].

At a tricritical point, the magnetization shows a crossoverfrom the logarithmic behaviorM(t) ∼ m0[ln(t/t0)]−a

at short timest ≪ m−4
0 to t−1/4 power law with logarithmic corrections,M(t)∼ [t/ ln(t/t0)]−1/4 in three dimensions.

The above behavior can be stated in the generalized form [36]

M(t) = m0

[
ln

(
t
t0

)]−a

FM(x), (6)

where

x=

{(
t

ln(t/t0)

) 1
4
[
ln

(
t
t0

)]−a

m0

}
. (7)

In Eq. (6) the function behave asFM(x) ∼ 1 or FM(x) ∼ 1/x for vanishing and large arguments, respectively. Below

three dimensions it reduces to the scaling form given by Eq. (4), but now the exponentθ is the exponent related to the

tricritical point of the relaxation process at early times.

In the present work, the simulations were carried out for square lattices with linear dimensionL = 160 and pe-

riodic boundary conditions for all performed experiments.The estimates for each exponent were obtained from five

independent bins at the tricritical point, each one consisting of Nrun (number of different time series of magnetization

or its upper moments from an initial configuration) runs andNMC Monte Carlo sweeps. The error bars are fluctuations

of the averages obtained from those bins and the dynamic evolution of the spins is local and updated by the heat-bath

algorithm. Here it is important to mention that finite size scaling effects are negligencible for the considered size

L = 160. For example, by using the Eq. (5) withNrun = 10000 runs andL = 80, we obtainedβ/(νz) = 0.03938(5)

form the time interval[80,300] while for L = 140 we obtainedβ/(νz) = 0.03934(5) for the same interval and num-

ber of runs. So, within statistical errors we can not distinguish the results forL = 80 andL = 140. Then, we are

very confortable withL = 160. Other details about simulations will be supplied according to development of this

manuscript.

In this paper, we performed time-dependent Monte Carlo (MC)simulations to explore the tricritical behavior of

the two-dimensional metamagnetic model. First of all, we worked on localization of the tricritical point by using a

recent refinement process developed by da Silva et al. [42]. By considering as input the parameterα = J2/J1 = 1/2,

the supposed tricritical temperatureTt , the resolution∆H, NMC = 150 andNrun = 1000 (a large number of runs is not

required to these experiments since relaxation from ordered initial lattices are very stable, differently from evolutions

from disordered initial states which demand a lot of runs), we performed MC simulations starting always from the
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ordered state (m0 = 1) in order to estimate the value of the external magnetic field Ht at the tricritical point. With

the tricritical setTt andHt in hand, we are then able to estimate some dynamic and static critical exponents of the

proposed model.

To reach our goal, the time evolution of the magnetization (Eq. (5)) is obtained for each value of the external

magnetic fieldHi in a range[Hmin,Hmax], whereHi = Hmin+ i ·∆H, i = 0, ...,n , andn= (Hmax−Hmin)/∆H. Then,

theHt is obtained by using the so-called determination coefficient of the fit

r =

NMC

∑
t=1

(ln〈M〉−a−blnt)2

NMC

∑
t=1

(ln〈M〉− ln〈M〉(t))2

. (8)

Here, the closer to the unity is the coefficient, the better isthe fit and the estimate ofHt . This approach is simpler

to calculate than other schemes, such as the goodness of fit, for example.

In Eq. (8)ln〈M〉 = (1/NMC)∑NMC
t=1 ln〈M〉(t), 〈M〉(t) = (1/L2)∑Nrun

j=1 M j(t), with M j(t) denoting the magnetization

of j-th run oft-th MC step,a andb are the linear coefficient and the slope in the linear fit ln〈M〉 versus lnt, respectively.

In our experiments we discarded the initial 30 MC steps for better estimate. In previous work (Ref. [42, 43]) we

performed two successive refinements: one with larger∆(0) and another more refined (smaller)∆(1). Here since we

have a good initial kick, we performed only one refinement with ∆H = 10−3.

In the first attempt to obtain our set of tricritical parameters (Tt ,Ht ), we considered the results obtained by Landau

and Swendsen [20],Tt = 1.208(9) andHt = 3.965(17), which were obtained through MC renormalization techniques.

So, we fixedTt = 1.208 and changedHt in order to obtain its best value through Eq. (8). Figure 1 shows the plot ofr

versusH whenHmin = 3.9 andHmax= 4.

3.90 3.92 3.94 3.96 3.98 4.00

0.0

0.2

0.4

0.6

0.8

1.0

 

 

r

H

H
best

= 3.964

Figure 1: Determination coefficientr as function ofHt from Hmin = 3.9 up toHmax= 4.0 with ∆H = 0.001, for the fixed temperatureTt = 1.208.

The best value corresponding toTt = 1.208 found by our refinement isHt = Hbest= 3.964 which corroborates the

value found in literature. Since we have observed that our non-equilibrium method is able to determine the tricritical

point, we can now use this estimate to check if, for instance,the exponentz is consistent with the results of literature.
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For this purpose we used a functionF2(t) given by [44]

F2(t) =
〈M2(t)〉m0=0

〈M(t)〉2
m0=1

∼ td/z, (9)

whered is the dimension of the system. This approach, that mixes moments of magnetization under different initial

conditions, has proved to be very efficient in estimating theexponentz for a great number of models [37, 38, 45, 46,

47]. Here it is important to mention that the calculation of the second moment〈M2(t)〉m0=0 must be performed with

initial magnetization per spinm0 = 0. However, the initial configuration of the system must be choosen at random

instead of ordered one. As mentioned above, from Eq. (2), an initial ordered configuration (σi, j = 1 for all sites) gives

M(0) = m0 = 0 and, although this is the simpler way, it is a very correlated one. Nevertheless, the sharp preparation

of random initial condition withm0 = 0 is also straightforward performed: we distribute randomly, and with same

probability, spins+1 and−1 on the lattice sites. Then, an adjustment process is performed: If the magnetization is

negative, we choose randomly one site(i, j), and while the magnetization remains negative, we flip+→− whether

i + j is odd and−→+ otherwise. If the magnetization is positive we make exactlythe opposite: we flip−→+ if

i + j is odd and+→− otherwise. This process is done until the magnetization vanishes.

On the other hand, to obtain the magnetization〈M(t)〉, we must perform simulations with ordered initial configu-

rations which are trivially preparated by putting in a site(i, j) a spin+1 if i + j is even and−1 otherwise.

In this paper, we used for computation of averaged time series of thek-th moment of magnetization, i.e.,〈Mk(t)〉m0×
t, a total ofNrun runs that depends onm0 considered. The error bars were obtained fromNb different bins (of course

each bin means the quantities – magnetization or their moments – were averaged over theNrun time series). In order to

obtain the tricritical exponents, we used alwaysNb = 5, Nrun = 20000 for experiments that require disordered initial

configurations, such as those ones to obtain the exponentsθ andz (small or null values ofm0, respectively), and

Nrun = 10000 for experiments that demand ordered initial configurations, such as those ones to estimate the exponents

z, β andν. Our results in the plots correspond to more refined estimate〈Mk(t)〉= (1/Nb)∑Nb
i=1〈Mk(t)〉(i) and the error

bars (standard deviation of average) were estimated asσ/
√

Nb =

(
1

Nb(Nb−1) ∑Nb
i=1

[
〈Mk(t)〉(i)−〈Mk(t)〉

]2
)1/2

, where

〈Mk(t)〉(i) denotes the average ofk-th moment of magnetization of thei-th bin.

In Figure 2 (a), we showed the time evolution ofF2(t) in a log-log plot: the black squares correspond to simulations

performed with estimatesTt = 1.208 andHt = 3.965 obtained in [20]. SinceF2(t) is obtained from two different time

evolutions, we obtain the exponentz by making a crossover of a bin of〈M2(t)〉m0=0 and another bin of〈M(t)〉m0=1,

resulting inNb = 25 and not simplyNb = 5.

Then we built a simple algorithm that, for different peaces of time evolution, performs a linear fit and always

keeps the same number of points. We used for such estimates a maximum number of MC stepsNMC = 400. Our

algorithm supplies as output the peace of the time window[tmin, tmax] corresponding to the best goodness of fit [48],

as well as the value of this goodness (q) and correspondingz value obtained from the slope ofF2 as function oft in

log-log scale, besides considering the error bars to determination of slope and the needed error propagation. Here, it

is important to mention, that we used the goodness of fit and not the simple and flexible coefficient of determination

(r) because the error bars were incorporated to obtain quality of the fit, as well as the slope and its uncertainty. In this

case,z is estimated with respective uncertainty asẑ±σz = 2/(2̂/z)±2/(2̂/z)2σ
2̂/z

, where2̂/z is the slope estimated

of F2 versust andσ
2̂/z

the error obtained of this fit.

In our algorithm,tmin varies from 20 up to 300 andtmax from 80 to 400, with restriction thattmax− tmin > 60

MC steps. As best result, the algorithm suppliesz= 2.12(2), corresponding toq= 0.99999935... in [300,360]. We

fixed for our analysis 20 points per interval by adjusting thespacing between the poins. This value is lower than that
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Figure 2:(a): Time evolving in log-log scale ofF2(t) as funtion of timet (corresponding MC step). The square points correspond to simulations
that run set on estimate of Landau and Swendsen (Tt = 1.208 andHt = 3.965). The circles corresponds to simulations run set on re-estimated with
our refinement (Tt = 1.210 andHt = 3.965). (b): Corresponds to the same plot however them0 = 0 is obtained vanishing also the sub-lattices. The
same convention is used for both Figure (a) and (b). The insetplots correspond to behavior of difference in absolute value betweenF2 obtained
with Tt = 1.208 andF2 obtained withTt = 1.210, as function of time. Both cases we usedHt = 3.965.

estimated for the two-dimensional Blume Capel model at the tricritical point point,z= 2.215(2) [37].

In order to check if we were exactly on the tricritical point,we decided to reestimate it by using our refinement

procedure, as described above. In this case, we fixedTt = 1.210, and foundHt = 3.965 (exactly as found in [13]) that

is a little bit different of that obtained previously,Ht = 3.964 whenTt = 1.208.

Then, we performed simulations forF2 at same conditions but now considering the new set of tricritical parameters,

Tt = 1.210 andHt = 3.965. The red circles in Figure 2 (a) exhibit such time behavior. We cannot observe a reasonable

difference just by looking at the plot. Instead we can take the difference between the two estimates ofF2 (inset

Figure 2 (a)) and observe that there is a ”microscopic” difference. By performing again our algorithm that finds the

best interval of time evolution (corresponding to best goodness of fit) we foundz= 2.21(2), q = 0.9999938... and

coincidentally for the same time interval[300,360]. Such result corroborates our estimate for the Blume-Capelmodel

z= 2.215(2) [37].

Of course,m0 = 0 does not imply in sub-lattices with zero magnetization. Although this is an artificial preparation,

it is worth to test this situation by observing the time evolution of F2, for instance. So, we prepared the initial states

with the spin variables at each site chosen at random but withM1(t = 0) = M2(t = 0) = m0 = 0 in order to study such

effects on the exponentz in comparisom with the straight preparation.

With the view to obtain such configurations we performed the following procedure: we randomly selectedL2/4

spinsσi, j with i + j even, and attributedσi, j = 1. We also randomly selectedL2/4 spinsσi, j with i + j odd, and

attributedσi, j =−1. Thereafter, we attributeσi, j :=−1 to the remaining spins withi+ j even andσi, j := 1 otherwise.

The time evolving under such conditions for the same parameters that was studied without vanishing the sub-lattices

can be observed in Fig. 2 (b). Similarly by applying our algorithm to find the best interval, with its corresponding

z, we obtainedz= 2.13(2) in [300,360] with q = 0.9998798... for Tt = 1.208 andHt = 3.965 andz= 2.17(3) in

[320,380] with q= 0.9999955..., for Tt = 1.210 andHt = 3.965.

We conclude that vanishing the sublattices magnetization seems to be not interesting because the exponentz

presents difference from the natural condition ofm0 = 0, even though, forTt = 1.210 andHt = 3.965, we find an

agreement (according to error bars) of exponents with our best estimatez= 2.21(2), obtained without imposing the
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Interval Tt = 1.208
Tt = 1.208
zero sublattices
magnetization

Tt = 1.210
Tt = 1.210
zero sublattices
magnetization

[220,360]
z= 2.109(8)
q= 0.9856

z= 2.063(6)
q= 0.0885

z= 2.177(7)
q= 0.9576

z= 2.124(7)
q= 0.0237

[240,360]
z= 2.105(9)
q= 0.9993

z= 2.086(7)
q= 0.6588

z= 2.173(9)
q= 0.9936

z= 2.156(9)
q= 0.8355

[280,360]
z= 2.12(2)
q= 0.9996

z= 2.13(2)
q= 0.9998

z= 2.19(2)
q= 0.9773

z= 2.19(1)
q= 0.9804

[300,360]
z= 2.12(3)
q= 0.9999

z= 2.13(2)
q= 0.9999

z= 2.21(2)
q= 0.9999

z= 2.17(3)
q= q= 0.9991

Table 1: Estimates of z for different intervals and respective goodness of fit found for each time interval analyzed forHt = 3.965. Both situations
are analyzed with zero sublattices magnetization (no natural choice) and no vanished sub-lattices (natural choice).

vanishing of sub-lattices, whose value is in absolute agreement with estimate to the tricritical point found for the

Blume Capel. Table 1 summarizes our main results forz for the different situations. It is also important to mention

that vanishing of the sublattices magnetization, forTt = 1.210 we can findz= 2.21(2) for other intervals, for example

[280,360] and with goodnessq= 0.992783....

Since we have determined the tricritical parameters, as well as the tricritical exponentz, now we can calculate the

other tricritical exponents for the metamagnet model, the dynamic critical exponentθ and static critical exponentsβ
andν. First, we analyzed the exponentθ , that here is calculated by two different methods: i) the straight application

of the power law behavior given by Eq. (4) and ii) by means of the time correlation of the order parameter [49].

In the first method, the exponentθ is obtained as a function of the initial magnetizationm0. In this case, it

is necessary working with a precise and small value of the initial magnetization in order to obtainθ (m0). The

asymptotic value ofθ is obtained by extrapolating the estimates ofθ for various values ofm0 toward the limit

m0 → 0. Our simulations were performed for four different valuesof m0, m0 = 0.02,0.04,0.06, and 0.08. Here we

usedL = 160 and the initial configurations were prepared with fixedm0 and spins randomly selected following the

procedures previously described form0 = 0 without vanishing the sublattices. The only difference here is that instead

of performing an adjustment to findm0 = 0 we perform the adjustment to obtain the fixed desired magnetization.

In Figure 3 we showed the behavior of the time evolution of thestaggered magnetization for the considered initial

magnetizations in double-log scale.

Figure 4 exhibits the behavior of the exponentθ for the four initial magnetizations described above, as well as a

linear fit that leads to its final value through the numerical extrapolation towardsm0 → 0. The anomalous behavior

which prescribes that the magnetization decays as a function of time, instead of an expected increase (as observed in

regular critical points) corroborates the numerical observation of the tricritical point of the Blume Capel model [37]

as well as the theoretical one [36].

In Table 2 we present the estimates forθ as a function of different initial magnetizationsm0. The value found

θ =−0.52(4), from extrapolation tom0 → 0.

The second method used to estimateθ is through the time correlation of the magnetization [49] given by

C(t) = 〈M(0)M(t)〉 ∼ tθ . (10)

When compared to the first technique foreseen by Eq. (4), thismethod has at least two advantages. It does not demand

a careful preparation of the initial configurations the limiting procedure, the only requirement being that〈m0〉 = 0.

From a computational point of view it is very useful, becausethe spins are placed randomly on the lattice sites and the
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Figure 3: Time evolution of the magnetization form0 = 0.02, 0.04, 0.06 and 0.08. The error bars were calculated over 5 sets of 20000 runs each
one. The inset displays the time evolution in a linear scale.

m0 θ
0.08 −0.585(2)
0.06 −0.576(5)
0.04 −0.566(1)
0.02 −0.55(1)

Extrapolated value −0.52(4)

Table 2: The dynamical exponentθ from the time evolution of the magnetization for different initial configurations.

evolution starts without questions about the value ofm0 since that procedure ensures magnetizations aroundm0 = 0.

Figure 5 displays the time dependence of the time correlationC(t) in double-log scale. The linear fit of this curve

leads to the value

θ =−0.56(2). (11)

These results [see Table 2 and Eq. (11)] are in agreement withthe value obtained for the Blume-Capel model

[37] at the tricritical point,θ = −0.53(2), corroborating the dynamical universality for the tricritical points, as well

as confirming the conjecture by Janssen and Oerding [36] whereas the value ofθ for the metamagnetic model is also

negative.

Let us consider now the static critical exponentsν and β of the metamagnetic model, both obtained through

the scaling behavior of the staggered magnetization and taking into account runs with ordered initial configurations

(m0 = 1). The statical exponentν can be obtained by fixingb−zt = 1 in Eq. (3) and differentiating lnM(t,τ) with

respect toτ at the tricritical point. The power law obtained is

D(t) =
∂

∂τ
ln〈M〉m0=1(t,τ)|τ=0 ∼ t1/νz. (12)

Numerically, the quantityD(t) is computed simulating the relaxation of the system initially ordered in two different
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Figure 4: Dynamic exponentθ as a function of the initial magnetizationm0. Each point represents an average over 5 sets of 20000 runs each one.

points, the first one slightly above the tricritical temperature (Tt + ε) and the other one slightly below the tricritical

temperature(Tt − ε), keeping the magnetic fieldHt fixed. So, we numerically expected that

D(t) =
1
2ε

ln
〈M〉m0=1(t,τ + ε)
〈M〉m0=1(t,τ − ε)

∼ t1/νz

for small value ofε. In previous works we tipically usedε = O(10−3) and in this work we consideredε = 1 ·10−3.

In Figure 6, the power law increase of the above equation is plotted in double-log scale.

From the slope of the curve one can estimate the tricritical exponent 1/νz and by using the exponentz obtained

from the scaling relationF2(t), the exponentν is then estimated with its respective uncertainty (error propagated):

ν̂ ±σν =
(

1̂/νz· ẑ
)−1

±√(
1̂/νz

2
· ẑ
)−2

σ2
1̂/νz

+
(

1̂/νz· ẑ2
)−2

σ2
ẑ .

Here1̂/νz and ẑ are the estimates andσ
1̂/νz

andσẑ are their respective uncertainties. Our estimate forν at the

tricritical point is νt = 0.57(3) at interval [320,380] with goodness-of-fitq = 1 which corroborates the theoretical

predictionνt = 5/9 = 0.555. Here we kept 20 points per interval and used the same processing to find the best

goodness. Here it is also important to mention that once we have simulated 5 different bins forTt −ε (T = 1.209) and

5 bins forTt + ε (T = 1.211) and by crossing all seeds, we obtained a sample with 25 different measures as well as

the procedure used forF2, i.e., in the first case we have crossed seeds of different temperatures and in the second case

due to the different initial conditions to composeF2.

Finally, we evaluated the statical exponentβ by the dynamic scaling law for the magnetization〈M〉m0=1 (t) ∼

t−β/νz. By estimatingβ̂/νz from the log-log plot of〈M〉 versust , β is determined with its uncertainty as
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Figure 5: Time correlation of the magnetization for sampleswith 〈M(t = 0)〉 ≈ 0. The error bars were calculated over 5 sets of 20000 runs each
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Exponent

ref. [37]
2D Blume
Capel
(short time
dynamics)

ref. [14]
Quantum 1d
BEG
Model
(FSS)

ref. [20]
Blume
Capel
model
(MCRG)

ref. [12]
(FSS)

ref. [13]
(FSS)

ref. [50, 51]
(CI)

This
work

β 0.0453(2) – 0.039 0.0411(7) – 1/24 0.049(4)

ν 0.537(6) 1/1.80 0.56 0.552(6) 0.5562(12)∗ 5/9 0.57(3)

Table 3: Static tricritical exponents. We present some results found in the literature and our predictions via time-dependent MC simulations. The
acronyms (BEG), (MCRG), (FSS) and (CI) mean ”Blume-Emery-Griffiths”, ”Monte Carlo ”Renormalization Group”, Finite Size Scalling, and
Conformal Invariance respectively.

β̂ ±σβ =
(

β̂/νz
)
·
(

1̂/νz
)−1

±√(
1̂/νz

)−2
σ2

β̂/νz
+

((
β̂/νz

)
·
(

1̂/νz
)−2

)2

σ2
1̂/νz

In Figure 7 we show the time evolution of the magnetization indouble-log scale.

The exponent obtained from the slope of this curve isβ/νz= 0.0390(2) in the time interval[320,380] with

q = 0.9999.... With this exponent in hand and taking into account the previous result for 1/νz (0.79(7)), we can

estimate the exponentβ through the equation above. The result,β = 0.049(4), is close to the theoretical prediction

β = 1/24. In Table 3 we show our estimates and a comparison with important results from literature of statical

exponents (β andν) at the tricritical points.

In summary, we have performed short-time Monte Carlo simulations to investigate the scaling behavior at the

tricritical point of a two-dimensional metamagnetic model. The dynamic critical exponentθ was estimated using two

different approaches: by following the time evolution of the staggered magnetization and measuring the evolution of
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Figure 6: The time evolution of the derivative∂M(t,τ)/∂τ |τ=0 in log-log scale in a dynamic process starting from an ordered state(m0 = 1). Error
bars are smaller than the symbols. Each point represents an average over 25 sets (5 atTc− ε crossed with 5 atTc+ ε) of 10000 runs each one.

the time correlation functionC(t) of the staggered magnetization. On the other hand, the dynamic critical exponent

z was found through the functionF2(t) which combines simulations performed with different initial conditions. The

static critical exponentsβ andν were obtained through the scaling relations for the staggered magnetization and its

derivative with respect to the temperature atTc. Our results are in good agreement with the exponents previously

determined for the tricritical point of the two-dimensional Blume-Capel model.
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[14] F. C. Alcaraz, J. R. Drugowich de Felicio, R. Köberle, and J. F. Stilck, Phys. Rev. B32, 7469 (1985).
[15] P. D. Beale, Phys. Rev. B33, 1717 (1986).
[16] A. K. Jain and D. P. Landau, Phys. Rev. B22, 445 (1980).
[17] J. D. Kimel, S. Black, P. Carter, and Y.-L. Wang, Phys. Rev. B 35, 3347 (1987).
[18] Y.-L. Wang and J. D. Kimel, J. Appl. Phys.69, 6176 (1991).
[19] K. L. Ayat and C. M. Care, J. Magn. Magn. Mater.127, L20 (1993).

12



10 100
0.75

0.8

0.85

0.9
 

<M
> m

0=
1(t
)

t(MCSteps)

Figure 7: The time evolution of the magnetization for initially ordered samples(m0 = 1). The error bars calculated over 5 sets of 10000 runs each
one, are smaller than the symbols.

[20] D. P. Landau and R. H. Swendsen, Phys. Rev. Lett.46, 1437 (1981).
[21] D. P. Landau and R. H. Swendsen, Phys. Rev. B33, 7700 (1986).
[22] Y. Honda, Phys. Lett. A184, 74 (1993).
[23] K. Katsumata, H. Aruga Katori, S. M. Shapiro, and G. Shirane, Phys. Rev. B55, 11466 (1997).
[24] O. Petracic, Ch. Binek, and W. Kleemann, J. Appl. Phys.81, 4145 (1997).
[25] J. M. Kincaid, E. G. D. Cohen, Phys. Rep. C.22, 57-143 (1975)
[26] H. J. Herrmann, E. B. Rasmussen, D. P. Landau, J. Appl. Phys.53, 7994 (1982)
[27] P. D. Beale, J. Phys. A,17, L335-L339 (1984)
[28] M. Santos, W. Figueiredo, Phys. Rev. B,58, 9321-9325 (1998)
[29] J. Geng, G. Wei, H. Miao, J. Magn. Magn. Mater.320, 1010–1019 (2008)
[30] M. Zukovic and T.Idogaki, arXiv:1301.1816v1 (2013)
[31] M. Santos and W. Figueiredo, Phys. Rev. E62, 1799 (2000).
[32] H. K. Janssen, B. Schaub, and B. Z. Schmittmann, Phys. B73, 539 (1989).
[33] D. A. Huse, Phys. Rev. B40, 304 (1989).
[34] Z. B. Li, L. Schulke and B. Zheng, Phys. Rev. Lett.74, 3396 (1995).
[35] B. Zheng, Int. J. Mod. Phys. B12, 1419-1484(1998).
[36] H. K. Janssen and K. Oerding, J. Phys. A: Math. Gen.27, 715 (1994).
[37] R. da Silva, N. A. Alves, and J. R. Drugowich de Feĺıcio,Phys. Rev. E66, 026130 (2002).
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[50] D. B. Balbão, J.R. Drugowich de Feĺıcio, J. Phys. A.20, L207 (1987).
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