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The Bc meson is a doubly heavy quark-antiquark bound state and carries flavors explicitly,
which provides a fruitful laboratory for testing potential models and understanding the weak decay
mechanisms for heavy flavors. In view of the prospects in Bc physics at the hadronic colliders as
Tevatron and LHC, Bc physics is attracting more and more attention. It has been shown that a
high luminosity e+e− collider running around the Z0-peak is also helpful for studying the properties
of Bc meson and has its own advantages. For the purpose, we write down an event generator for
simulating Bc meson production through e+e− annihilation according to relevant publications.
We name it as BEEC, in which the color-singlet S-wave and P -wave (cb̄)-quarkonium states
together with the color-octet S-wave (cb̄)-quarkonium states can be generated. BEEC can also be
adopted to generate the similar charmonium and bottomnium states via the semi-exclusive channels
e+ + e− → |(QQ̄)[n]〉 +Q+ Q̄ with Q = b and c respectively. To increase the simulation efficiency,
we simplify the amplitude as compact as possible by using the improved trace technology. BEEC is
a Fortran programme written in a PYTHIA-compatible format and is written in a modularization
structure, one may apply it to various situations or experimental environments conveniently by using
the GNU C compiler make. A method to improve the efficiency of generating unweighted events
within PYTHIA environment has been suggested. Moreover, BEEC will generate a standard Les
Houches Event data file that contains useful information of the meson and its accompanying partons,
which can be conveniently imported into PYTHIA to do further hadronization and decay simulation.
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Program summary

Title of program : BEEC

Version: 1.0

Program obtained from : CPC Program Library.

Computer: Any computer with Fortran compiler, the program is tested with GNU Fortran compiler and Intel Fortran
compiler.

Operating systems : UNIX, Linux and Windows.

Programming language used : FORTRAN 77/90.

Memory required to execute with typical data : About 2.0 MB.

No. of bytes in distributed program, (including PYTHIA 6.4.24) : About 1.0 MB.

Distribution format : Compressed tar file.
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Nature of physical problem : Production of the charmonium, the (cb̄)-quarkonium and the bottomonium via the e+e−

annihilation channel around the Z0 peak.

Method of solution : The production of heavy (QQ̄′)-quarkonium (Q,Q′ = b, c) via e+e− annihilation are estimated
by using the improved trace technology. The (QQ̄′)-quarkonium in color-singlet 1S-wave state, 1P -wave state, and
the color-octet 1S-wave states have been studied within the framework of non-relativistic QCD. The code with option
can generate weighted and unweighted events conveniently, especially, the unweighted events are generated by using
an improved hit-and-miss approach so as to improve the generating efficiency.

Restrictions on the complexity of the problem : The generator is aimed at the production of double heavy quarkonium
through e+e− annihilation at the Z0 peak. The considered processes are those that are associated with two heavy
quark jets, which could provide sizable quarkonium events around the Z0 peak.

Typical running time : It depends on which option one choices to match PYTHIA when generating the heavy quarko-
nium events. Typically, for the production of the S-wave quarkonium states, if setting IDWTUP=1 (unweighted
events), then it takes about 2 hour on a 2.9 GHz AMD Athlon (tm) II×4 635 Processor machine to generate 105 events;
if setting IDWTUP=3 (weighted events), it takes only ∼ 16 minutes to generate 105 events. For the production of the
P -wave quarkonium states, the time will be almost one hundred times longer than the case of the S-wave quarkonium.

I. BACKGROUND AND MAIN IDEA OF BEEC

Heavy quarkonium has attracted wide attention due
to its special features. It provides a good platform to
study the perturbative QCD and the associated non-
perturbative physics in the bound state system [1, 2].
For example, the Bc meson is a doubly heavy quark-
antiquark bound state and carries flavors explicitly; it de-
cays through weak interactions only. Thus, the Bc meson
can be a fruitful laboratory for testing potential models
and understanding the weak decay mechanism for heavy
flavors. Systematic studies of its production properties at
the hadronic colliders Tevatron and LHC have been done
in the literature both theoretically [3–10] and experimen-
tally [11–18]. In particular, a generator BCVEGPY for
the hadronic production of the Bc meson has been com-
pleted and developed in recent years [19, 20], which can
be conveniently implemented into PYTHIA [21] for sim-
ulating Bc events with high efficiency. It has been noted
that at the hadronic colliders, there is much pollution
from the hadronic background and many produced Bc

events have been cut off by the trigging condition [11–
18]. Some alternative measurements would be helpful for
a comprehensive study.

Comparing to the hadronic colliders, a cleaner e+e−

collider is helpful and has some advantages to perform
precise measurements for certain high-energy processes.
Previously, the LEP-I experiment did a try to seek the Bc

events, but because of its small collision energy and low
luminosity, no Bc events have been found there. If the
incident e+e− collision energy is around the Z0-peak and
its luminosity can be reached up to L ∝ 1034−36cm−2s−1

(the so-called super Z factory [22], or the Gigaz pro-
gram suggested by the Internal Linear Collider Collabo-
ration [23, 24]), its production rate can be raised up by
several orders, then it could be observable [25–30]. Thus,
new opportunity for studying the Bc-meson properties at

the e+e− colliders arises. For the sake of experimental
feasibility studies, we write a generator, named as BEEC,
for simulating the Bc meson events at the future high lu-
minosity e+e− colliders.
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FIG. 1. Feynman diagrams for the heavy quarkonium produc-
tion via the e+e− annihilation, e++e− → |(QQ̄′)[n]〉+Q′+Q̄,
where Q or Q′ stands for b or c respectively, and [n] stands for
the Fock states |(QQ̄′)1[

1S0]〉, |(QQ̄′)8[
1S0]g〉, |(QQ̄′)1[

3S1]〉,
|(QQ̄′)8[

3S1]g〉, |(QQ̄′)1[
1P1]〉 and |(QQ̄′)1[

3PJ ]〉 (with J =
(1, 2, 3)) respectively.

In the framework of the effective theory of non-
relativistic QCD (NRQCD) [31], a heavy quarko-
nium is considered as an expansion of various Fock
states. In Ref.[30], we have presented a detailed
analysis of the (cb̄)-quarkonium production via the
process e+ + e− → |(cb̄)[n]〉 + b + c̄, where [n]
stands for the dominant (cb̄)-quarkonium state within
NRQCD. More explicitly, [n] stands for the quarkonium
states |(QQ̄′)1[

1S0]〉, |(QQ̄′)8[
1S0]g〉, |(QQ̄′)1[

3S1]〉,
|(QQ̄′)8[

3S1]g〉, |(QQ̄′)1[
1P1]〉 and |(QQ̄′)1[

3PJ ]〉 (J =
(1, 2, 3)) respectively. The analysis there can be extended
to all the doubly heavy quarkonia (cc̄), (cb̄) and (bb̄) via
the process e+ + e− → |(QQ̄′)[n]〉 + Q′ + Q̄ (Q and Q′

stand for b or c), whose typical Feynman diagrams are
presented in Fig.(1). The remaining two flipped diagrams
are obtained by interchanging the position of the Q′ and
the Q̄ lines in the first two diagrams.
The leptonic part of the process can be easily dealt

with, while the part for Z0/γ∗ → |(cb̄)[n]〉+b+ c̄ is much
more involved. Because of the emergence of massive-
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fermion lines in these Feynman diagrams, the analytic
expression for the squared amplitude becomes too com-
plex and lengthy under the conventional squared ampli-
tude approach. Especially, to derive the amplitudes for
the P -wave states, one also needs to get the derivative of
the amplitudes over the relative momentum of the con-
stitute quarks. One important way to solve it is to deal
with the process directly at the amplitude level, i.e. af-
ter generating proper phase-space points, one first cal-
culate the numerical value for the amplitudes, and then
sum these values algebraically and square it to get the
squared amplitude, |M|2 = |

∑

i Mi|
2; through such way,

numerical simulation efficiency can be greatly improved
in comparison to the usual squared amplitude technol-
ogy. Moreover, under the approach, many simplifications
can be done at the amplitude level due to the fermion-
line symmetries and the specific properties of each heavy-
quarkonium Fock states.

The improved trace technology is designed for such
purpose. As an explanation, we first arrange any one of
the amplitude Mss′ into four orthogonal sub-amplitudes
Mi according to the spins of the outgoing quark Q with
spin s and the outgoing anti-quark with spin s′, then
transform these sub-amplitudes into a trace form by
properly dealing with the massive spinors with the help
of an arbitrary light-like momentum k0 and an arbitrary
space-like momentum k1, which satisfies k21 = −1 and
k0 · k1 = 0. The final results should be independent of
k0 and k1, and one can choose them to be those that can
maximally simply the amplitude. Then we do the trace of
the Dirac γ-matrix strings at the amplitude level, which
finally results in analytic series over some independent
Lorentz-structures. Detailed description of the improved
trace technology, together with the necessary analytical
expressions, can be found in Refs. [27, 28, 30]. All the
independent Lorentz-structures together with their co-
efficients are put into the generator BEEC as separate
subroutines.

To do the phase-space integration, we first adopt the
subroutine RAMBOS [32] to generate the required phase-
space points, which also transforms the phase-space inte-
gration to be those variables varying within the region of
[0, 1]. In the program BEEC, a switch to choose whether
using the subroutine VEGAS [33] is introduced. When
running VEGAS, the most important samples for the
squared matrix element of the process are taken first,
which is in agreement with the importance sampling
strategy for Monte Carlo simulations. By taking an ade-
quate number of sampling points for the integration, the
output of VEGAS could reach up to a stable result with
requested statistical error.

We provide several ways in BEEC to generate the
weighted and unweighted events. For theoretical studies
on the heavy quarkonium production, e.g. to derive the
total cross-section or various differential distributions,
one can directly use the fastest way (preferred): to gen-
erate the weighted events that are distributed according
to the importance sampling function generated by VE-

GAS running. By using BEEC in this way, some inter-
esting properties for the Bc meson production have been
found [30]. While, for the events simulation in detector
conditions, it is necessary to get the unweighted events,
which are distributed according to the matrix element
squared [34, 35]. For the purpose, one can generate the
unweighted events by directly using the PYTHIA’s in-
ner mechanism, the so-called hit-and-miss approach (von
Neumann algorithm), to reject those unsatisfied events
and output the allowed events. But, as is well-known, the
original hit-and-miss approach is really time-consuming.
Some alterations must be made to improve its efficiency.
It has been observed that the weighted events could be

mapped to realistic independent unweighted events [34].
Thus, instead of using the time-consuming PYTHIA in-
ner mechanism, we generate the unweighted events by
using a more effective hit-and-miss technique [36]. Com-
pared to the original method of PYTHIA, such new hit-
and-miss procedure is taken in each cell of the adaptive
mesh found by VEGAS. Its idea lies in that: In order to
save the amount of storage space and the efficiency, we
adopt the method MINT [37] developed by the authors
of POWHEG program [38, 39]. By using the VEGAS
algorithm, the MINT program performs the integration
in using the SPRING-BASES subroutines and generates
events with a probability proportional to the integrand
in using the SPRING subroutines [40]. After each it-
eration of VEGAS running, the maximum value of the
function will be stored in a file for each cell of the adap-
tive mesh. The multidimensional stepwise function that
equals to the upper bound of the function to be inte-
grated in each cell in fact provides an upper bound for
the whole function. So, the program is to find the up-
per bound grid for those cells. Next, by using again the
hit-and-miss technique in each cell, one can generate the
points according to the original distribution. Following
these procedures, we can use BEEC to generate the un-
weighted heavy quarkonium events effectively, and then
we store the information of the unweighted event in a
standard Les Houches Event (LHE) file [41] so as to do
the further simulation.
The paper is organized as follows. In Sec.II, we show

the dominant features of the generator BEEC, in which,
we present its structure, its flow chart and its usage in
detail. The final section is reserved for a summary.

II. THE GENERATOR BEEC

As described in the above section, the BEEC is de-
signed to be a specific generator for simulating the pro-
duction of doubly heavy quarkonium (cc̄), (cb̄) and (bb̄)
at a e+e− collider. Since BEEC is implemented into
PYTHIA as an external process, all PYTHIA subrou-
tines can be applied conveniently. That is, one can use
the PYTHIA subroutines to read the generated useful
information of the heavy quarkonium and its accompa-
nying partons, and do further hadronization and decay
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simulation.
According to the NRQCD framework [31], the cross-

section of the quarkonium production process, e+(p2) +
e−(p1) → |(QQ̄′)[n]〉(q3)+Q′(q2)+ Q̄(q1) with Q and Q′

stand for b or c, can be written in the following form:

dσ =
∑

n

dσ̂(e++e− → (QQ̄′)[n]+Q′+Q̄)〈OH(n)〉, (1)

where the non-perturbative matrix element 〈OH(n)〉 is
proportional to the inclusive transition probability of
the perturbative state (QQ̄′)[n] into the bound states
|(QQ̄′)[n]〉. The short-distance differential cross section
dσ̂(e+ + e− → (QQ̄′)[n] +Q′ + Q̄) stands for the short-
distance cross-section; i.e.

dσ̂(e+ + e− → (QQ̄′)[n] +Q′ + Q̄) =
1

4
√

(p1 · p2)2 −m2
1m

2
2

∑

|M|2dΦ3, (2)

where
∑

means we need to average over the spin states
of initial particles and to sum over the color and spin of
all final particles, and the three-particle phase space

dΦ3 = (2π)4δ4



p1 + p2 −

3
∑

f

qf





3
∏

f=1

d3qf
(2π)32q0f

.

To obtain the total cross sections and the differential
cross sections of the processes, we shall first generate
the phase-space points by the subroutine RAMBOS [32],
which also transforms the generated four-momentum of
the final particles to proper subroutines to calculate the
amplitudes M, and hence the squared amplitude |M|2,
the final integration can be carried out by using the VE-
GAS program [33].
In the following subsections, we will sequentially

present the BEEC’s schematic structure, flowcharts and
usage in detail.

A. Structure of BEEC

BEEC is a Fortran programme written in a PYTHIA-
compatible format and is written in a modularization
structure, one may apply it to various situations or exper-
imental environments conveniently. BEEC will generate
a standard LHE data file that contains useful informa-
tion of the meson and its accompanying partons, which
can be conveniently imported into PYTHIA to do further
hadronization and decay simulation.

FIG. 2. The schematic structure for the generator BEEC.

The schematic structure for the generator BEEC are
shown in FIG.(2). All Fortran codes are organized in the
main directory named as beec. In general, the generator
is systematically constructed in seven modules according
to their purpose. Each module contains necessary files
to fulfill the specific tasks for generating events. Besides,
there are three Fortran source files: parameter.F, run.F
and beec.F in the main directory beec.

• The module generate: It is the key mod-
ule, which contains six source files: evn-
tinit.F, genevnt.F, pythia-6.4.24.F, totfun.F, init-
mixgrade.F and bcpythia.F. Its main function is
to initialize all input parameters for event simula-
tion; to establish connection between BEEC and
PYTHIA; to calculate the kernel for the phase-
space integration with the help of the coefficient
module and the amplitude module and to do the
phase-space integration with the help of the phase
module. The file initmixgrade.F is used to initial-
ize the importance sampling function for Monte
Carlo simulation. Once the importance sampling
function has been obtained by VEGAS, it can be
conveniently used by initmixgrade.F for later us-
age without running VEGAS again. By setting
proper values for the two parameters IMIX and IM-
IXTYPE, the required mixed quarkonium events
could be generated.

• The module phase: it contains three source files:
phase gen.F, phase point.F and vegas.F. Its pur-
pose is to generate the allowable phase-space points
and to record the importance sampling function
produced by VEGAS [33] into a grade file (with suf-
fix .grid) in the data subdirectory. The phase gen.F
contains a reformation of the previous RAMBOS
program [32] and can transform all the generated
four-momentum of the final particles to the gener-
ate module.

• The module pybook: it contains five source files:
pybookinit.F, uphistrange.F, uppydump.F, uppy-
fact.F and uppyfill.F. Its purpose is to initialize the
PYTHIA subroutine PYBOOK to record useful in-
formation of the generated events. The users may
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conveniently switch off this module in the main pro-
gram to use his/her own ways to record the data.

• The module setparameter: it contains two source
files: simparameter.F and uperror.F. The simpara-
meter.F is used to simplify/optimize the input pa-
rameters that have been set in parameter.F. When
the input parameters are out of allowed ranges,
some typical error messages stored in uperror.F will
appear on screen and the program will stop run-
ning.

• The module system: it contains six source files:
upopenfile.F, uplogo.F, vegaslogo.F, updatafile.F,
upclosegradefile.F and upclosepyfile.F. Its purpose
is to open or close the record files and to print out
certain running messages at the intermediate steps,
which reminds the users at what step the program
is running.

• The module coefficient: it contains four
source files: coef1s0.F, coef3s1.F, coef1p1.F and
coef3pj.F. It has been shown [27, 28] that
there are three independent Lorentz structures
for spin-singlet color-singlet and color-octet states
|(QQ̄′)1,8[

1S0]〉; twelve independent Lorentz struc-
tures for spin-triplet color-singlet and color-
octet states |(QQ̄′)1,8[

3S1]〉; twelve indepen-
dent Lorentz structures for spin-singlet P -wave

state |(QQ̄′)1[
1P1]〉; and thirty-four independent

Lorentz structures for spin-triplet P -wave state
|(QQ̄′)1[

3PJ ]〉 (with J = (1, 2, 3)). These files store
all the non-zero coefficients of all the independent
Lorentz-structures for the corresponding quarko-
nium states.

• The module amplitude: it contains four files:
ampy.F, ampz0.F, common.F, sqamp.F. Its pur-
pose is to calculate the amplitude numerically ac-
cording to the coefficients of Lorentz-structures
listed in the coefficient module. The ampli-
tudes of the color-octet states |(QQ̄′)8[

1S0]g〉 and
|(QQ̄′)8[

3S1]g〉 can be conveniently obtained from
that of the color-singlet states |(QQ̄′)1[

1S0]〉 and
|(QQ̄′)1[

3S1]〉 through proper changing of the color
factors and the non-perturbative matrix elements.

Each module is equipped with a makefile that is
applied to make a library with the same name, e.g. the
makefile in the subdirectory generate will be used
by the GNU C command make to generate generate.a
located in the main directory. Once the source file has
been compiled, one does not need to recompile it unless
some changes have been made. A master makefile in
the main directory orchestrates all those sub-makefiles.
Libraries required for the main program are listed in
the LIBS variable of the master makefile and built
automatically by invoking the sub-makefiles:

LIBS=amplitude.a coefficient.a generate.a phase.a pybook.a setparameter.a system.a

Under the way based on makefile, the generator
BEEC acquires good modularity and re-usability. The
user can easily reform the generator to suit the needs of
different experimental environment. After each running,
all files generated for recording the information are put
into the subdirectory data, in which three subdirectories
are for the mentioned production channels of (cc̄), (cb̄)
and (bb̄) respectively: all grade files for the importance
sampling function are ended with the suffix ‘.grid’; all
the files that record the used parameters and the VE-
GAS running information are ended with the suffix ‘.cs’;
all the files that record the differential distributions, e.g.
the transverse momentum and rapidity distributions of
the heavy quarkonium, are ended with the suffix ‘.dat’.

B. Flow charts of BEEC

We present the overall flow chart of the generator
BEEC in Fig.(3). The BEEC is dominated by two blocks,
i.e. the vegas block (in module phase) and the event
block (in module generate). The vegas block is to gen-
erate the importance sampling function. The event block

is to generate events by using PYTHIA, in the way that
the mentioned processes are implemented into PYTHIA
as its external processes. This is achieved by properly
setting the two PYTHIA subroutines UPINIT and UP-
EVNT. The schematic flow charts for the vegas block
and the event block of the generator BEEC are show in
Fig.(4). Here we modify the vegas block not only to gen-
erate the sampling importance function but also to store
an upper bound of the value of the cross section in each
cell. The importance smapling function is used to in-
crease the simulation efficiency, while the upper bound
value will be used to generate unweighted event if the
user want to do the experimental analysis and further
simulation. The upper bound value in each cell is an
upper bound for the cross section and also equals a mul-
tidimensional stepwise function, according to which it is
easy to generate phase space points. By using the hit and
miss technique, one can generate the points according to
the original distribution.

The main part of the vegas block is the VEGAS
subroutine. As explained in the last subsection, we
adopt the MINT algorithm but with certain alterations
to do the simulation. Three new variables have been
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BEGIN

SET PARAMETERS

USING

VEGAS ?

USING

GRADE ?

No

GRADE

EXISTED ?

Yes

Yes

READING GRADE

EVENT BLOCK

VEGAS BLOCK

NEW GRADE

No

No

STOP

END

Yes

FIG. 3. The overall schematic flow chart of the generator
BEEC.

added in the original VEGAS subroutine, where XINT

is the integral value for the integrand FXN after a
NDIM-dimensional integration, the XMAX array records
the upper bounding envelope of the integrand in all
cells, IMODE is a flag:

subroutine vegas(FXN,NDIM,NCALL,ITMX,NPRN,XINT,XMAX,IMODE)

• FXN=: the integrand;

• NDIM=: number of integration dimensions for the
generator;

• NCALL=: maximum total number of the times to
call the integrand in each iteration set by the user;

• ITMX=: maximum number of allowed iterations
set by the user;

• NPRN=: print out level; (see VEGAS manual) e.g.
NPRN=2, when printing out only the cross section
values and errors.

• When called with IMODE=0, VEGAS performs
the integration over the integrand FXN and stores
the answer in a common block.

• XMAX stands for a (NVEGBIN,NDIM) dimen-
sional array, where NVEGBIN denotes the bin
number for each coordinate. When called with
IMODE=1, VEGAS will first initiate all the ele-

ments of XMAX to be XINT1/NDIM, where XINT
equals to the value of vegsec that has been derived
from a previous VEGAS running with IMODE=0.
During the following sampling iteration, when the
calculated integral value is larger than the initial
XMAX(NVEGBIN,NDIM) value in a specific cell,
then the value of XMAX(NVEGBIN,NDIM) for
this cell will be increased by a fixed factor f =
1 + 1/10NDIM. After a sufficiently large number

of calls, the values of XMAX(NVEGBIN,NDIM)
will be stabilized for all cells. Such a final XMAX
array will be stored in the same grid file as that
of the importance sampling function in order to do
the final simulation.

Moreover, in doing the initialization, we will call VE-
GAS twice by setting IMODE=0 and IMODE=1 accord-
ingly to generate the upper bound grid XMAX and also
a more precise importance sampling function. One can
generate events by calling the UPEVNT subroutine ac-
cording to the probability proportional to the integrand.
Each event produced needs several times of iteration with
three steps procedure as follows:

• Calculate upper bounding function by generating a
set of step-wise functions, each of them is associated
with a specific coordinate (dimension);

• Call the phase gen subroutine to generate a ran-
dom phase-space point and calculate the integral;

• Judge whether such point be kept or not by us-
ing the hit-and-miss approach with the help of the
upper bounding function.

In VEGAS the integral together with its numerical er-
ror are related to NCALL and ITMX. To generate full
events, we suggest the user to do a test running first
in order to find an effective and time-saving parameters
for VEGAS. In the BEEC, we take the default values
of NVEGBIN, NVEGCALL and NVEGITMX to be 300,
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BASIC INPUT: NEV, NUMBER, ITMX, NDIM

USE OLD GRADE ?

USE AVERAGE GRADE

No

READ OLD GRADE

Yes

INITIALIZE GRADE

NUM=0; NUM=NUM+1

CALL PHPOINT( )

TOTFUN (NDIM,X,WT)

NUM > NUMBER

IT > ITMX

Yes

NEW GRADE

Yes

No

No

CALL UPINIT

CALL PHPOINT( )

TOTFUN (NDIM,X,WT)

CALL PYFILL

I > NEV

Yes

END

No

I=0; I=I+1

CALL PYDUMP

GENERATE

UNWEIGHTED

ENENT ?

No

RECORD UPPER

BOUND VALUE IN

EACH CELL

IT=0; IT=IT+1

Yes

GENERATE

UNWEIGHTED

ENENT ?

No

CALL PYEVNT
USUU E PYTHTT IHH AII SUBUU ROUTITT NII EESSS

TOTT GENEE EREE ARR TETT EVEVV NEE TSSSTT

USE PYTHIA SUBROUTINES

TO GENERATE EVENTS

CALL UPEVNT

Yes

CALL GEN

CALL UPEVNT

CALL PHPOINT( )

TOTFUN (NDIM,X,WT)

CALL

WRITE_LHE

FIG. 4. The schematic flow chart for the vegas block (left) and the event block (right) of the generator BEEC.

100000 and 10. As a subtle point, if one want to im-
prove the precision of the generated importance sampling
function, the maximum iteration number, the number of
calls in each time of the iteration and the number of bins
should be properly set.

C. Use of BEEC

One can run the program by using the commandmake
at the main directory of the generator, which automat-
ically generate an executable file run at the same di-
rectory. Users may change the parameters listed in the
source files run.F and parameter.F to suit their own
needs. Besides, the frequently changed parameters are
put in a data file input.dat. For the generator BEEC,
dominant parameters are listed in the following :

• PMB=: mass of the b quark (in unit GeV), default
value 4.90 GeV;

• PMC=: mass of the c quark (in unit GeV), default
value 1.50 GeV;

• PMZ=: mass of the Z0 boson (in unit GeV), de-
fault value 91.1876 GeV;

• PME=: mass of electron (in unit GeV), default
value 0.51× 10−3 GeV;

• ECM=: collision energy of the high luminosity
e+e− collider (in units GeV), default value 91.1876
GeV;

• SINTHETA2=: squared value for the sine of the
weak mixing angle, default value sin2 θw = 0.23119;

• FULLDECAY=: total decay width of Z0 boson,
default value 2.4952 GeV;

• IPROCESS=: determining which quarkonium to
be generated, i.e. IPROCESS=1, 2 or 3 is to gen-
erate the (cb̄)-quarkonium, the (cc̄)-charmonium or
the (bb̄)-bottomonium, respectively;

• FBC=: radial wave function R(0) for the S-wave
quarkonium or the first derivative of the radial wave
function R′(0) for the P -wave quarkonium. As de-
fault choice, we take their values from Refs.[42, 43];

• IBCSTATE=: state of the heavy quarkonium to
be generated. For the case of (cb̄)-quarkonium
production, IBCSTATE=1∼ 6, which are for the
color-singlet |(cb̄)1[

1S0]〉, |(cb̄)1[
3S1]〉, |(cb̄)1[

1P1]〉
and |(cb̄)1[

3PJ ]〉 (with J = (1, 2, 3)) respectively,
and IBCSTATE=7 and 8 are for the color-octet
|(cb̄)8[

1S0]g〉 and |(cb̄)8[
3S1]g〉 respectively;

• IVEGASOPEN=: whether to switch on/off the
VEGAS subroutine. IVEGASOPEN=1 for using
VEGAS; IVEGASOPEN=0 for not using VEGAS;

• NUMOFEVENTS=: number of events to be gen-
erated;

• IDWTUP=: determining how the event weights
and the cross-sections should be interpreted
(PYTHIA inner parameter). When IDWTUP=3,
parton-level events have a unit weight at the input
to PYTHIA, i.e. they are always accepted; while
IDWTUP=1, events are then either accepted or
rejected by using the PYTHIA inner hit-and-miss
technique or the algorithm described in the above
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VEGAS block, so that fully generated events at the
output have a common weight;

• IDPP=: determining how the event weights and
the cross-sections should be interpreted, the BEEC
parameter. When setting IDPP=1 (or 3), it di-
rectly uses the way described by PYTHIA inner
parameter IDWTUP= 1 (or 3) to generate the
events. When setting IDPP=2, it is designed
to generate the unweighted events similar to the
case of IDWTUP=1; but other than applying the
PYTHIA inner hit-and-miss technology, it will use
our present new hit-and-miss technology to accept
or reject the events in order to improve the effi-
ciency.

• IGENERATE=: whether to generate complete
events with full decay information by applying
the PYTHIA inner subroutines. IGENERATE=0,
when the users wish the simulation to stop after
the generation of the final states contain the re-
quired heavy quarkonium, which provides the most
time-saving way and is useful for theoretical study.
IGENERATE=1 if the users wish that complete
events including the quarkonium decays are to be
generated. In the latter case, we set IDWTUP=1
(IDPP=1);

• MSTU(111)=: order of αs for PYALPS run-
ning (a PYTHIA routine for calculating αs);
e.g. MSTU(111)=0 for fixed αs at the value
PARU(111), which sets the constant value of αs;
MSTU(111)=1 for leading order;

• IGRADE=: whether to use the grade gener-
ated by previous VEGAS running when setting
IVEGASOPEN=0; IGRADE=1 means to use;
IGRADE=0 means not to use. This parameter is
to save running time, once a grade file is gener-
ated from a previous VEGAS running, one does
not need to regenerated it unless some input pa-
rameters have been changed.

• IMIX=: whether to generate the mixed events for a
specific heavy quarkonium via the production pro-
cess assigned by IPROCESS. IMIX=0, when the
users do not want to generate the mixed events;
IMIX=1, when the users want to generate the
mixed events. This is useful, since the higher Fock
states’ will

• IMIXTYPE=: setting how many quarkonium
states need to be mixed. Three types of mix-
ing events have been programmed: IMIXTYPE=1,
all the eight quarkonium states need to be mixed;
IMIXTYPE=2, the mixed events for two color-
singlet S-wave quarkonium states; IMIXTYPE=3,

the mixed events for the four color-singlet P -wave
plus two color-octet S-wave quarkonium states.

Three ways to do the Monte Carlo simulation are sug-
gested in BEEC: one is the trivial Monte Carlo method
without using VEGAS, and the other two ways are to
use the importance sampling function derived by VEGAS
running. For the two ways of using VEGAS, the first
one is to use the existent grade (importance sampling
function generated by a previous running and have been
recorded in a .grid file), and the second one is to use the
new grade generated by the current VEGAS running. For
instance, if setting IVEGASOPEN=0 and IGRADE=1,
it is to use the first importance sampling method to gen-
erate the quarkonium events, just by reading the existent
importance sampling function. When using BEEC under
proper options, one only needs to run VEGAS once un-
less those input parameters that are related to the grade
have been changed.
For theoretical studies, e.g. to derive the heavy quarko-

nium production cross-section or various differential dis-
tributions, one can directly use the fastest way, e.g. set-
ting IDPP=3 (equivalent to set the PYTHIA parame-
ter IDWTUP = 3) or setting IDPP=1 (equivalent to set
IDWTUP = 1 and IGENERATE=0) 1, to generate the
quarkonium events. While, for the events simulation in
detector conditions, it is necessary to get the unweighted
events. In BEEC, the unweighted events are generated
by setting IDPP=1 or 2.

D. A test run

    ................................................................................
    ........................ initial parameters ..........................
    ................................................................................  

    get the mixing results for e+e- colliding.
    states to be mixed: color-singlet 1s0,3s1
    generate evnts    100000;   e+e- energy(gev) 91.1876    
    *****************************************
    choosed process:e+e- -> cb\bar+b+c\bar
    m_{b}= 4.9000    m_{c}= 1.5000    
    R(0)=1.28141 and R'(0)=0.44833    
    alph order=const   alph= 0.2120    
    generate unweighted events
    ptcut= 0.000    gev
    no rapidity cut
    -------------------------------------------------------------
    the used bin number in vegas:  300
    using vegas: number in each iter.=   100000  iter.= 10
    ................................................................................
    ............................ end of initialization ..................
    ................................................................................

FIG. 5. Snapshot of the initial parameters used in the test run
of the generator BEEC, which is to generate 105 unweighted
and mixed (cb̄)-quarkonium events for the two color-singlet
S-wave states, |(cb̄)1[

1S0]〉 and |(cb̄)1[
3S1]〉.
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1S0]〉-quarkonium transverse momentum (pt) and rapidity (y) distributions, which are

derived by setting IDDP=2 (unweighted; dotted line) and IDDP=3 (weighted; solid line), respectively.

We present a test run for the production of 105

mixed (cb̄)-quarkonium events in two color-singlet S-wave
states, |(cb̄)1[

1S0]〉 and |(cb̄)1[
3S1]〉. It is to derive the un-

weighted events by using our present hit-and-miss tech-
nology by setting IDDP=2. The initial parameters for
the test run are shown in Fig.(5), which is a snapshot
during the running of BEEC. We put the obtained data
for the test run in the main directory as a zipped file
(testdata.tar.gz), in which the running information, the
total cross sections, the differential cross sections under
various transverse momentum and rapidity cuts are pre-
sented. We show some typical resultant curves, e.g. pt-
and y-distributions with several rapidity cut and ptcut in
Fig.(6).

1 In these cases, XMAXUP should be set to 0.

To be a cross-check, we also use the fastest weighted
method derive the same mixed (cb̄)-quarkonium events
by setting IDPP=3. For convenience, we normalize all
the event curves to be the transverse momentum and ra-
pidity distributions, which are presented in Fig.(7). It is
found that the distributions under both the unweighted
and weighted ways agree with each other. This demon-
strates our present method for deriving the unweighted
events is correct.

III. SUMMARY

It has been found that in addition to the hadronic
colliders, the super Z-factory [22] and the Gigaz
program suggested by the Internal Linear Collider
Collaboration [23, 24] will provide another good plat-
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form for studying the properties of the doubly heavy
quarkoniums as the (cb̄)-quarkonium, charmonium and
bottomonium. Based on our previous analysis on the
production Bc meson production at a high luminosity
e+e− collider [27, 28, 30], we develop a generator BEEC
for simulating the double heavy quarkonium events via
the channel e++ e− → (QQ̄′)+Q′+ Q̄ (Q and Q′ = c or
b respectively). BEEC is a Fortran programme written
in a PYTHIA-compatible format and is written in a
modularization structure, one may apply it to various
situations or experimental environments conveniently.
A method to improve the efficiency of generating un-

weighted events within PYTHIA environment has been
suggested. Thus, BEEC offers a valuable tool for further
experimental studies.
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