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Improving multivariate Horner schemes with Monte Carlo tree search
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Optimizing the cost of evaluating a polynomial is a classic problem in computer science. For
polynomials in one variable, Horner’s method provides a scheme for producing a computationally
efficient form. For multivariate polynomials it is possible to generalize Horner’s method, but this
leaves freedom in the order of the variables. Traditionally, greedy schemes like most-occurring vari-
able first are used. This simple textbook algorithm has given remarkably efficient results. Finding
better algorithms has proved difficult. In trying to improve upon the greedy scheme we have im-
plemented Monte Carlo tree search, a recent search method from the field of artificial intelligence.
This results in better Horner schemes and reduces the cost of evaluating polynomials, sometimes by
factors up to two.

I. INTRODUCTION

Polynomials are fundamental objects in mathemat-
ics and reducing the cost of evaluating polynomials is
a classic problem in computer science. Applications
abound, ranging from fast calculation on embedded de-
vices and real-time calculations to high-energy physics
(HEP), where one needs to perform Monte Carlo inte-
grations of extremely large polynomials in many vari-
ables [1–4]. Numerous methods to optimize polyno-
mial evaluation have been proposed, such as Horner’s
method [5–7], common subexpression elimination [8],
Breuer’s growth algorithm [9, 10] and, recently, partial
syntactic factorization [11].
For a polynomial in one variable, Horner’s method pro-

vides a computationally efficient form for evaluating it:

a(x) =

n
∑

i=0

aix
i = a0+x(a1+x(a2+x(· · ·+x ·an))). (1)

With this representation a dense polynomial of degree n

can be evaluated with n multiplications and n additions,
giving an evaluation cost of 2n. Here it is assumed that
the cost of addition and multiplication are equal.
For multivariate polynomials Horner’s method can be

generalized. To do so one chooses a variable and ap-
plies Eqn. (1), thereby treating the other variables as
constants. Afterwards another variable is chosen and the
same process is applied to the terms within the paren-
theses. This is repeated until all variables are processed.
As an example, for the polynomial a = y − 3x + 5xz +
2x2yz − 3x2y2z + 5x2y2z2 and the order x < y < z this
results in the following expression

a = y + x(−3 + 5z + x(y(2z + y(z(−3 + 5z))))). (2)

Regarding the evaluation cost, the original expression
uses 5 additions and 18 multiplications, while the Horner
form uses 5 additions but only 8 multiplications. In gen-
eral, applying a Horner scheme keeps the number of ad-

ditions constant, but reduces the number of multiplica-
tions.
After transforming a polynomial with Horner’s

method, the code can be further improved by perform-
ing a common subexpression elimination (CSE) [8]. In
Eqn. (2), the subexpression −3+5z appears twice. Elim-
inating the common subexpression results in the code

T = −3 + 5z
a = y + x(T + x(y(2z + y(zT )))),

(3)

which uses only 4 additions and 7 multiplications. The
code optimization package Haggies [12] implements this
method of Horner schemes followed by CSE.
Finding the optimal order of variables for the Horner

scheme is still an open problem for all but the smallest
polynomials, which are studied in Ref. [7]. Different or-
ders may impact the cost of the resulting code, although
no thorough study of this has been made to the authors’
knowledge. Simple algorithms have been proposed in the
literature, such as most-occurring variable first, which re-
sults in the highest decrease of the cost at that particular
step. This is also the order that is used in Haggies.
We studied the results of choosing different orders of

variables for the Horner scheme and discovered that this
order greatly affects the results, sometimes improving the
cost by factors up to two. Unfortunately, most often it
is impossible to perform an exhaustive search through
all Horner schemes, since their number increases as the
factorial of the number of variables. Therefore we have
devised a method to find efficient orders by using Monte
Carlo tree search (MCTS) [13, 14], a recently proposed
search method from the field of artificial intelligence.

II. MONTE CARLO TREE SEARCH

MCTS is a best-first search method that uses random
sampling to guide the traversal of the search tree. It has
recently drawn much attention due to its application in
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FIG. 1: The asymmetric search through an MCTS search tree
during the search for an efficient Horner scheme.

the field of computer Go [13], a classic board game in
which computers have traditionally played weakly. In
the past decade the application of MCTS has improved
the playing strength of computers from the level of ad-
vanced beginners to the level of strong amateur players.
MCTS has also been applied successfully in numerous
other games and optimization problems [14].
In MCTS the search tree is built in an incremental

and asymmetric way, see Fig. 1. During the search the
traversed part of the search tree is completely in mem-
ory. For each node MCTS keeps track of the number of
times it has been visited and the estimated result of that
node. At each step one node is added to the search tree
according to a criterion that tells where most likely bet-
ter results can be found. From that node an outcome is
sampled and the results of the node and its parents are
updated. This process is illustrated in Fig. 2. In more
detail the four steps of the MCTS cycle are the following.
Selection During the selection step the node which

most urgently needs expansion is selected. Several cri-
teria are proposed, but the easiest and most-used is the
UCT (upper confidence level for trees) criterion [15]:

UCTi = 〈xi〉+ 2Cp

√

2 logn

ni

. (4)

Here 〈xi〉 is the average score of child i, ni is the number
of times child i has been visited and n is the number of
times the node itself has been visited. Cp is a problem-
dependent constant that should be determined empiri-
cally. Starting at the root of the search tree, the most-
promising child according to this criterion is selected and
this selection process is repeated recursively until a node
is reached with unvisited children. The first term of
Eqn. (4) biases in favor of nodes with previous high re-
wards (exploitation), while the second term selects nodes
that have not been visited much (exploration). Balancing
exploitation versus exploration is essential for the good
performance of MCTS.
Expansion The selection step finishes with a node

with unvisited children. In the expansion step one of
these children is added to the tree.
Simulation In the simulation step a single possible

outcome is simulated starting from the node that has

Repeated N times

Selection Expansion Simulation Backpropagation

FIG. 2: The Monte Carlo tree search cycle illustrated. (Figure
from Ref. [13])

just been added to the tree. This simulation can con-
sist of generating a complete random outcome starting
from this node or can be some known heuristic for the
search problem. The latter typically works better if spe-
cific knowledge of the problem is available.
Backpropagation In the backpropagation step the

results of the simulation are added to the tree, specifically
to the path of nodes from the newly-added node to the
root. Their average results and visit count are updated.
This MCTS cycle is repeated a fixed number of times

or until the computational resources are exhausted. After
that the best found result is returned.

III. EFFICIENT HORNER SCHEMES

In the existing code optimization packages that use
Horner schemes combined with CSE, a simple algorithm
for the order of the variables is chosen. Widely used
is the occurrence order, where the variables are sorted
with respect to the number of occurrences in the poly-
nomial [6]. The variable that has the largest number of
occurrences comes first in the order and is the first one
used in Horner’s method.
To test whether this algorithm gives efficient Horner

schemes we took a large polynomial with 15 variables,
a result from HEP calculations, and generated a mil-
lion random orders which were used for Horner’s method
followed by CSE. The occurrence order performed quite
well, about a standard deviation above average, but far
better orders were also found. An interesting feature of
the orders that led to efficient schemes also showed up:
these orders all shared the same variables in the trailing
part of the order. These are the variables that eventu-
ally show up most often in the common subexpressions.
These common subexpressions abound in the HEP poly-
nomials due to much structure, such as combinations of
coupling constants or dot products and masses.
Motivated by this observation we use MCTS to deter-

mine an order of the variables that gives efficient Horner
schemes. The root of the search tree represents that no
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variables are chosen yet. This root node has n children,
with n the number of variables. The other nodes repre-
sent choices for a number of variables in the trailing part
of the order. This number equals the depth of the node
in the search tree. A node at depth d has n− d children:
the remaining unchosen variables.

In the simulation step the incomplete order is com-
pleted with the remaining variables added randomly.
This complete order is then used for Horner’s method
followed by CSE. The number of operations in this opti-
mized expression is counted. The selection step uses the
UCT criterion with as score the number of operations in
the original expression divided by the number of opera-
tions in the optimized one. This number increases with
better orders and is typically of O(1). The constant Cp

in Eqn. (4) must therefore be chosen of that size as well.
Pseudocode of MCTS generated Horner schemes can be
found in algorithm 1.

Algorithm 1 Pseudocode of MCTS Horner

1: function MCTSHorner

2: r ← new node with empty variable order
3: for i← 1 . . .NumberOfTreeExpansions do
4: s← select(r)
5: s← expand(s)
6: x← simulate(s)
7: backpropagate(s,x)

8: return best optimized expression found

9:

10: function select(s)
11: while s is fully expanded do

12: s← argmax
children c of s

x(c)
n(c)

+ 2Cp

√

2 log(n(s))
n(c)

13: return s

14:

15: function expand(s)
16: o← variable order of s
17: x← random variable not in o

18: o← append(o,x)
19: c← new node with variable order o
20: add c to children of s
21: return c
22:

23: function simulate(s)
24: o← variable order of s
25: while o doesn’t contain all variables do

26: x← random variable not in o

27: o← append(o,x)

28: e← HornerScheme(expression, o)
29: e← CommonSubexpressionElimination(e)

30: return
NumberOfOperations(expression)

NumberOfOperations(e)

31:

32: function backpropagate(s,δx)
33: while s 6= null do
34: x(s)← x(s) + δx

35: n(s)← n(s) + 1
36: s← parent of s

IV. RESULTS

To test the performance of this method an implementa-
tion is added to the computer algebra package Form [16],
which is widely used for HEP calculations. The results
of this method are compared to a few existing algo-
rithms. For comparison we added to Form optimiza-
tion routines that use occurrence order Horner schemes
followed by CSE. Furthermore, we compare to the open-
source code optimization package Haggies [12] and the
results from the paper on the hypergraph method based
on partial syntactic factorization [11]. We also tried the
code optimization routines of Mathematica and Maple,
but their results were not of particular interest. Finally,
we present the results of the new code optimization rou-
tines of Form, which consist of MCTS generated Horner
schemes followed by greedy optimizations. A detailed de-
scription of this algorithm will be presented in Ref. [17].
Since this algorithm is an extension of MCTS Horner
with CSE, it should perform better.

The polynomials to be optimized consist of two sets.
The first set of polynomials (taken from Ref. [11]) are
the resultants of two polynomials, resx(a(x), b(x)), with
a(x) =

∑m

i=0
aix

i and b(x) =
∑n

i=0
bix

i, which is viewed
as a polynomial in the (m + n + 2) variables ai and bi.
The second set consists of a number of large multivariate
polynomials resulting from HEP calculations [2]. For the
set of resultants we observed that the variables that are
factored out first in the Horner scheme are critical for
the performance of MCTS Horner, as opposed to the last
variables which are important for the HEP polynomials.
This is probably due to many common subexpressions
appearing in the HEP polynomials if the right variables
are chosen last. The resultants don’t have that prop-
erty and are probably more sensitive to a large decrease
in the number of operations due to the Horner scheme
itself. This conjecture must be investigated more rigor-
ously. In the experiments for the resultants MCTS will
search therefore for the best leading part of the variable
order, while for the HEP polynomials it will search for
the best trailing part.

The results of the optimizations are expressed in the
number of operations in the final expressions and are in
Tab. I. It is clear that MCTS Horner with CSE beats
the existing algorithms, if the parameters (the exploita-
tion/exploration constant Cp from Eqn. (4) and the num-
ber of tree expansions N) are chosen properly.
The effectiveness of MCTS depends heavily on the

choice for these parameters. The results of MCTS with
3 000 tree expansions, followed by CSE, as a function of
Cp are in Fig. 3 for a large polynomial from HEP. For
equal values of Cp different results are produced because
of different seeds of the random number generator. For
small values of Cp, such that MCTS behaves exploitively,
the method gets trapped in one of the local minima as
can be seen from the different lines in the left-hand side
of the figure. For large values of Cp, such that MCTS
behaves exploratively, lots of options are considered and
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res(7,4) res(7,5) res(7,6) HEP(σ) HEP(F13) HEP(F24)

No optimizations 29 163 142 711 587 880 47 424 1 068 153 7 722 027

Occ. Horner + CSE 4 968 20 210 71 262 6 744 92 617 401 530

Haggies 7 540 29 125 101 821 13 214 238 093 crash

Hypergraph + CSE 4 905 19 148 65 770 — — —

MCTS + CSE (3.9± 0.1) · 103 (1.5 ± 0.2) · 104 (5.0± 0.6) · 104 (4.3± 0.3) · 103 (6.9± 0.4) · 104 (4.4 ± 0.2) · 105

[N = 300] [Cp = 0.03] [Cp = 0.03] [Cp = 0.01] [Cp = 0.35] [Cp = 0.03] [Cp = 0.01]

MCTS + CSE (3.86± 0.03) · 103 (1.39 ± 0.01) · 104 (4.58 ± 0.05) · 104 4 114± 14 (6.6± 0.2) · 104 (3.80 ± 0.06) · 105

[N = 1000] [Cp = 0.1] [Cp = 0.07] [Cp = 0.05] [Cp = 0.75] [Cp = 0.2] [Cp = 0.015]

MCTS + CSE (3.84± 0.01) · 103 13 786± 28 (4.54 ± 0.01) · 104 4 087 ± 5 (6.47± 0.08) · 104 (3.19 ± 0.04) · 105

[N = 10 000] [Cp = 0.2] [Cp = 0.2] [Cp = 0.15] [Cp = 1.5] [Cp = 0.3] [Cp = 0.03]

MCTS + greedy (3.03± 0.03) · 103 (1.09 ± 0.01) · 104 (3.57 ± 0.01) · 104 3 401± 31 (4.63± 0.09) · 104 (1.84 ± 0.04) · 105

[N = 10 000] [Cp = 0.2] [Cp = 0.2] [Cp = 0.15] [Cp = 1.5] [Cp = 0.3] [Cp = 0.03]

TABLE I: The number of operations in the final expression after applying the optimization methods on the polynomials.
The results for the hypergraph method are from Ref. [11]; we did not have the opportunity to test this method on the HEP
polynomials. Different MCTS experiments are performed with different values for CP , which are determined by trial and error.
These are present in the table underneath their corresponding results. The MCTS results are statistical averages of different
samples.

no real minimum is found as can be seen from the cloud

of points on the right-hand side. For intermediate val-
ues of Cp ≈ 1 MCTS balances well between exploitation
and exploration and finds almost always a Horner scheme
that is very close to the best one known to us.

The results of improving this polynomial for different
numbers of tree expansions are shown in Fig. 4. For small
numbers of tree expansions it turns out to be good to
choose a low value for the constant Cp (smaller than 0.5).
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FIG. 3: A scatter plot of the results of MCTS Horner with
CSE with 3 000 tree expansions for the polynomial HEP(σ) as
a function of the constant CP that determines the balance be-
tween exploitation (small values) and exploration (large val-
ues). Shown are 4 000 randomly chosen values for Cp with
their corresponding results.

The search is then mainly driven by exploitation. MCTS
quickly searches deep in the tree, most likely around a
local minimum. This local minimum is explored quite
well, but the global minimum is likely to be missed. With
higher numbers of tree expansions a value for Cp in the
range [0.5; 2] seems suitable. This gives a good balance
between exploring the whole search tree and exploiting
the promising nodes. Really high values of Cp seem a bad
choice in general, since promising nodes are not exploited
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Best value found

N=100
N=300
N=1000
N=3000
N=10000
N=30000

FIG. 4: The results of MCTS Horner with CSE for the poly-
nomial HEP(σ) as function of the exploitation/exploration
constant Cp and the number of tree expansions N . All data
points are statistical averages over at least 100 samples. The
fourth line from above (green) consists of the average values
per CP of the scatter plot of Fig. 3.
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Algorithm Num. operations Run time

No optimizations 142 711 —

Occurrence Horner + CSE 20 210 0.29 sec

Haggies 29 125 11.3 sec

Hypergraph + CSE 19 148 22.1 sec

MCTS+CSE (N=300, CP =0.03) (1.5 ± 0.2) · 104 47.4 sec

MCTS+CSE (N=103, CP =0.07) (1.39 ± 0.01) · 104 157 sec

MCTS+CSE (N=104, Cp=0.2) 13 786 ± 28 1.4 · 103 sec

MCTS+greedy (N=104, CP =0.2) (1.09 ± 0.01) · 104 1.4 · 103 sec

TABLE II: The run times of the various optimization algo-
rithms on the polynomial res(7, 5). All tests are performed
on 2.4GHz Pentium or Xeon CPUs.

anymore. Note that these values hold for this particular
polynomial, and that different polynomials give different
optimal values for Cp and N . The different values for Cp

in Tab. I are determined by trial and error and give de-
cent results. With some more tuning even better results
can probably be achieved. Automatic tuning of this pa-
rameter would be very convenient and is part of ongoing
research.
The different algorithms vary a lot regarding the

consumed computational resources, see Tab. II. MCTS
Horner with CSE needs considerably more run time than
a greedy Horner scheme with CSE. This makes sense,
because MCTS basically does such an operation per tree
expansion. With only few computational resources avail-
able it is better to use a greedy Horner scheme than to
use MCTS. If used it searches through the tree for good
schemes for too short a time and does not find one, there-
fore resulting in a bad scheme. Compared to Haggies
and the hypergraph method, MCTS with 300 expansions
gives slightly longer run times for slightly better results.
When the quality of the polynomial evaluation scheme
is of great importance, it makes sense to spend more
time to find a better evaluation scheme. With more time
available, so that large parts of the search tree can be tra-
versed, MCTS Horner with CSE or greedy optimizations
outperforms all other methods considerably.

V. DISCUSSION

Polynomials are fundamental mathematical objects,
naturally occurring at many places in mathematics and
science. Efficient evaluation of polynomials is of great
importance to many application areas. Horner’s method
is a simple approach straight out of undergraduate algo-
rithms textbooks. For something so basic, it is remark-
able that over the years so little improvement has been
made in finding more efficient evaluation schemes.
We improve on the traditional multivariate Horner

schemes, where the variable order is fixed by a simple
procedure, by employing MCTS. By statistically sam-
pling the different variable orders it is designed to balance
exploitation of known good schemes while not forgetting
to explore unknown schemes as well.
The basic multivariate Horner schemes generated with

most-occurring variables ordered first will quickly yield
schemes that may be efficient enough for many applica-
tions. More demanding domains, where the expressions
are large and/or evaluated many times, need better eval-
uation schemes. For these applications it pays to invest
the time to generate them. MCTS is suitable for these
types of applications. Evaluating large expressions for
Feynman diagrams in HEP is one such domain, where
large expressions have to be evaluated many times doing
Monte Carlo integration [1–4].

For all examined polynomials MCTS Horner, followed
by CSE, generated evaluation schemes that were bet-
ter than any other algorithm that we tried. A further
analysis of the performance is ongoing research. This
includes sensitivity analysis to different parameters (ex-
ploitation/exploration constant, number of tree expan-
sions), dependence on the polynomial (size, number of
variables, use of heading or trailing part of the variable
order), automatic tuning of the parameters to the polyno-
mial, better criteria for the selection step, possible heuris-
tics for the simulation step (such as using the occurrence
order instead of random completion), and the paralleliza-
tion of the algorithm.
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