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Abstract

A numerical scheme utilizing a grid which is staggered in both space and time is proposed for the numerical solution
of the (2+1)D Dirac equation in presence of an external electromagnetic potential. It preserves the linear dispersion
relation of the free Weyl equation for wave vectors aligned with the grid and facilitates the implementation of open
(absorbing) boundary conditions via an imaginary potential term. This explicit scheme has second order accuracy in
space and time. A functional for the norm is derived and shown to be conserved. Stability conditions are derived.
Several numerical examples, ranging from generic to specific to textured topological insulator surfaces, demonstrate the
properties of the scheme which can handle general electromagnetic potential landscapes.
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1. Introduction

Ever since its presentation by P.A.M. Dirac in 1928,
the Dirac equation has played a central role in the devel-
opment of modern physics [1]. It has lead not only to the
prediction and observation of antimatter but has also been
instrumental to the development of modern many-body
physics [1–3, 37]. Known as the Weyl equation for zero
mass, it has been of relevance to early neutrino physics
[35]. While its initial applications naturally were devoted
mainly to high-energy elementary particle physics, it has
been known for quite a while that touching energy bands
in crystalline solids also can lead to a Dirac-fermion-like
energy dispersion [4, 5]. This can readily be seen for a
Schrödinger particle in a one-dimensional (1D) periodic
potential: Since the spectrum for Bloch solutions has de-
generacy two at most, energy bands cannot overlap. If
they touch, they must have linear dispersion near the point
of contact [6]. A prominent example for such a situation
is graphene, which has regained great publicity due to its
recent experimental realization [7, 8]. For this 2D sys-
tem, the Brillouin zone features 4 (counting spin) Dirac
cones with a small gap due to the spin-orbit interaction.
Odd numbers of Dirac cones have been predicted and ex-
perimentally verified on individual surfaces of topological
insulators (TIs) [9–14]. In the simplest case, a single Dirac
cone of topologically protected metallic surface states can
occur on one side of a TI.

In a condensed matter environment, effective 2D model
systems for our 3D world frequently emerge in the low
energy limit. The synthesization of nano-structured ma-
terials has led to a number of systems in which electron
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motion in one spatial dimension is confined to within a
few atomic layers but essentially free (quasi-particle) mo-
tion over macroscopic length scales occurs in the other two
dimensions. Celebrated examples for such genuine (2+1)D
systems are the 2DEG and graphene [8]. Layered high-Tc
systems may be seen as an example in the wider sense
[15]. Optical lattices also constitute a rich play ground
for the engineering of 2D physics with the possibility of
tuning various parameters and therewith controlling atom
localization and effective many-body interactions [17–19].
Surfaces of solids in general provide a natural environment
for the study of (quasi-) 2D phenomena, with a remarkable
recent example provided by the topologically protected
2D metallic surface states of TIs. Their intrinsically gap-
less energy spectrum can be manipulated by perturbations
which break time-reversal symmetry to introduce an en-
ergy gap (mass term). Electromagnetic texturing can pro-
vide a landscape of electric potential and effective mass,
taking positive and negative values, potentially leading to
protected 1D chiral channel states [9, 16, 20, 21].

A theoretical analysis of the rich dynamics of Dirac
fermion quasiparticles in (2+1)D requires reliable numeri-
cal methods which can handle position- and time- depen-
dent potential and mass landscapes. Existing methods
are the real-space schemes, such as the finite-difference
and finite-element methods [22, 23, 27]. Momentum-space
spectral methods and split-operator methods have been
developed also [28–31]. While finite-difference and finite-
element schemes allow for an easy implementation of non-
constant coefficients they have to deal with the fermion
doubling problem. This is expressed in the Nielsen-Ninomiya
no-go theorem which forbids a single minimum in the en-
ergy dispersion of a Dirac-type equation on a regular grid
without breaking either Hermiticity, translational invari-
ance, or locality [32]. Elimination of fermion doubling by
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means of a nonlocal approximation for the spatial deriva-
tive operator has been introduced by Stacey [23] and im-
plemented numerically for a stationary problem [33]. Fermion
doubling can also be avoided by split-operator methods
[30]. A scheme with a non-monotonic dispersion rela-
tion does not have to be ruled out for numerical studies,
but, the latter can severely constrain its useful domain
of wave numbers in momentum space and may require a
very fine grid in real space. Here we will present an easy-
to-implement, explicit, finite-difference method which pre-
serves the zero-mass free Dirac-dispersion of the contin-
uum problem along the main axes of the grid and provides
only one extra Dirac cone at the corners of the first Bril-
louin zone. This scheme is especially well-suited for long-
time propagation studies where the occurring wave vectors
mostly are aligned parallel to the grid as envisioned, for
example, in Dirac fermion wave guides [21]. Details of the
numerical approach and the properties of this scheme are
discussed in Sec. 2. Numerical examples for the free par-
ticle propagation, the Klein step, and basic domain wall
structures are given in Sect. 3. Summary and conclusions
can be found in Sects. 4 and 5. Further details are given
in the appendix.

2. The numerical approach

The generic (2+1)D Dirac equation in normalized units
(velocity c = 1, Planck’s constant h̄ = 1, elementary
charge e = 1) in Schrödinger form may be written as

i∂tψ(x, y, t) = Ĥψ(x, y, t) , (1)

where ψ(x, y, t) ∈ C2 is a 2-component spinor and the
Hamiltonian is of the form

Ĥ = σxpx + σypy + σ ·m(x, y, t) + V (x, y, t) , (2)

pi represents the component i = x, y of the momentum
operator and σ = (σx, σy, σz) is the vector of Pauli matri-
ces. The scalar potential in Eq. (2) is represented by V .
The “magnetization vector”
m(x, y, t) = [mx(x, y, t),my(x, y, t),mz(x, y, t)] may have
its origin in a vector potential or an exchange coupling to
a ferromagnetic medium. Note that mz 6= 0 provides the
mass term to the equation.

This generic two-component Dirac equation provides
an effective model for a number of physical systems. For
topological insulators, this model describes the low energy
surface excitations. The spin is locked to the momentum,
whereby the physical spin quantization axis is S ∝ ẑ× σ,
corresponding to a fermion with 2 degrees of freedom [9].
For given momentum, the presence of two components may
be interpreted as accounting either for the existence of pos-
itive and negative energy solutions or the presence of two
spin directions. Note, that flipping the spin for given mo-
mentum is equivalent to switching between the positive to
negative energy branch. Indeed, by a simple unitary trans-
formation applied to Eq. (2) one can arrive at a “physi-
cal” representation such that S ∝ σ which is useful in the
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Figure 1: (color online). Leap-frog staggered-grid scheme: The left
part shows the time-stepping sequence where 1) the new u com-
ponents (blue/dark gray) are computed by the previous u and the
spatial differences of old v-values. 2) Then (knowing u at tn+1) the
new v components (red/light gray) are computed at tn+1 . The right
part of this figure shows the pattern for the spatial derivatives in x
and y.

presence of external electromagnetic fields. Note that, in
accordance with the Nielsen-Ninomiya no-go theorem, a
second Dirac cone is located on the opposite side of the
TI surface. For graphene, the two components arise from
the |pz〉 bonding and anti-bonding band (without spin) [8].
In contrast, the standard four-component Dirac equation
describes a spin-1/2 particle (Dirac fermion) with posi-
tive and negative energy solutions amounting to 2× 2 = 4
degrees of freedom (“two energy bands and two spin direc-
tions”). The Majorana fermion solution is a special case.
It is its own antiparticle, making it “half a Dirac fermion”
with two degrees of freedom [34–38].

2.1. Numerical scheme

We propose a staggering of the grid both in time and space
with second-order approximation for the time and space
derivative, as shown in Fig. 1,

un+1
j,k − unj,k

∆t
= −i

(
(mz)

n
j,k + V nj,k

) un+1
j,k + unj,k

2

−
(vnj,k−1 − vnj−1,k−1) + (vnj,k − vnj−1,k)

2∆x

+ i
(vnj−1,k − vnj−1,k−1) + (vnj,k − vnj,k−1)

2∆y
,

vn+1
j,k − vnj,k

∆t
= i
(

(mz)
n+1
j,k − V

n+1
j,k

) vn+1
j,k + vnj,k

2

−
(un+1
j+1,k − u

n+1
j,k ) + (un+1

j+1,k+1 − u
n+1
j,k+1)

2∆x

− i
(un+1
j,k+1 − u

n+1
j,k ) + (un+1

j+1,k+1 − u
n+1
j+1,k)

2∆y
(3)

with the notation ψ(xj , yk, tn) ≈ ψnj,k = (unj,k, v
n
j,k) where

n and j, k, respectively, are the discrete time and space
indices.
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Here the mass term mz and the potential V enter the
scheme in a Crank-Nicolson time-averaged manner. A con-
sistent incorporation of a ”vector potential” mx and my

will be detailed below. Since the time averaged functions
for the former only depend on one spatial grid-point a re-
arranging of terms leads to an explicit scheme. We call it
a leap-frog scheme because u and v are computed in an al-
ternating manner where first un+1

j,k is computed from unj,k
and vnj,k. Then using the updated components un+1

j,k , as

shown in Fig. 1, the new vn+1
j,k are computed. This spa-

tial staggering allows for a centered approximation of the
first spatial partial derivatives without omitting the cen-
tral grid point, as is the case for a centered symmetric first
derivative operator on a regular grid. This eliminates one
source of fermion-doubling. Here it should be recalled that
by using one-sided difference operators with alternating di-
rection for for u and v, fermion doubling can be avoided
for the (1+1)D Dirac equation. For the (1+1)D case the
latter is equivalent to the present spatial staggering of the
grid [23, 24]. We use staggering in time to further improve
the dispersion relation, which will be shown below.

mx and my terms in the Hamiltonian Eq. (2) are incorpo-
rated consistently into the scheme above, for mx = my =
0, using a Peierls substitution[25, 26],

unj,k → ûnj,k ≡ unj,k exp{ianj,k}
vnj,k → v̂nj,k ≡ vnj,k exp{ianj,k} , (4)

where the real phase anj,k is defined as the line integral over
the two-dimensional magnetization vector m, starting at
arbitrary, but fixed position (xo, yo) and ending on the
lattice point (x, y) = (j∆x, k∆y),

anj,k =

∫ (x,y)

(xo,yo)

ds ·m(s, t) |x=j∆x,y=k∆y,t=n∆t .

This substitution introduces mx and my in covariant fash-
ion when interpreted as components of the electromagnetic
vector potential, leading to px → px+mx and py → py+my

in the Dirac Hamiltonian Eq. (2). Details of the result-
ing scheme are discussed in Appendix A. In the limit of
smooth variation of mx and my in space and time the
scheme takes the form

un+1
j,k − unj,k

∆t
= −i

(
(mz)

n
j,k + V̂ nj,k

) un+1
j,k + unj,k

2

−
vnj,k−1 − vnj−1,k−1 + vnj,k − vnj−1,k

2∆x

+ i
vnj−1,k − vnj−1,k−1 + vnj,k − vnj,k−1

2∆y

− i(mx)nj,k
vnj,k + vnj−1,k + vnj,k−1 + vnj−1,k−1

4

− (my)nj,k
vnj−1,k + vnj−1,k−1 + vnj,k + vnj,k−1

4
, (5)

V=1.0 i,  r=0.9

V=2.0 i,  r=0.9

(a)

(b)

ξy

ξy

ξx

ξx

λ± 

λ± 

Figure 2: (color online). The largest eigenvalue of the growth matrix
G max(|λ±|) shown over the entire scaled k-space for m = 0 and two
different values of imaginary V , for ratio r = ∆t/∆ = 0.9.

and

vn+1
j,k − vnj,k

∆t
= i
(

(mz)
n+1
j,k − V̂

n+1
j,k

) vn+1
j,k + vnj,k

2

−
un+1
j+1,k − u

n+1
j,k + un+1

j+1,k+1 − u
n+1
j,k+1

2∆x

− i
un+1
j,k+1 − u

n+1
j,k + un+1

j+1,k+1 − u
n+1
j+1,k

2∆y

− i(mx)n+1
j,k

un+1
j+1,k + un+1

j,k + un+1
j+1,k+1 + un+1

j,k+1

4

+ (my)n+1
j,k

un+1
j,k+1 + un+1

j,k + un+1
j+1,k+1 + un+1

j+1,k

4
. (6)

Here V̂ n+1
j,k is the net scalar potential. Its relation to V n+1

j,k

is is given in Appendix A.

2.2. Von Neumann stability analysis

For this linear system and constant coefficients, Fourier
analysis is used to determine the dispersion introduced by
the grid. Furthermore, we use periodic boundary condi-
tions (absorbing layers as introduced later do not violate
periodicity). Thus, von Neumann stability analysis is suffi-
cient to explore the stability of the finite difference scheme
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[39]. The Fourier transform of Eq. (3) from real space to
momentum space leads to:

(
a11 a12

a21 a22

)
︸ ︷︷ ︸

=:A

(
ũn+1

ṽn+1

)
+

(
b11 b12

b21 b22

)
︸ ︷︷ ︸

=:B

(
ũn

ṽn

)
= 0 ,

(7)
where we define

a11 =
1

∆t
+
i(mz + V )

2
, (8)

a12 =0 ,

a21 = +

(
1− eikx∆x

) (
1 + eiky∆y

)
2∆x

− i
(
1 + eikx∆x

) (
1− eiky∆y

)
2∆y

+ i
(mx − imy)

(
2 + eikx∆x + eiky∆y

)
4

,

a22 =
1

∆t
− i(mz − V )

2
,

b11 =− 1

∆t
+
i(mz + V )

2
,

b12 =−
(
1− e−ikx∆x

) (
1 + e−iky∆y

)
2∆x

− i
(
1 + e−ikx∆x

) (
1− e−iky∆y

)
2∆y

+ i
(mx + imy)

(
2 + e−ikx∆x + e−iky∆y

)
4

,

b21 =0 ,

b22 =− 1

∆t
− i(mz − V )

2
.

It is convenient to define the amplification matrix G =
−A−1B and to use ξx = kx∆x, ξy = ky∆y Eq. (7) be-
comes

ψ̃n+1(ξx, ξy) = G(ξx, ξy)ψ̃n(ξx, ξy) . (9)

We now consider ∆x = ∆y = ∆ and define the ratio r =
∆t/∆. Introducing rescaled variables µi = mi∆t and ν =
V∆t, we write the eigenvalues of G using the root formula

λ± = P/2±
√(

P/2
)2 −Q , (10)

where P = tr[G] and Q = det[G]. The resulting lengthy

expressions write as:

P =
[
16(1− r2) + 4(ν2 − µ2

z)− 3(µ2
x + µ2

y) (11)

+ 4r(µx − µy)− 2(µ2
x + µ2

y)(cos ξx + cos ξy)

+ 4r(µx + µy)(cos ξx − cos ξy)

− (µ2
x + µ2

y)(cos ξx cos ξy + sin ξx sin ξy)

− 4r(µx − µy)(cos ξx cos ξy − sin ξx sin ξy)

+ 8r
(
µx sin ξx + µy sin ξy + µx sin ξx cos ξy

+ µy cos ξx sin ξy + 2r cos ξx cos ξy
)]
/(2N) ,

Q =[µ2
z − (ν − 2i)2]/N ,

where N = 4 + µ2
z − 4iν − ν2. For µx = µy = 0 it reduces

to: P = [2(ν2−µ2
z)+8r2(1/r2−1+cos ξx cos ξy)]/N . Now

one can show that for r < 1 and µz, ν ∈ R: |λ±| = 1 for all
allowed wave numbers on the grid, ξx, ξy ∈ [−π, π]. Since
under this constraints the eigenvalues are simple the the
scheme is stable for the ratio r < 1, which constitutes the
CFL condition for the scheme. For µi 6= 0 the scheme is
stable for r < min

[√
1− (µx/4)2 − µy/4,

√
1− (µy/4)2 +

µx/4
]
. Let’s, for now and in momentum space, define the

square of the l2 norm of the spinor as:
‖ψ̃‖2 =

∫ π
−π dξx

∫ π
−π dξy(|ũ(ξx, ξy)|2 + |ṽ(ξx, ξy)|2). It is

preserved because ‖Gψ̃‖ = ‖ψ̃‖. If mz has an imagi-
nary part, it turns out that the scheme is unstable be-
cause the absolute value of one of the λ’s becomes larger
than one in the vicinity of the points (ξx, ξy) = (0, 0) and
(ξx, ξy) = (±π,±π). If, on the other hand, the potential V
has an imaginary part its sign determines the stability of
the scheme: for ={V } < 0 it is unstable. For ={V } > 0 it
is stable, however, max(|λ±|) < 1 and the norm is not con-
served. One can utilize this property to create absorbing
layers which act as absorbing (open) boundary conditions
within this scheme. Furthermore, internal absorbing lay-
ers can be used to simulate particle source and drain. In
Fig. 2 we show, for illustration, max(|λ±|) and its behav-
ior for different values of r and ={V } > 0.

2.3. Dispersion relation

Let us now turn our attention to the dispersion relation
of the proposed scheme. It is obtained by a Fourier trans-
formation of Eq. (9) in time or, again by looking at the
eigenmodes of the scheme. The ansatz: ũn+1 = eiω̃ũn

where ω̃ = ω∆t, gives us, in the notation from above, the
homogeneous system

(eiω̃A+B)ψ̃ = 0 , (12)

from which the non-trivial solutions are determined for ω̃
and expressed in terms of the growth factor λ± (see Eq.
(10))

ω̃ = − i
r

ln[λ±] . (13)
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ξy

ξy

(a)

(b)

ξx

ξx

Figure 3: (color online). Dispersion relation for ∆x = ∆y = ∆,
µi = 0, ν = 0 and r = 1. (a) Leap-frog staggered-in-space-and-
time scheme. For comparison: (b) centered differences in space and
Crank-Nicolson in time, without grid staggering.

Here again the necessary and sufficient condition for the
conservation of the norm, using λn± = eiωrn, shows up as
=(ω) = 0 which, for µx, µy = 0, gives |λ±| = 1. Setting
µz = 0 and ν = 0 it simplifies to

ω̃ = − i
r

ln

{
1 + r2

(
cos ξx cos ξy − 1

)
(14)

±
√[

r2
(

cos ξx cos ξy − 1
)

+ 1
]2
− 1

}
,

where choosing r = 1 leads to:

ω̃ = −i ln
(

cos ξx cos ξy ±
√

cos2 ξx cos2 ξy − 1
)
, (15)

which is plotted in Fig. 3. It can be seen that the disper-
sion relation is linear along the x- and y-axis. For example,
at the x axis where ξy = 0, we get

ω̃ = −i ln
(

cos ξx ± i sin ξx

)
= ±ξx .

This means that the dispersion relation of the continuum
model (Weyl equation) is preserved along the x- and y-
axis. For comparison we also show the dispersion rela-
tion for a scheme using a centered second-order approxi-
mation without spatial staggering of the spatial differences
and without time staggering but using Crank-Nicolson in
time instead (Fig. 3 (b)). With the staggered scheme one
gets two Dirac cones, at (ξx, ξy) = (0, 0) and (ξx, ξy) =
(±π,±π) respectively, in contrast to the four Dirac cones
obtained by the scheme without staggering. The disper-
sion relation for µy 6= 0 is computed numerically and
shown in Fig. 4.

Putting a genuine continuum model on a lattice in-
evitably leads to changes in the spectral properties. The
spatial grid destroys momentum conservation of the free-
particle Dirac equation and introduces an invariance under
discrete (primitive) translations in real space. As a conse-
quence, k-vectors are defined up to reciprocal lattice vec-
tors only. Similarly, a time grid with spacing ∆t makes fre-
quency well defined only within the interval (−π/∆t,+π/∆t].
One remarkable feature of the present model is that for
the special case of r = 1 the linear energy dispersion of
the free-particle Weyl equation is preserved exactly along
kx and ky. This is shown in Fig. 5 (a). No phase er-
rors occur in this case, which, has recently been used to
study the dynamics of Dirac fermions in a 2D interferom-
eter setup [21]. As expected, however, errors (deviation
from continuum behavior - dashed lines in Fig. 5) oc-
curs in all other cases: Adding a (constant) potential V ,
Fig. 5 (b), introduces an artificial “energy gap” at the
BZ boundary while the correct dispersion should remain
linear, merely shifted vertically by V . In this case, peri-
odic motion (Bloch oscillation) occurs when the k-vector
crosses the BZ boundary. Similarly for finite mass, Fig.
5 (c), a wave packet will disperse while undergoing Bloch
oscillations. Errors in the dispersion also occur for r < 1,
Fig. 5 (e). The effect of mx 6= 0 is shown in Fig. Fig. 5
(d). While it changes the kinetic momentum leading to a
horizontal shift of the dispersion in the continuum model,
additional band curvature arises on the lattice.

2.4. The norm

The definition of a discrete L2 norm on a staggered grid
requires some care due to ambiguities when taking the

5



ξy ξy

ξy ξy

ξx

ξx

ξx

ξx

Figure 4: (color online). Dispersion relation of the present leap-frog scheme with r = 0.9, ∆x = ∆y = ∆, mx = mz = V = 0 and
my = 0.1, 0.2, 0.3, 0.4 from the upper left to the lower right figure. One observes a shift of the Dirac cone away from the center of the
momentum space by my consistent with the continuum solution.

continuum limit. In particular, the simple local form

||ψ||n2 :=

√∑
j,k

(
|unj,k|2 + |vnj,k|2

)
(16)

proves to be a poor choice since numerical tests show that,
while conserved on time average, it can show strong oscil-
lations around its mean value.

In order to define a norm which is invariant under this

scheme we first define a scalar product between spinor
components on the lattice as follows

(un; vn
′
)0,0 = (un; vn

′
) =

∑
j,k

(unj,k)∗vn
′

j,k , (17)

and
||un||2 = (un;un) . (18)

Furthermore we define scalar products with shifted spinor

6



Figure 5: (color online). Dispersion relation for wave vectors aligned with the kx axis (ky = 0), ∆x = 1 for various parameters. The topology
of the dispersion relation is that of a torus, periodic in kx, ky , and ω. In each figure, equivalent points in the dispersion are marked by pairs of
black filled circles and empty diamonds, respectively. For comparison, the dispersion relation for the continuum equation is shown by dashed
lines.

components as follows

(un; vn
′
)±,0 = (un; vn

′

±,0) =
∑
j,k

(unj,k)∗vn
′

j±1,k ,

(un; vn
′
)0,± = (un; vn

′

0,±) =
∑
j,k

(unj,k)∗vn
′

j,k±1 ,

and

(un; vn
′
)±,± = (un; vn

′

±,±) =
∑
j,k

(unj,k)∗vn
′

j±1,k±1 , (19)

Here the sum j, k runs over all lattice sites. n, n′ denote
two time sheets, and u and v denote any combination of
two upper and/or lower spinor components.

For any physical situation, we may consider either zero
boundary conditions or periodic boundary conditions. In
both cases, a norm which is conserved by the scheme Eqs.
(3) for real-valued and finite mz(x, y, t) and V (x, y, t), and
mx = my = 0 is given by

En+1 = En =||un||2 + ||vn||2

− rx<
{

(un; vn)0,− − (un; vn)−,−

+ (un; vn)0,0 − (un; vn)−,0
}

− ry=
{

(un; vn)−,0 − (un; vn)−,−

+ (un; vn)0,0 − (un; vn)0,−
}
. (20)

with rx = ∆t/(2∆x) and ry = ∆t/(2∆y).

Furthermore, for the general case of non-vanishing mx

and my, the conserved norm Ên under the exact scheme
(see Appendix A and Appendix B) is obtained by sub-
jecting u and v in En to the Peierls transformation Eq.
(4), noting that exp{ianj,k} is a local gauge field. Note
also that the scheme Eq. (5) and Eq. (6) is valid only
in the limit of slowly-varying mx and my and hence will

conserve Ên only in this limit. The proof for the conser-
vation of En and, respectively, Ên is given in Appendix B.

This definition of a norm also allows a stability anal-
ysis of the scheme. In particular, it is valid for time- and
position-dependent magnetization, mass, and electromag-
netic potential.

One finds

||un||2 + ||vn||2 ≤ Eo
1− r̃

, for r̃ = 2
√
r2
x + r2

y < 1 , (21)

for scheme Eq. (3), as well as

||ûn||2 + ||v̂n||2 ≤ Êo
1− r̃

, for r̃ = 2
√
r2
x + r2

y < 1 , (22)

for scheme Eqs. (A.6) and (A.7), which is approximated
by the scheme Eqs. (5) and (6) above. Stability can also
be shown for r̃ = 1. The proof is given in Appendix C.
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Figure 6: (color online). (a) Comparison of the propagation of a
packet for m = V = 0 with a low wave numbers (kx, ky) = (10.0 ±
1.3, 0.0 ± 1.3)% to one prepared with a mean wave number near
the maximum for the grid (kx, ky) = (80.0 ± 1.3, 0.0 ± 1.3)%. (b)
The same initial data using a finer grid having (kx, ky) = (2.50 ±
0.32, 0.0±0.32)% and (kx, ky) = (20.0±0.32, 0.0±0.32)%. The closed
lines represent the FWHM the brightness saturation the probability
density and the color/brightness variation encodes the phase.

3. Numerical examples

With the numerical approach presented above, one is
in a perfect position to simulate ballistic Dirac fermion dy-
namics in (2+1)D in complex potential landscapes under
open boundary conditions. The numerical examples below
have been selected mainly to demonstrate the properties of
the scheme and provide some intuition for (2+1)D ballis-
tic Dirac fermion dynamics in simple effective TI mass and
potential textures. For the examples given below, we have

-100

100

0

100 200 300 400 5000
x

y

Figure 7: (color online). Wave packet with (kx, ky) = (10.0 ±
1.3, 0.0 ± 1.3)% for m = 0 in a potential, shown by contour lines,
rising linearly in x-direction from 0 to 0.2. The closed lines repre-
sent the FWHM, the brightness saturation the probability density,
and the color/brightness variation encodes the phase.
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100

0

100 200 300 400 5000
x

y

Figure 8: (color online). Wave packet with (kx, ky) = (10.0 ±
1.3, 0.0 ± 1.3)% for m = 0 at a Klein step: on the left side the
potential V = 0 and rises linearly to V = 0.1 at the right side of
the figure, as shown by contour lines. The closed lines represent the
FWHM, the brightness saturation gives the probability density, and
the color/brightness variation encodes the phase.

chosen a spatial region of 500× 500 units and use a rather
coarse discretization ∆x = ∆y = 1, and r = 0.9. We give
k in percents (%) of kmax = π/∆. While movies are ideally
suited to visualize our numerical results of Dirac fermion
dynamics, here the figures show snapshots taken every 100
time steps which are combined in a single plot. The closed
lines in these figures mark the FWHM of the wave packet
for a given time step and the brightness saturation shows
the probability density ‖ψ‖2. Color/brightness indicates
the phase of the wave packet which is associated with the
real part of the upper spinor component u.

3.1. Dispersive properties of the scheme

Due to the chosen staggered-grid discretization a rather
faithful representation of the exact continuum Dirac cone
dispersion and constant ”magnetization” m,

Ω(kx, ky) =

√(
kx −mx

)2
+
(
ky −my)2 +m2

z +V , (23)

is possible over a wide region of k-space. Eq. (23) is to be
compared with the dispersion provided by the staggered
grid discretization given in Eq. (13).
First we demonstrate the quality of the dispersion on the
lattice and investigate a ”race” between two massless Dirac
fermions on the grid. One is described by a wave packet
with small wave numbers, prepared with a mean wave
number of (kx, ky) = (10.0, 0.0)% of kmax, the other by

8



Figure 11: (color online). (a) Wave packet with (kx, ky) = (5.0 ± 6.4, 0.0 ± 6.4)% for m = 0 at a step where on the left side my = 0 and
rising linearly to my ± 0.01 (magnitude shown by contour lines and direction by arrows) where at the upper right-hand quarter of the figure
my = 0.01 and at the lower right-hand quarter of the figure my = −0.01. (b) the same as in (a) but with my = 0.03. The closed lines
represent the FWHM, the brightness saturation gives the probability density, and the color/brightness variation encodes the phase.

Figure 9: (color online). Wave packet with (kx, ky) = (5.0±6.4, 0.0±
6.4)% for m = 0 at a Klein step where on the left side V = 0 and
rising linearly to V = 0.1 at the right side of the figure as shown by
contour lines. The closed lines represent the FWHM, the brightness
saturation gives the probability density, and the color/brightness
variation encodes the phase.

a wave packet with a high central wave number of kmax:
(kx, ky) = (80.0, 0.0)%. Both wave packets have a Gaus-
sian half width in kx and ky of (1.3, 1.3)% of kmax. Re-

400

-100

100

0

0 100 200 300 500
-300

-200

y

x

Figure 10: (color online). Wave packet with (kx, ky) = (10.0 ±
1.3, 0.0 ± 1.3)% for V = 0 at a step where on the left side my = 0
and is rising linearly to my = −0.2 to the right side of the fig-
ure as shown by contour lines. The closed lines represent the
FWHM, the brightness saturation gives the probability density, and
the color/brightness variation encodes the phase.

member kmax is the maximum wave number provided by
the grid kmax = π/∆. Below we use the abbreviated nota-
tion (kx, ky) = (80.0± 1.3, 0.0± 1.3)%. Results are shown
in Fig. 6 (a). Since the systematic errors in group ve-
locity associated with the present scheme are small the
two wave packets propagate essentially with equal speed.
For this particular simulation we chose r = 1 because it
provides the best approximation to the exact linear dis-
persion. The stronger distortion of the wave packet with
the smaller wave number compared to the one with higher
wave number is due to a different slope in the y-direction
of the dispersion for the wave packet lying closer/farther
to the center of the Dirac cone. This effect is also present
for the continuum problem. To demonstrate this fact we
show this ”race” using the a very fine grid Fig. 6 (b).
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In Fig. 7 we show a wave packet of mass zero in a region
of constant electric field represented by a linear potential
V growing from 0 to 0.1. The initial Gaussian wave packet
is prepared with (kx, ky) = (10.0, 0.0)% kmax and a half
width of (1.3, 1.3)%. The speed of propagation does not
change because the massless fermion on the grid always
moves at maximum wave velocity (c = 1). The change in
kinetic energy shows up in the growth of the wave number.
Here it is remarkable that the wave number grows close to
the maximum wave number provided by the grid and yet
the simulated propagation is still a good approximation to
the exact result for the continuum problem. This is due to
the ecellent dispersion properties of the scheme for wave
numbers aligned with the grid.

3.2. Dynamics at Klein steps

Next we consider a Klein potential step at which the wave
packet (kx, ky) = (10.0 ± 1.3, 0.0 ± 1.3)% propagates in
positive energy states on the left-hand side, where V = 0,
and in negative energy states on the right-hand side of the
step, where V = 0.1. For this simulation shown in Fig. 8
we choose m = 0. This situation leads to a high trans-
mission of ≈ 1 of the wave packet under normal incidence
since the potential step resonantly connects particle states
on one side to hole (anti-particle) states on the other. For
the case mz 6= 0, as is well known, the transmission prob-
ability grows with the height of the potential step [37].

Figure Fig. 9 shows the same Klein potential step but for
an initial wave packet (kx, ky) = (5.0±6.4, 0.0±6.4)%. The
observed focusing behavior is a consequence of phase and
group velocity changing their sign across the step. Also
demonstrated in this figure is the successful implementa-
tion of absorbing boundary conditions. Note that wave
contributions impinging upon the simulation boundaries
disappear without artificial reflection.

3.3. Dynamics under finite m

In this second part we explore simple cases for which m 6=
0 emulating, for example, TI surfaces with ferromagnetic
texture. First we consider a situation wheremy(x) changes
from zero to a finite constant value. As seen in Eq. (23)
a constant my shifts the dispersion relation in y-direction
of momentum space. Thus, when a wave packet impinges
upon such a ”magnetic Klein step” a wave packet start-
ing with group velocity component vy = 0 ends up with
a finite group velocity component, as demonstrated nu-
merically in Fig. 10. This effect can be exploited for the
focusing of an incoming fermion beam, as shown in Fig.
11. We set, for the right upper quarter of the simulated
domain, my = const and my = −const in the lower right
quarter. Therefore, for sufficiently small ky, the group ve-
locity component vy changes sign at the interface between

Figure 12: (color online). Wave packet starting with (kx, ky) =
(10.0±0.8, 0.0±0.8)% for V = 0 moving in a constant magnetic field
in z-direction, represented by a vector potential my rising linearly
with x. The closed lines mark the FWHM, the brightness satura-
tion gives the probability density, and the color/brightness variation
encodes the phase.

these two regions. As a result, one observes the emergence
of interference fringes where the distance of the maxima
depends on my, see Fig. 11 (a) and (b).
Fig. 12 shows a mass-zero wave packet traveling on a
relativistic Landau orbit enforced by a magnetization in
z-direction represented by a vector potential my with lin-
ear x-dependence. Positions of constant my are indicated
in the figure by vertical lines. The Gaussian wave packet
sets out in the 12 o’clock position and propagates in the
direction indicated by the arrows. In this case a strongly
dispersive behavior is observed: inner portions of the wave
packet move ahead of the outer portion leading to a signif-
icantly elongated wave packet after one completed orbit.
This dispersive effect is not a numerical error but a rep-
resents a peculiarity of a mass zero particle in a magnetic
field, for which the period T for completion of one orbit
fulfills T ∝ k/B, where k is the magnitude of the k-vector
and B the z-component of the magnetic field. Since the
particle moves at constant group velocity, also the classical
cyclotron radius Rc scales linearly with k. Thus portions
of the wave packet closer to the center of the orbit move
ahead of those further away from it, as is clearly revealed
in the numerical simulation shown in Fig. 12. This effect
is of course closely related to the

√
n dependence of the

cyclotron mass of graphene, with n denoting the particle
density, which has lead to the measurement of the Fermi
velocity in graphene, as discussed in a recent review article
[8]. This effect can also be seen in a publication where a
FFT-split-operator code was used [40].
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This numerical approach has also served as the basis
for a theoretical study of Dirac fermion propagation on
magnetically textured surfaces of topological insulators,
in the vicinity of domain walls, domain wall intersections,
and Dirac fermion wave guides [20, 21].

4. Discussion

The main advantages from this compact scheme are
the preservation of the free Weyl-Dirac fermion dispersion
relation for wave vectors aligned along both the x- and the
y-axis, as well as a large, nearly isotropic monotonic region
near the center of k-space. In particular for long-time sim-
ulations of magnetic textures which are aligned along the
main axes, like rectangular waveguide structures which we
have modeled [21], the advantages of the present scheme
pay off. As demonstrated above, for such setups errors in
phase and group velocity relative to the continuum model
are small (see, for example, the dispersion relation along
the axes in Fig. 3 (a)). The results show high accuracy
for wave-components up to the grid maximum of two grid-
points per wavelength, known as the Nyquist wave num-
ber. It should also be remembered that the effective model
captured by the Hamiltonian in Eq. (2) is valid only in the
vicinity of the degeneracy point of the surface states of a
TI or the graphene band structure and for weak contri-
butions from the “magnetization” term. Therefore, the
presence of a second cone at (kx, ky) = (± π

∆x ,±
π

∆y ) does
not provide a serious drawback for most applications.

Furthermore, this scheme leaves open the option to
choose, within its explicitly derived convergence limits,
any desirable ratios in the grid spacings. For simulations
with arbitrary propagation directions one has to estimate
the occurring wave numbers and choose the grid size such
that the dispersion relation on the grid is a good approxi-
mation to the one for the continuum equation. Again, the
present scheme has a significant advantage (in addition of
being explicit) over the standard scheme using a symmet-
ric form of the spatial derivatives, see Fig. 3 (b), since
the region of k-space where a good approximation of the
continuum energy dispersion is provided is significantly en-
larged. Typical simulations shown here take a few minutes
of CPU time on an average PC. For this second order accu-
rate scheme the numerical cost increases linearly with the
number of (space+time) grid-points, offering a profound
advantage compared to implicit schemes of the same or-
der, whenever simulations of high accuracy are required.
If necessary, the second Dirac cone can be removed within
this scheme by adding mass to the doublers using a Wilson
term [41]. When properly implemented into the present
staggered grid scheme it leads to an implicit scheme which
will be shown elsewhere.

5. Summary, conclusions, and outlook

In summary, we have presented a staggered-grid leap-
frog scheme for the numerical solution of the (2+1)D Dirac

equation which has the following favorable properties: it is
an explicit scheme, it has the minimum number ”two” of
Dirac cones on the lattice whereby the second cone sits at
the corners of the “1st Brillouin zone”, for the case of mass
zero it provides the correct linear dispersion along x- and
y-direction, and it allows for the implementation of absorb-
ing boundary conditions for simulations on a finite grid
without spurious reflections from its boundaries, as well as
the simulation of particle sources and sinks. Here, generic
numerical examples have been given to demonstrate and
explore these properties. As a consequence, this approach
is well suited for the study of Dirac fermion dynamics in
potential landscapes provided by external electromagnetic
potentials, typical to TI surface states. Applications to
TI surface state dynamics based on this algorithm have
and will be presented elsewhere [20, 21]. A related numer-
ical treatment of the (1+1)D two-spinor-component Dirac
equation including exact absorbing boundary conditions,
displaying a single Dirac cone, has been presented by us
recently [24]. Furthermore, we have been able to develop
a scheme, respectively, for the to the (2+1)D two-spinor-
component Dirac equation and the (3+1)D four-spinor-
component Dirac equation with a single cone only [42].
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Appendix A. Scheme with Peierls substitution for the introduction of non-vanishing in-plane “magne-
tization” mx and my

Here we show the consequence of the Peierls substitution Eq. (4) into the scheme Eq. (3) to introduce non-vanishing
“magnetization” mx and my terms into the numerical scheme.

We first explore the effect of the substitution on difference quotients (derivative terms)

u1 − u2

∆
→ eia1u1 − eia2u2

∆
. (A.1)

Simple regrouping gives the exact “product rule for differentiation on the lattice”

eia1u1 − eia2u2

∆
= f+(a1, a2)

u1 − u2

∆
+
eia1 − eia2

∆

u1 + u2

2
, (A.2)

using the definition f±(a1, a2) = (eia1 ± eia2)/2. The last term on the rhs contains a difference quotient representing the
derivative of an exponential. It may be approximated by the “chain rule” for the derivative of exponentials on the grid

eia1 − eia2
∆

= f+(a1, a2)
i(a1 − a2)

∆
+

1

∆
O((a1 − a2)3) . (A.3)

The second type of terms to be dealt with are spatial averages of the structure

u1 + u2

2
→ eia1u1 + eia2u2

2
. (A.4)

Here one arrives at
eia1u1 + eia2u2

2
= f+(a1, a2)

u1 + u2

2
+ f−(a1, a2)

u1 − u2

2
. (A.5)

The scheme which then arises from the Peierls substitution (4) into Eq. (3) is

f+(an+1
j,k , anj,k)

[
un+1
j,k − unj,k

∆t
+ i
(
(mz)

n
j,k + V nj,k

) un+1
j,k + unj,k

2

]

+
eia

n+1
j,k − eia

n
j,k

∆t

un+1
j,k + unj,k

2
+ if−(an+1

j,k , anj,k)
(
(mz)

n
j,k − V nj,k

) un+1
j,k − unj,k

2

+
1

2
f+(anj,k−1, a

n
j−1,k−1)

vnj,k−1 − vnj−1,k−1

∆x
+
eia

n
j,k−1 − eia

n
j−1,k−1

∆x

vnj,k−1 + vnj−1,k−1

4

+
1

2
f+(anj,k, a

n
j−1,k)

vnj,k − vnj−1,k

∆x
+
eia

n
j,k − eia

n
j−1,k

∆x

vnj,k + vnj−1,k

4

− i

2
f+(anj−1,k, a

n
j−1,k−1)

vnj−1,k − vnj−1,k−1

∆y
− ie

ianj−1,k − eia
n
j−1,k−1

∆y

vnj−1,k + vnj−1,k−1

4

− i

2
f+(anj,k, a

n
j,k−1)

vnj,k − vnj,k−1

∆y
− ie

ianj,k − eia
n
j,k−1

∆y

vnj,k + vnj,k−1

4
= 0 , (A.6)

and

f+(an+1
j,k , anj,k)

[
vn+1
j,k − vnj,k

∆t
− i
(

(mz)
n+1
j,k − V

n+1
j,k

) vn+1
j,k + vnj,k

2

]

+
eia

n+1
j,k − eia

n
j,k

∆t

vn+1
j,k + vnj,k

2
− if−(an+1

j,k , anj,k)
(

(mz)
n+1
j,k + V n+1

j,k

) vn+1
j,k − vnj,k

2

+
1

2
f+(an+1

j+1j,k, a
n+1
j,k )

un+1
j+1,k − u

n+1
j,k

∆x
+
eia

n+1
j+1,k − eia

n+1
j,k

∆x

un+1
j+1,k + un+1

j,k

4

+
1

2
f+(an+1

j+1,k+1, a
n+1
j,k+1)

un+1
j+1,k+1 − u

n+1
j,k+1

∆x
+
eia

n+1
j+1,k+1 − eia

n+1
j,k+1

∆x

un+1
j+1,k+1 + un+1

j,k+1

4

+
i

2
f+(an+1

j,k+1, a
n+1
j,k )

un+1
j,k+1 − u

n+1
j,k

∆y
+ i

eia
n+1
j,k+1 − eia

n+1
j,k

∆y

un+1
j,k+1 + un+1

j,k

4

+
i

2
f+(an+1

j+1,k+1, a
n+1
j+1,k)

un+1
j+1,k+1 − u

n+1
j+1,k

∆y
+ i

eia
n+1
j+1,k+1 − eia

n+1
j+1,k

∆y

un+1
j+1,k+1 + un+1

j+1,k

4
= 0 . (A.7)
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It immediately becomes more transparent when the chain rule approximation Eq. (A.3) is used

f+(an+1
j,k , anj,k)

[
un+1
j,k − unj,k

∆t
+ i

(
(mz)

n
j,k + V nj,k +

an+1
j,k − anj,k

∆t

)
un+1
j,k + unj,k

2

]

+ if−(an+1
j,k , anj,k)

(
(mz)

n
j,k − V nj,k

) un+1
j,k − unj,k

2

+
1

2
f+(anj,k−1, a

n
j−1,k−1)

[
vnj,k−1 − vnj−1,k−1

∆x
+
vnj,k−1 + vnj−1,k−1

2

i(anj,k−1 − anj−1,k−1)

∆x

]
+

1

2
f+(anj,k, a

n
j−1,k)

[
vnj,k − vnj−1,k

∆x
+
vnj,k + vnj−1,k

2

i(anj,k − anj−1,k)

∆x

]
− i

2
f+(anj−1,k, a

n
j−1,k−1)

[
vnj−1,k − vnj−1,k−1

∆y
+
vnj−1,k + vnj−1,k−1

2

i(anj−1,k − anj−1,k−1)

∆y

]
− i

2
f+(anj,k, a

n
j,k−1)

[
vnj,k − vnj,k−1

∆y
+
vnj,k + vnj,k−1

2

i(anj,k − anj,k−1)

∆y

]
= 0 , (A.8)

and

f+(an+1
j,k , anj,k)

[
vn+1
j,k − vnj,k

∆t
− i

(
(mz)

n+1
j,k − V

n+1
j,k −

an+1
j,k − anj,k

∆t

)
vn+1
j,k + vnj,k

2

]

− if−(an+1
j,k , anj,k)

(
(mz)

n+1
j,k + V n+1

j,k

) vn+1
j,k − vnj,k

2

+
1

2
f+(an+1

j+1j,k, a
n+1
j,k )

[
un+1
j+1,k − u

n+1
j,k

∆x
+
un+1
j+1,k + un+1

j,k

2

i(an+1
j+1,k − a

n+1
j,k )

∆x

]

+
1

2
f+(an+1

j+1,k+1, a
n+1
j,k+1)

[
un+1
j+1,k+1 − u

n+1
j,k+1

∆x
+
un+1
j+1,k+1 + un+1

j,k+1

2

i(an+1
j+1,k+1 − a

n+1
j,k+1)

∆x

]

+
i

2
f+(an+1

j,k+1, a
n+1
j,k )

[
un+1
j,k+1 − u

n+1
j,k

∆y
+
un+1
j,k+1 + un+1

j,k

2

i(an+1
j,k+1 − a

n+1
j,k )

∆y

]

+
i

2
f+(an+1

j+1,k+1, a
n+1
j+1,k)

[
un+1
j+1,k+1 − u

n+1
j+1,k

∆y
+
un+1
j+1,k+1 + un+1

j+1,k

2

i(an+1
j+1,k+1 − a

n+1
j+1,k)

∆y

]
= 0 . (A.9)

Consistent with the “chain rule”, under weak spatial and temporal variation of the magnetization (vector potential)
m(x, y, t), the f− terms may be dropped and the f+ factors may be eliminated, leading to a simplified version of the
form

un+1
j,k − unj,k

∆t
+ i

(
(mz)

n
j,k + V nj,k +

an+1
j,k − anj,k

∆t

)
un+1
j,k + unj,k

2

+
1

2

[
vnj,k−1 − vnj−1,k−1

∆x
+
vnj,k−1 + vnj−1,k−1

2

i(anj,k−1 − anj−1,k−1)

∆x

]
+

1

2

[
vnj,k − vnj−1,k

∆x
+
vnj,k + vnj−1,k

2

i(anj,k − anj−1,k)

∆x

]
− i

2

[
vnj−1,k − vnj−1,k−1

∆y
+
vnj−1,k + vnj−1,k−1

2

i(anj−1,k − anj−1,k−1)

∆y

]
− i

2

[
vnj,k − vnj,k−1

∆y
+
vnj,k + vnj,k−1

2

i(anj,k − anj,k−1)

∆y

]
= 0 , (A.10)
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vn+1
j,k − vnj,k

∆t
− i

(
(mz)

n+1
j,k − V

n+1
j,k −

an+1
j,k − anj,k

∆t

)
vn+1
j,k + vnj,k

2

+
1

2

[
un+1
j+1,k − u

n+1
j,k

∆x
+
un+1
j+1,k + un+1

j,k

2

i(an+1
j+1,k − a

n+1
j,k )

∆x

]

+
1

2

[
un+1
j+1,k+1 − u

n+1
j,k+1

∆x
+
un+1
j+1,k+1 + un+1

j,k+1

2

i(an+1
j+1,k+1 − a

n+1
j,k+1)

∆x

]

+
i

2

[
un+1
j,k+1 − u

n+1
j,k

∆y
+
un+1
j,k+1 + un+1

j,k

2

i(an+1
j,k+1 − a

n+1
j,k )

∆y

]

+
i

2

[
un+1
j+1,k+1 − u

n+1
j+1,k

∆y
+
un+1
j+1,k+1 + un+1

j+1,k

2

i(an+1
j+1,k+1 − a

n+1
j+1,k)

∆y

]
= 0 , (A.11)

Here V̂
n(+1)
j,k = V

n(+1)
j,k +

an+1
j,k −a

n
j,k

∆t denotes the net scalar potential in presence of a vector potential. The x and y
components of the magnetization (vector potential) on the grid, respectively, are given by

(mx)nj,k ≈
anj,k − anj−1,k

∆x
≈
anj,k−1 − anj−1,k−1

∆x
,

(my)nj,k ≈
anj−1,k − anj−1,k−1

∆y
≈
anj,k − anj−1,k−1

∆y
,

(mx)n+1
j,k ≈

an+1
j+1,k − a

n+1
j,k

∆x
≈
an+1
j+1,k+1 − a

n+1
j,k+1

∆x
,

and

(my)n+1
j,k ≈

an+1
j,k+1 − a

n+1
j,k

∆y
≈
an+1
j+1,k+1 − a

n+1
j+1,k

∆y
. (A.12)

Using these simplifications we finally arrive at the scheme Eqs. (5) and (6)

un+1
j,k − unj,k

∆t
=− i

(
(mz)

n
j,k + V̂ nj,k

) un+1
j,k + unj,k

2

−
vnj,k−1 − vnj−1,k−1 + vnj,k − vnj−1,k

2∆x
+ i

vnj−1,k − vnj−1,k−1 + vnj,k − vnj,k−1

2∆y

− i(mx)nj,k
vnj,k + vnj−1,k + vnj,k−1 + vnj−1,k−1

4
− (my)nj,k

vnj−1,k + vnj−1,k−1 + vnj,k + vnj,k−1

4
, (A.13)

and

vn+1
j,k − vnj,k

∆t
= + i

(
mz − V̂ n+1

j,k

) vn+1
j,k + vnj,k

2

−
un+1
j+1,k − u

n+1
j,k + un+1

j+1,k+1 − u
n+1
j,k+1

2∆x
−
un+1
j,k+1 − u

n+1
j,k + un+1

j+1,k+1 − u
n+1
j+1,k

2∆y

− i(mx)n+1
j,k

un+1
j+1,k + un+1

j,k + un+1
j+1,k+1 + un+1

j,k+1

4
+ (my)n+1

j,k

un+1
j,k+1 + un+1

j,k + un+1
j+1,k+1 + un+1

j+1,k

4
. (A.14)
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Appendix B. Derivation of a functional for the norm which is exactly conserved by the scheme

The proof of Eq. (20) can be given as follows [24]. Form the scalar product of the first of equation Eqs. (3) with
(un+1 + un), with the latter applied from the left, and retain the real part of the resulting equation. This gives, using
the scalar products introduced above Eqs. (17) to (19),

||un+1||2 − ||un||2

∆t
=−<

{
(un+1 + un; vn)0,− − (un+1 + un; vn)−,− + (un+1 + un; vn)0,0 − (un+1 + un; vn)−,0

2∆x

}
−=

{
(un+1 + un; vn)−,0 − (un+1 + un; vn)−,− + (un+1 + un; vn)0,0 − (un+1 + un; vn)0,−

2∆y

}
.

(B.1)

Form the scalar product between the second equation of Eqs. (3) with (vn+1 + vn), with the latter applied from the
right, and take the real part of this equation. This gives

||vn+1||2 − ||vn||2

∆t
=−<

{
(un+1; vn+1 + vn)−,0 − (un+1; vn+1 + vn)0,0 + (un+1; vn+1 + vn)−,− − (un+1; vn+1 + vn)0,−

2∆x

}
−=

{
(un+1; vn+1 + vn)0,− − (un+1; vn+1 + vn)0,0 + (un+1; vn+1 + vn)−,− − (un+1; vn+1 + vn)−,0

2∆y

}
.

(B.2)

Adding these two equations yields, on the lhs, ||un+1||2 + ||vn+1||2− ||un||2 + ||vn||2. On the rhs one finds three types of
terms: scalar products between equal-time components (respectively n with n and n+ 1 with n+ 1) and those mixing n
with n+ 1. The latter cancel in pairs using a shift of indices, such as (un; vn

′
)−,0− (un; vn

′
) =

∑
jk(unj,k; vn

′

j−1,k− vn
′

j,k) =∑
jk(unj+1,k − unj,k; vn

′

j,k). The mz and scalar potential terms vanish when taking the real part. One obtains,

||un+1||2 − ||un||2 + ||vn+1||2 − ||vn||2 =− rx<{(un; vn)0,− − (un; vn)−,− + (un; vn)0,0 − (un; vn)−,0}
− ry={(un; vn)−,0 − (un; vn)−,− + (un; vn)0,0 − (un; vn)0,−}
+ rx<

{
(un+1; vn+1)−,0 − (un+1; vn+1)0,0 + (un+1; vn+1)−,− − (un+1; vn+1)0,−

}
+ ry=

{
(un+1; vn+1)0,− − (un+1; vn+1)0,0 + (un+1; vn+1)−,− − (un+1; vn+1)−,0

}
.

(B.3)

This is the identity En+1=En.
In case of space and/or time dependent mx or my, an exactly conserved quantity is not obtained in this fashion

from the Eqs. (5) and (6). However, it is readily constructed for the “exact” equations obtained within the Peierls
substitution, Eqs. (A.6) and (A.7), by simply applying it to En to give Ên which has the exact structure of En, just
with u, v replaced by û, v̂.
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Appendix C. Stability

In this appendix we prove the stability conditions for arbitrary space- and time-dependent magnetization vector and
potential terms, Eq. 21 and Eq. 22. We use norm conservation Eq. (20) and proceed as follows

E0 = En = ||un||2 + ||vn||2 − rx<{(un; vn)0,− − (un; vn)−,− + (un; vn)0,0 − (un; vn)−,0}
− ry={(un; vn)−,0 − (un; vn)−,− + (un; vn)0,0 − (un; vn)0,−}

= ||un||2 + ||vn||2 −<{(rx + iry) [(un; vn)0,− − (un; vn)−,0]− (rx − iry) [(un; vn)−,− − (un; vn)0,0]}

≥ ||un||2 + ||vn||2 −
∣∣∣<{(rx + iry) [(un; vn)0,− − (un; vn)−,0]− (rx − iry) [(un; vn)−,− − (un; vn)0,0]

∣∣∣}
≥ ||un||2 + ||vn||2− | <{(rx + iry)(un; vn)0,−} | − | < {(rx + iry)(un; vn)−,0]} |

− | < {(rx − iry)un; vn)−,−} | − | < {(rx − iry)(un; vn)0,0} |

≥ ||un||2 + ||vn||2 −
√
r2
x + r2

y

[
| <
{

(un−; vn)0,−
}
| + | <

{
(un−; vn)−,0

}
|

+ | <
{

(un+; vn)−,−
}
| + | <

{
(un+; vn)0,0

}
|
]

≥ ||un||2 + ||vn||2 − 2
√
r2
x + r2

y

(
||un||2 + ||vn||2

)
= (1− r̃)

(
||un||2 + ||vn||2

)
.

Here we have used the inequality 2 | < {(a, b)} |≤ ||a||2 + ||b||2, as well as the abbreviation un± = e±iφun, where
φ = arctan (ry/rx). Note also that the norm of a spinor component shifted by ±∆x,±∆y is equal to the norm of the
unshifted component under zero or periodic boundary conditions.

The case r̃ = 1 can be dealt with as follows (omitting the superscript n for brevity). Starting from the last identity
in the previous proof, for this case one may write

E0 = En = ||u||2 + ||v||2 +
1

2
<{(u−; v)−,0 − (u−; v)0,− + (u+; v)−,− − (u+; v)0,0}

=
1

4

[
|| u+ + v−,− ||2 + || u+ − v ||2 + || u− + v−,0 ||2 + || u− − v0,− ||2

]
(C.1)

Note once more, that the single subscript on the spinor component (u) indicates a phase shift, while a double subscript
indicates a shift on the spatial grid (here applied to component v). Here we use identities of the form

1

4

[
||u± + v||2 + ||u± − v′||2

]
=

1

2

[
||u||2 + ||v||2 + <{(u±, v)− (u±, v

′)}
]

when ||v|| = ||v′||. Note that this identity can be applied no more than twice, since ||u||2 + ||v||2 is available in En = E0.
This limits the magnitude of r̃. In the second step we apply the inequality 2

[
||a1 + b||2 + ||a2 − b||2

]
≥ ||a1 + a2||2,

whereby u± plays the role of b, to obtain

E0 ≥
1

8

[
||v−,− + v||2 + ||v0,− + v−,0||2

]
≡ ||ṽ||2 .

Attaching the phase factor of r± to the components v and the grid shifts to the components u, one obtains

E0 ≥
1

8

[
||u+,+ + u|2 + ||u0,+ + u+,0||2

]
≡ ||ũ||2.

Hence
||ũ||2 + ||ṽ||2 ≤ 2E0 .

This discussion also shows that En = E0 ≥ 0 for r̃ ≤ 1 and thus provides a meaningful definition for a spinor norm
within the scheme.

With E0, un, and vn, respectively, replaced by Ê0, ûn, and v̂n the stability condition for Eqs. (A.6) and (A.7) is
shown under arbitrary space-time dependence of the external fields.

17


	1 Introduction
	2 The numerical approach
	2.1 Numerical scheme
	2.2 Von Neumann stability analysis
	2.3 Dispersion relation
	2.4 The norm

	3 Numerical examples
	3.1 Dispersive properties of the scheme
	3.2 Dynamics at Klein steps
	3.3 Dynamics under finite m

	4 Discussion
	5 Summary, conclusions, and outlook
	Appendix  A Scheme with Peierls substitution for the introduction of non-vanishing in-plane ``magnetization" mx and my
	Appendix  B Derivation of a functional for the norm which is exactly conserved by the scheme
	Appendix  C Stability

