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Abstract

The fast Fourier transform (FFT) is undoubtedly an essential primitive that
has been applied in various fields of science and engineering. In this paper,
we present a decomposition method for parallelization of multi-dimensional
FFTs with smallest communication amount for all ranges of the number of
processes compared to previously proposed methods. This is achieved by two
distinguishing features: adaptive decomposition and transpose order aware-
ness. In the proposed method, the FFT data are decomposed based on a
row-wise basis that maps the multi-dimensional data into one-dimensional
data, and translates the corresponding coordinates from multi-dimensions
into one-dimension so that the resultant one-dimensional data can be di-
vided and allocated equally to the processes. As a result, differently from
previous works that have the dimensions of decomposition pre-defined, our
method can adaptively decompose the FFT data on the lowest possible di-
mensions depending on the number of processes. In addition, this row-wise
decomposition provides plenty of alternatives in data transpose, and different
transpose order results in different amount of communication. We identify
the best transpose orders with smallest communication amounts for the 3-D,
4-D, and 5-D FFTs by analyzing all possible cases. Given both communi-
cation efficiency and scalability, our method is promising in development of
highly efficient parallel packages for the FFT.
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1. Introduction

Since the pioneering work of J. W. Cooley and J. W. Tukey in 1965 [1],
the fast Fourier transform (FFT) has become an essential kernel for numer-
ous fields of science and engineering, such as electronic structure calculations,
digital signal processing, medical image processing, communications, astron-
omy, geology, optics, and so on [2, 3, 4, 5]. In those applications, the FFT is
usually performed with a large data set in multiple dimensions many times,
making the FFT a computationally expensive calculation. Given the impor-
tance of the FFT and widespread of massively parallel supercomputers of
multi-core processors, it should come as no surprise that there have been a
lot of efforts to parallelize the FFT that can be roughly categorized into two
approaches: the direct approach for one-dimensional (1-D) FFTs, and the
transpose approach for multi-dimensional FFTs. In the former approach, the
1-D FFT is parallelized by dividing the original problem into sub-problems
recursively, which are assigned to the processes for solving in parallel [6, 7, 8].

In the latter approach for multi-dimensional FFTs, the FFT data are de-
livered to the processes so that they can have enough data to perform the
sequential 1-D FFTs locally in one specific dimension in parallel, for example
with the wildly popular FFTW package [9]. The primary concern of this pa-
per is the communication efficiency of the latter approach, as the data must
be transposed, repeatedly if necessary until the data for all the dimensions
have been FFT-transformed, for conducting the 1-D FFTs in other dimen-
sions. The data transpose requires communications among the processes,
and must be considered carefully, whereas the 1-D FFT is independent and
communication-free. As a result, the communication efficiency heavily de-
pends on the domain decomposition method, which should minimize the
amount of communication, while not sacrificing scalability.

The domain decomposition can be carried out in any degree from one-
to M -dimensions for the M -dimensional (M -D) FFT, facing the trade-off
between communication efficiency and scalability. The lower the degree of
the domain decomposition is, the higher the communication efficiency is, and
the lower the scalability is. That said, the 1-D decomposition achieves the
highest communication efficiency with the lowest scalability, in contrast to
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the M -D decomposition, which carries the lowest communication efficiency
with the highest scalability.

Let us take the most popular three-dimensional (3-D) FFT as an exam-
ple, where the domain decomposition method exists in three forms: one-,
two-, and three-dimensions. The alphabet hereafter is used to denote the di-
mensions, for example, a for the first dimension, b for the second dimension,
etc. The 1-D decomposition [2, 10], or slab decomposition, divides the 3-D
data into equal blocks of complete ab-planes, for instance, along the c-axis,
and requires only one transpose step with the smallest amount of commu-
nication, but the number of processes applicable is limited to the size of
one dimension. The 3-D decomposition, or volumetric decomposition, parti-
tions the 3-D data along all three dimensions [11, 12, 13, 14], and therefore
three data transpose steps are necessary to perform the 1-D FFTs along the
three dimensions, making the 3-D decomposition the costliest in terms of
communication amount, yet the most scalable, as the maximum number of
processes is equal to the size of the 3-D data. Sandwiched between the 1-D
and 3-D decompositions is the 2-D decomposition (pencil or rod decomposi-
tion) [15, 16, 17, 18] that draws smaller amount of communication than the
3-D decomposition, and offers higher scalability than the 1-D decomposition,
as the number of processes applicable is now up to the size of 2-D plane.

Our work is motivated by the fact that the aforementioned domain de-
composition methods usually pre-define the dimensions of decomposition,
regardless of the number of processes. In particular, the 2-D decomposi-
tion partitions in two dimensions, even when the number of processes is less
than the size of one dimension and it is possible to decompose in only one
dimension to reduce the communication amount, because lower degree of
decomposition leads to smaller amount of communication. As can be ex-
pected, the situation is worse for the 3-D decomposition, which works in
three dimensions paying no attention to the number of processes. For bet-
ter communication efficiency, this factor should be taken into account in the
decomposition method.

In addition, we observe that the order of data transpose has no effect
upon the communication efficiency in those decomposition methods, as they
treat the dimensions involved in the decomposition in the same way. For
example, as mentioned above, the 2-D decomposition divides the ab-plane
evenly, i.e., the a- and b-axes are the same and the processes are allocated
approximately equal numbers of data points along these two axes. In the
two subsequent transpose steps, there is no difference in doing ac or bc first,
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because they all result in the same amount of communication. However,
we find that if the dimensions involved in the decomposition are handled
differently, specifically the data points on the ab-plane are divided to the
processes in ascending order of their a- and then b-coordinates, the transpose
order will become a key factor in the subsequent transpose steps. Choosing
the right transpose order will actually reuse a lot of data from the previous
step and consequently reduce a substantial communication amount.

Another motivation is that while the decomposition method for parallel
3-D FFTs has been extensively investigated, little work has explored beyond
them so far. In fact, 4-D and 5-D FFTs have various applications, and
examples can be found in fields such as lattice quantum chromodynamics
simulations, where a Landau gauge fixing algorithm is implemented using the
4-D FFT [19], in medical image processing with a 4-D FFT-based filtering
[20], in photography [21, 22], in drug design with 5-D FFT-based protein-
protein docking algorithms [23, 24, 25], and others [26]. Hence, there is a
real need to develop parallel M -D FFTs beyond 3-D FFTs.

In this paper, we present a decomposition method for parallelization of
multi-dimensional FFTs with two distinguishing features: adaptive decom-
position and transpose order awareness for achieving smallest communica-
tion amount compared to previously proposed methods. In our method,
the FFT data are decomposed based on a row-wise basis that maps the M -
D data into 1-D data, and translates the corresponding coordinates from
multi-dimensions into one-dimension for equally dividing and allocating the
resultant 1-D data to the processes. As a result, our method can adaptively
decompose the FFT data on the lowest possible dimensions depending on the
number of processes so that the communication amount can be minimized
in the first place, differently from previous works that have fixed-dimensions
of decomposition. In particular, the method decomposes in one dimension if
the number of processes is less than or equal to the size of one dimension,
in two dimensions if the number of processes is greater than the size of one
dimension and less than or equal to the size of two dimensions, up to M -
dimensions. Another unique feature of our method is the awareness of the
transpose order. The row-wise decomposition provides plenty of alternatives
in data transpose, and different transpose order results in different amount
of communication. By analyzing all possible cases for transpose order, we
find out the best transpose orders with smallest communication amounts for
3-D, 4-D, and 5-D FFTs. Finally, our method is generalized to M -D FFTs.

The remainder of the paper is organized as follows. Section 2 describes
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M -D FFTs. The domain decomposition method is presented in Section 3,
and Section 4 gives comparison in terms of communication amount between
our method and other methods. Our study is concluded in Section 5.

2. Multi-dimensional FFTs

We start the discussion by introducing the M -D FFT by way of the 1-
D FFT. The 1-D FFT transforms a 1-D data X(j) of N complex numbers
(X(0), X(1), ..., X(N−1)) into another 1-D data X̄(k) of N complex numbers
(X̄(0), X̄(1), ..., X̄(N − 1)) as follows:

X̄(k) =
N−1∑
j=0

ωjkNX(j), (1)

where ωN = e−2πi/N , i =
√
−1, and the factor is dropped for simplicity.

The 1-D FFT transforms the 1-D data that has exactly one discrete vari-
able j into another 1-D data structure. Similarly, the M -D FFT transforms
an M -D data X(j1, j2, ..., jM) that has M discrete variables j1, j2, ..., jM into
another M -D data X̄(k1, k2, ..., kM), defined by

X̄(k1, k2, ..., kM) =

N1−1∑
j1=0

(
ωj1k1N1

N2−1∑
j2=0

(
ωj2k2N2

...

NM−1∑
jM=0

ωjMkM
NM

X(j1, j2, ..., jM)

))
,

(2)
where ωNr = e−2πi/Nr , and 1 ≤ r ≤M .

As can be seen from the above equation, the M -D FFT can be computed
in M single steps, with each performing the 1-D FFTs along one specific
dimension. This is a crucial feature exploited by the domain decomposition
method for parallelization of the M -D FFT. The first step conducts the
1-D FFTs along the last dimension, for instance, followed by a transpose
operation. The second step executes the 1-D FFTs along the dimension
prior to the last dimension, and so on. Lastly, the Mth step carries out the
1-D FFTs along the first dimension, ending the M -D FFT.

3. Domain decomposition method

In this section, we present our domain decomposition method, starting
with the 3-D FFT for ease of understanding. We then provide a general
description of the method for the M -D FFT, and finally we describe the
method for the 4-D and 5-D FFTs, and beyond them.
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3.1. 3-D FFTs

Here we illustrate and examine our decomposition method for the 3-D
FFT. Assume that the numbers of data points along the a-, b-, and c-axes
are N1, N2, and N3, respectively, the number of processes is Np, and myid is
the process identification.

Our method is basically based on a row-wise decomposition. It first trans-
lates the original 3-D FFT data X3D(a, b, c) into a 1-D data X1D(x), as illus-
trated in Fig. 1 for the abc order as an example in a total of 3 × 2 × 1 = 6
orders. The relationship between a 3-D coordinate X3D(a1, b1, c1) and a 1-D
coordinate X1D(x1) in the abc order is given by

x1 = a1 ×N2 ×N3 + b1 ×N3 + c1. (3)

It is worth mentioning that the relationships in other orders different from
abc can be derived in the same way.

a0b0c0

a0b0cN3-1

a0b1c0

a0b1cN3-1

a0bN2-1c0

a0bN2-1cN3-1

a1b0c0

a1b0cN3-1

...

aN1-1bN2-1c0

aN1-1bN2-1cN3-1

...

N3 data points

N2×N3 data points

N1×N2×N3 data points divided equally to Np processes

b

a

c

N1

N2

N3

Three-dimensional data 

to one-dimensional data

Figure 1: 3-D FFTs: 3-D data to 1-D data mapping in row-wise decomposition for the
abc order.

In order to identify the starting and ending points allocated to each pro-
cess in the domain decomposition determined by Np, myid, N1, N2, and N3,
we define a function f3D() for translating the 3-D and 1-D coordinates as

6



follows:

f3D(N1, N2, N3, Np,myid) =



⌊
N1×myid

Np

⌋
×N2N3, if Np ≤ N1;

⌊
N1N2×myid

Np

⌋
×N3, if N1 < Np ≤ N1N2;

⌊
N1N2N3×myid

Np

⌋
, if N1N2 < Np ≤ N1N2N3,

(4)
where bc is the floor function. Our method then equally divides the resultant
1-D data to the processes, in which a process with myid is assigned the data
points from X1D(xsmyid) to X1D(xemyid) in one dimension, where

xsmyid = f3D(N1, N2, N3, Np,myid), (5)

xemyid = f3D(N1, N2, N3, Np,myid + 1)− 1. (6)

These 1-D coordinates can be translated back to the 3-D ones to obtain the
corresponding starting and ending coordinates in three dimensions as

a
(s,e)
myid =

⌊
x
(s,e)
myid

N2N3

⌋
, (7)

b
(s,e)
myid =

⌊
x
(s,e)
myid − a

(s,e)
myidN2N3

N3

⌋
, (8)

c
(s,e)
myid = x

(s,e)
myid − a

(s,e)
myidN2N3 − b

(s,e)
myidN3, (9)

where X3D(asmyid, b
s
myid, c

s
myid) and X3D(aemyid, b

e
myid, c

e
myid) are the starting

and ending points, respectively, in three dimensions for a process with myid.
Consequently, the decomposition has three forms depending on the num-

ber of processes. The distribution of data points is carried out in 1-D, 2-D,
or 3-D data defined by the first one, two, or three dimensions, respectively.
For example, with Np processes and N1 < Np ≤ N1N2, the decomposition in
the abc order takes place in the 2-D decomposition, where the data points
on the ab-plane with the c-axis are divided over the processes in ascending
order of their a- and b-coordinates so that each process has approximately
the same number of data points on the ab-plane. The data points extending
along the c-axis that have the same a- and b-coordinates are also assigned
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to the same process. Therefore with the 2-D decomposition on the ab-plane
in the abc order, a process with myid will be assigned the data points from
X3D(asmyid, b

s
myid, 0) to X3D(aemyid, b

e
myid, N3 − 1) in ascending order of the a-,

b-, and c-coordinates, where asmyid, b
s
myid, a

e
myid, and bemyid can be obtained

from Eqs. 7 and 8, with

xsmyid =

⌊
N1N2 ×myid

Np

⌋
×N3, (10)

xemyid =

⌊
N1N2 × (myid + 1)

Np

⌋
×N3 − 1. (11)

In subsequent transpose steps, the decomposition can occur in any order of
combination of the three dimensions a, b, and c.

Figure 2 exemplifies the operation of our method with transpose-order
awareness (a) and transpose-order unawareness (b), followed by a conven-
tional 2-D method for comparison (c). The transpose order in Fig. 2(a) is
abc → cab → cba, and in Fig. 2(b) abc → cab → bca. Even though the
only difference between them is the last decomposition, cba as against bca,
this has far-reaching implications for the amount of reused data, because a
majority of data can be reused with the transpose from cab to cba, while
the transpose from cab to bca leaves only a minority of data that can be
reused. For instance, with process P1, Fig. 2(a) shows a large overlap be-
tween the areas assigned to it in cab and cba, implying that a large amount
of data can be reused, whereas the overlap between cab and bca is small (Fig.
2(b)). In fact, as revealed later in Fig. 3(a), the amount of communication
with transpose-order unawareness, abc→ cab→ bca, is doubled compared to
transpose-order awareness, abc → cab → cba. On the other hand, the con-
ventional 2-D decomposition is applied to two dimensions that are treated
in the same way so that the processes have approximately equal numbers
of data points on these two dimensions, leaving no difference between cba
and bca, and eventually no effect of the transpose order. Also, though the
illustrations are intended for 2-D decomposition, the extension to 1-D and
3-D decompositions is straightforward.

Figure 3(a) shows a full analysis on the amount of communication to the
number of processes with all 8 possible cases of transpose order for the 3-
D FFT, with N × N × N data points for the sake of simplicity and clear
presentation. Interestingly, the amount of communication is grouped into
only two patterns of communication in our method, and there is one pattern
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abc cab cba

b

a

cP1 P2

P3 P4

P5

P2 P3

P4

b

a

c

P1 P2

P3 P4
P5

P2 P3

P4

b

a

c
P
1

P
2

P
3

P
4

P
5

P
2

P
3

P
4

(a) Transpose-order awareness: transpose from cab to cba, a majority of data can be reused.

abc cab bca

b

a

cP1 P2

P3 P4

P5

P2 P3

P4

b

a

c

P1 P2

P3

P4

P5

P2

P3

P4

b

a

c

P
1

P
2

P
3

P
4

P
5

P
2

P
3

P
4

(b) Transpose-order unawareness: transpose from cab to bca, only a minority of data can be
reused. The amount of communication is doubled compared to (a).

b

a

c

b

a

c

b

a

c

(c) Conventional 2-D decomposition: all dimensions are the same.

Figure 2: 3-D FFTs with 2-D decomposition: our method with transpose-order awareness
(a) and unawareness (b), and regular 2-D method (c).
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abc

cba bca cab acb

cab acb acb cab cba bca cba bca

N
3
-N

3
/Np

Np ≤ N

Np: Number 

of processes

N×N×N grid

N < Np < N2

Np= N2

(2-N/Np)N
3
-N

2

2N
2
(N-1)

N
3
-N

3
/Np

(2-N/Np)N
3
-N

2

2N
2
(N-1)

N
3
-N

3
/Np

(2-N/Np)N
3
-N

2

2N
2
(N-1)

N
3
-N

3
/Np

(2-N/Np)N
3
-N

2

2N
2
(N-1)

2(N
3
-N

3
/Np)

2N
2
(N-1) 2N

2
(N-1) 2N

2
(N-1) 2N

2
(N-1)

2(N
3
-N

3
/Np) 2(N

3
-N

3
/Np) 2(N

3
-N

3
/Np)

2N
2
(N-1) 2N

2
(N-1) 2N

2
(N-1) 2N

2
(N-1)

N2 < Np < N3
N3+2Np(N-1) N3+2Np(N-1) N3+2Np(N-1) N3+2Np(N-1) N3+2Np(N-1) N3+2Np(N-1) N3+2Np(N-1) N3+2Np(N-1)

Np= N3
3N

3
(N-1) 3N

3
(N-1) 3N

3
(N-1) 3N

3
(N-1) 3N

3
(N-1) 3N

3
(N-1) 3N

3
(N-1) 3N

3
(N-1)

(a) 8 transpose order cases and the amount of communication corresponding to the number of
processes.

N
2

N N
3

P1: abc → acb → bca

P2: abc → bca → acb 

Number of Processes

A
m

o
u

n
t 

o
f 

C
o

m
m

u
n

ic
a

ti
o

n

P1: abc → acb → bca

P2: abc → bca → acb 

P1: abc → acb → bca

1-1.3x2x 323 NNNN pp −−

)(2
3

3

pN

N
N −

pN

N
N

3
3 −

)1(2 2 −NN

23)2( NN
N

N

p

−−

(b) 2 patterns (P1 and P2), the amount of communication corresponding to the number
of processes, and the difference between their amount.

Figure 3: 3-D FFTs: all 8 cases (a), categorized into 2 patterns (b).
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actually up to twice better than the other, as shown in Fig. 3(b). The
difference between these two patterns is twice, when the number of processes
is up to the size of one dimension, and up to 1.3 times, when the number of
processes is in between the sizes of one and two dimensions. The difference
remains almost unchanged by N . We find four transpose orders leading to
the pattern with the smaller amount of communication for all ranges of the
number of processes:

abc→ acb→ bca,

abc→ acb→ cba,

abc→ cba→ cab,

abc→ cab→ cba.

In general, we can follow any of these four orders in parallelization of the
3-D FFT. In fact, our previous work has employed the method with the 2-D
decomposition and the transpose order of abc→ cab→ cba [27].

3.2. General description of the method

Let XM-D(N1, N2, ..., NM) be the M -D input data. Each process is al-
located approximately N1×N2×...×NM

Np
data points. The decomposition starts

from the first dimension and gradually moves down to the last dimension
of the data structure to assign the data points to the processes according
to the number of processes. The problem turns to finding the starting and
ending coordinates of each dimension of the data structure for each pro-
cess, specifically, the starting point XM-D(xs1,myid, x

s
2,myid, ..., x

s
M,myid) and the

ending point XM-D(xe1,myid, x
e
2,myid, ..., x

e
M,myid) that together define the data

points distributed to a particular process with myid. This procedure can be
generalized from the previous case of 3-D FFTs.

After the M -D input data have been translated into the 1-D data, a
1-D coordinate X1D(X1) is identified from the equivalent M -D coordinate
XM-D(x1, x2, .., xM) as follows:

X1 = x1×N2×N3×· · ·×NM+x2×N3×N4×· · ·×NM+· · ·+xM−1×NM+xM .
(12)
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As well as the case of the 3-D FFT, a function fM-D() for translating the
M -D and 1-D coordinates is defined as

fM-D(N1, N2, ..., NM , Np,myid) =

⌊
N1×myid

Np

⌋
×N2N3 × · · · ×NM , if Np ≤ N1;

⌊
N1N2×myid

Np

⌋
×N3 × · · · ×NM , if N1 < Np ≤ N1N2;

· · ·

⌊
N1N2×···×NM×myid

Np

⌋
, if N1N2 × · · · ×NM−1 < Np ≤ N1N2 × · · · ×NM .

(13)

In one-dimension, the data points from X1D(xsmyid) to X1D(xemyid) are allo-
cated to a process with myid, where

xsmyid = fM-D(N1, N2, ..., NM , Np,myid), (14)

xemyid = fM-D(N1, N2, ..., NM , Np,myid + 1)− 1. (15)

Finally, in M -dimensions, the starting point XM-D(xs1,myid, x
s
2,myid, ..., x

s
M,myid)

and the ending point XM-D(xe1,myid, x
e
2,myid, ..., x

e
M,myid) of a process with myid

are given by

x
(s,e)
1,myid =

⌊
x
(s,e)
myid

N2N3 × · · · ×NM

⌋
, (16)

x
(s,e)
2,myid =

⌊
x
(s,e)
myid − x

(s,e)
1,myidN2N3 × · · · ×NM

N3 × · · · ×NM

⌋
, (17)

...

x
(s,e)
M−1,myid =⌊

x
(s,e)
myid − x

(s,e)
1,myidN2N3 × · · · ×NM − x

(s,e)
2,myidN3 × · · · ×NM − · · · − x

(s,e)
M−2,myidNM−1NM

NM

⌋
,

(18)
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x
(s,e)
M,myid = x

(s,e)
myid−x

(s,e)
1,myidN2N3×· · ·×NM−x(s,e)

2,myidN3×· · ·×NM−· · ·−x(s,e)
M−1,myid×NM .

(19)
With the definition of the function fM-D(), the row-wise decomposition

realizes the first feature of our method, adaptive decomposition. This is
how our method is adaptive and flexible to the number of processes Np.
When Np is less than or equal to the size of the first dimension N1, the
method will partition the M -D data in only that dimension, and assign about
N1

Np
× (N2× ...×NM) data points to each process. Likewise, if Np is between

N1 and N1 × N2, the decomposition will take place in the first and second
dimensions, and distribute approximately N1×N2

Np
×(N3×...×NM) data points

to each process. As lower degree of decomposition requires smaller amount of
communication, our method is able to minimize the communication amount
in the first place.

This adaptive decomposition is conducted when data transpose is per-
formed to re-allocate the data points to the processes. The computation is
relatively simple, and therefore its computational time is trivial. Figure 4
outlines the parallel M -D FFT with the decomposition for data transpose.
The order of transpose used in the figure is general, and the actual order,
accompanied by the amount of communication, is analyzed for the 3-D, 4-D,
and 5-D FFTs.

Since this is a row-wise-based distribution, the method leaves a number
of order options to be explored, because in this case, abc is no longer identical
to cab with the 3-D FFT, as illustrated previously. The order of transpose
plays a key role in the ability of re-using data that is directly related to the
amount of communication. Let us calculate the total number of cases for
the M -D FFT. Since we start with the first transpose, it has only a single
case. In the next transpose, as we have M − 1 remaining dimensions to
choose from and each dimension has (M − 1)! cases to be explored, there are
(M −1)× (M −1)! cases in this step. Similarly, there are (M −2)× (M −1)!
cases in the third transpose, because we have M − 2 remaining dimensions
with each dimension having (M − 1)! cases. In the Mth (final) transpose,
there are 1× (M − 1)! cases. Multiplication of all the cases in M steps gives

13



Input: X(N1, N2, ..., NM), Np, myid
Output: X̄(N1, N2, ..., NM)

1 Step 1: Perform N1 ×N2 × · · · ×NM−1 1-D FFTs, each with NM

points along the Mth dimension.
X̄1(j1, j2, ..., jM−1, kM) =

∑NM−1
jM=0 ωjMkM

NM
X(j1, j2, ..., jM)

2 Transpose: Conduct the adaptive decomposition.
X̄2(kM , j1, j2, ..., jM−1) = X̄1(j1, j2, ...jM−1, kM)

3 Step 2: Perform NM ×N1 ×N2 × · · · ×NM−2 1-D FFTs, each with
NM−1 points along the (M − 1)th dimension.
X̄3(kM , j1, j2, ..., jM−2, kM−1) =∑NM−1−1

jM−1=0 ω
jM−1kM−1

NM−1
X̄2(kM , j1, j2, ..., jM−1)

4 Transpose: Conduct the adaptive decomposition.
X̄4(kM , kM−1, j1, j2, ..., jM−2) = X̄3(kM , j1, j2, ..., jM−2, kM−1)

5 ...
6 Step M : Perform NM ×NM−1 × · · · ×N2 1-D FFTs, each with N1

points along the first dimension.
X̄2M−1(kM , kM−1, ..., k2, k1) =

∑N1−1
j1=0 ωj1k1N1

X̄2M−2(kM , kM−1, ..., k2, j1)

7 Transpose: Conduct the adaptive decomposition.
X̄(k1, k2, ..., kM−1, kM) = X̄2M−1(kM , kM−1, ..., k2, k1)

Figure 4: Parallel M -D FFTs with adaptive decomposition for data transpose.

us the total number of cases for the M -D FFT

CM-D = 1︸︷︷︸
1st transpose

× (M − 1)× (M − 1)!︸ ︷︷ ︸
2nd transpose

× (M − 2)× (M − 1)!︸ ︷︷ ︸
3rd transpose

×...

× 2× (M − 1)!︸ ︷︷ ︸
(M -1)th transpose

× 1× (M − 1)!︸ ︷︷ ︸
M th transpose

= (M − 1)× (M − 2)× ...× 2× 1× (M − 1)!M−1

= (M − 1)!M (20)

Table 1 shows the number of order cases corresponding to the number of
dimensions. With the 3-D FFT, there are 8 cases only, which can be examined
manually. However, with the 4-D and 5-D FFTs, these numbers are 1,296
and 7,962,624, respectively, that can be investigated thoroughly by computer
simulations. Even so, it is practically difficult with 2,985,984,000,000 cases
for the 6-D FFT. Therefore, we have no choice but to limit ourselves to the

14



Table 1: Number of cases.
Number of dimensions Number of cases

2 1
3 8
4 1,296
5 7,962,624
6 2,985,984,000,000
M (M − 1)!M

5-D FFT, and try to generalize the results to those beyond them.

3.3. 4-D FFTs, 5-D FFTs, and beyond

Figure 5 depicts the patterns, the amount of communication correspond-
ing to the number of processes, and the difference between their amount in
different ranges for the 4-D FFT (a) and 5-D FFT (b), where the M -D data
are assumed to have an equal size in all dimensions. Due to their complex
nature, we do not have any illustrations for the decomposition method. As
it is also difficult to present all possible cases, 1,296 for the 4-D FFT and
7,962,624 for the 5-D FFT, here we only show the best and worst patterns.

With the 4-D FFT, we find four transpose orders:

abcd→ abdc→ dcba→ dcab,

abcd→ abdc→ dcab→ dcba,

abcd→ abdc→ cdab→ cdba,

abcd→ abdc→ cdba→ cdab,

that always offer the smallest amount of communication for all ranges of the
number of processes. The best transpose order is exactly 3 times better than
the worst order for up to N2 processes, and up to 1.5 times for the next range
of [N2, N3]. The difference remains almost the same, apparently unaffected
by N .

The number of always-best transpose orders is found to be higher with
the 5-D FFT than with the 4-D FFT: 96 orders, including

abcde→ abced→ abedc→ cedba→ cedab,
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(a) 4-D FFTs: the patterns, the amount of communication corresponding to the number of processes,
and the difference between their amount.

N
2

N N
3

N
4

P1: abcde → abedc → 

abecd → cdeab → cdeba

P2: abcde → abced → 

abdec → bcdea → acdeb 

P3: abcde → abced → 

badec → acdeb → bcdea

Number of Processes

A
m

o
u

n
t 

o
f 

C
o

m
m

u
n

ic
a

ti
o

n

P1: abcde → abedc → 

abecd → cdeab → cdeba

P1: abcde → abedc → 

abecd → cdeab → cdeba

P132: abcde → adebc →

abced → adecb → bcdea

4x 2.1-2.7x

P4: abcde → baced → 

abdec → bcdea → acdeb

N
5

P51: abcde → cdaeb → 

abced → cdbea → abdec

P1: abcde → abedc → 

abecd → cdeab → cdeba

P11: abcde → adebc →

abced → adecb → bcdea

P1: abcde → abedc → 

abecd → cdeab → cdeba1-1.4x

pN

N
N

5
5 −

)(2
5

5

pN

N
N −

)(3
5

5

pN

N
N −

 
)(4

5
5

pN

N
N −

 
)(4

5
5

pN

N
N −

pN

N
N

5
5 −

3
7

52 N
N

N
N

p

−−

)(4 35 NN −

)(4 5
pNN −

p
p

NNN
N

N
N −−+− 45

8
5 2)(2

545 NNNN pp −−

(b) 5-D FFTs: the patterns, the amount of communication corresponding to the number of pro-
cesses, and the difference between their amount.

Figure 5: 4-D and 5-D FFTs.
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abcde→ abced→ abedc→ ecdba→ ecdab,

abcde→ abced→ abedc→ cdeba→ cdeab,

abcde→ abced→ abedc→ cdeab→ cdeba.

The gap between the best and worst orders is also higher with the 5-D FFT,
especially with a small number of processes. With up to N2 processes, it is
exactly 4 times. The gap is from 2.1 to 2.7 times for the range of [N2, N3],
and up to 1.4 times for the next range of [N3, N4]. Similar to the 3-D and
4-D FFTs, the gap is found to be almost completely independent of N .

Based on these observations, our decomposition method for higher di-
mensional FFTs is thought to produce higher number of transpose orders
that are always best for every range of the number of processes. And so is
the gap in the amount of communication between the worst and best orders.
Regarding the transpose order, we notice that the best orders of the 3-D
FFT are in the form of either 1+2 or 2+1, i.e., a(bc) or (ab)c, where 2 sim-
ply means a transpose ab → ba. The form of a(bc) leads to the subsequent
transpose order of a(cb), and then (cb)a, being one of the four best orders
for the 3-D FFT. Likewise, the form of (ab)c and its consequent orders of
c(ab) and c(ba) are another best order. For the 4-D FFT, they follow the
form of 2+2, (ab)(cd), but neither 1+3, a(bcd), nor 3+1, (abc)d. Meanwhile,
the forms of 2+3, (ab)(cde), and 3+2, (abc)(de), are the best combinations
for the 5-D FFT. Consequently, we expect the form of 3+3, (abc)(def), to
deliver better, if not best, performance for the 6-D FFT. Better forms for
higher-dimensional FFTs can be derived in the same way such that their two
parts are the most balanced.

4. Comparison of Communication Amount

Figure 6 compares our proposed method with the 1-D method [10], 1.5-D
method [28], and 2-D method [16] (a), and with the 3-D method [11] (b),
for the 3-D FFT. The 3-D method is displayed in a separate figure for a
clear presentation, as the amount of communication in this case is far larger
than the other cases. The amount of communication is calculated in case
of 64 × 64 × 64 data points. Certainly, similar results can be produced for
smaller and larger numbers of data points.

The 1-D method divides the 3-D data into blocks of equal numbers of
complete ab-planes along the c-axis, and then allocates them to the processes
to perform the 1-D FFTs along the a- and b-axes, followed by a data transpose
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so that each process contains complete ac-planes to carry out the 1-D FFTs
along the remaining c-axis, with a total communication amount

A1D = N3 − N3

Np

. (21)

In the 2-D method, the ab-plane is evenly divided to the processes, with each
having all the data along the remaining c-axis. The 1-D FFTs along c are
executed, followed by two transpose steps so that the 1-D FFTs along the
a- and b-axes can also be performed. The 2-D method has a communication
amount

A2D = 2N3 − 2Np(
N2

Np

)
3
2 . (22)

The 1.5-D method lies between these two methods, with the amount being
similar to that of the 1-D method, when Np ≤ N , and the 2-D method, when
N < Np ≤ N1.5. Lastly, the 3-D method partitions the 3-D data along all
three dimensions, and requires an amount

A3D = 3N3(
N

3

√
N3

Np

− 1). (23)

As shown in Fig. 6(a), the 1-D method is able to work only along one
dimension and is limited to 64 processes, while the 2-D method decomposes
the domain in two dimensions, even for fewer than 64 processes. The 1.5-D
method offers a compromise between the 1-D and 2-D methods. By contrast,
our method is the most flexible and adaptive, as it partitions only along one
dimension when the number of processes is up to 64 on condition that it is a
divisor of 64, and decomposes in two dimensions while still starting from one
dimension for a larger number of processes with transpose-order awareness
to reuse as many data points as possible. As a result, up to 64 processes, our
method works in the same fashion as the 1-D and 1.5-D methods provided
that 64 is a multiple of the number of processes, and is about 60.0% to 77.8%
better than the 2-D method with 64× 64× 64 data points. From this point
to 512 processes, the limit of the 1.5-D method, our method still has the
edge over the 1.5-D and 2-D methods. Beyond the point of 512 processes,
the 1.5-D method is no longer applicable, while the two other methods can
operate until reaching the limit of 64 × 64 = 4, 096 processes for the 2-
D decomposition. The performance gap also gradually decreases, however,
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and eventually becomes 0 from 2,048 processes. From 4,096 processes to
the maximum 262,144 processes, only the 3-D decomposition is workable.
Figure 6(b) demonstrates that our method outperforms the 3-D method,
with the performance gain able to reach several orders of up to 11.6 (at 8,192
processes) for the 3-D decomposition alone.

Figure 7 extends the comparison by projecting the results obtained by
our method and two other methods for the 4-D and 5-D FFTs, with 16 ×
16×16×16 and 16×16×16×16×16 data points, respectively, for a smaller
number of processes. The 4-D and 5-D methods are assumed to operate in
4-D and 5-D decompositions, respectively, akin to the 3-D method. As a
result, the amounts of communication are

A4D = 4N4(
N

4

√
N4

Np

− 1) (24)

for the 4-D method, and

A5D = 5N5(
N

5

√
N5

Np

− 1) (25)

for the 5-D method. Given these conditions, our method has a distinct
advantage, leaving a wide performance gap of up to approximately 12 times
for the 4-D FFT, and 11.1 times for the 5-D FFT. The gap is found to remain
almost unchanged by N .

5. Conclusion

We have presented our decomposition method for parallelization of multi-
dimensional FFTs. The communication amount is the smallest compared to
previously proposed methods, accomplished by adaptive decomposition and
transpose order awareness. Featured by the row-wise decomposition that
translates the M -D data into 1-D data and evenly divides the resultant 1-
D data to the processes, our method can adaptively decompose the FFT
data on the lowest possible dimensions based on the number of processes. In
addition, our row-wise decomposition method provides a lot of alternatives
in data transpose, among them the best communication efficient orders are
identified and applied. We have determined the best transpose orders for
the 3-D, 4-D, and 5-D FFTs, dependent on which we find out the way for
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deriving the transpose orders that can deliver better performance for higher-
dimensional FFTs. Comparison in terms of communication amount shows
that our method is superior to other methods for the 3-D FFT, and it is antic-
ipated to have a distinct advantage for higher-dimensional FFTs. Actually,
the method has been employed in our open-source density functional theory
code called OpenMX [29]. Boosting communication efficiency while not sac-
rificing scalability, our method is promising to be harnessed in development
of highly efficient parallel packages for multi-dimensional FFTs.
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