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Abstract

We present a program to simulate the dynamics of a wave packet interacting
with a time-dependent potential. The time-dependent Schrödinger equation
is solved on a one-, two-, or three-dimensional spatial grid using the split
operator method. The program can be compiled for execution either on a
single processor or on a distributed-memory parallel computer.
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1. Introduction

Quantum wave-packet dynamics, that is, the evolution of the spatial dis-
tribution of a quantum particle, is an important part of the simulation of
many quantum systems. It can be used for studying problems as diverse as
scattering, surface adsorption, and laser control, just to name a few.

We propose here a general-purpose program to solve the spatial part of
the time-dependent Schrödinger equation (tdse), aimed particularly at a
quantum particle interacting with a time-dependent potential. Our interest
mainly concerns such applications as laser control of quantum systems [1, 2],
but the program can be used with any user-supplied potential function.

The program is based on the split-operator method [3, 4, 5, 6], which has
successfully been used to solve the time-dependent Schrödinger equation in
many different settings, from the calculation of vibrational bound states (see,
e.g., [5]) and the simulation of high-power laser-matter interactions (see, e.g.,
[7]), to the laser control of chemical reactions (see, e.g., [8]). The method can
also be applied to Schrödinger-like equations, such as the Gross-Pitaevskii [9]
and Dirac [10] equations.

2. Numerical approach

2.1. Split-operator method

In this section, we present a detailed description of the split-operator
method to solve the time-dependent Schrödinger equation. While everything
presented here can be found in the original works developing the method [3,
4, 5, 6], we think it useful to review all the elements necessary to understand
the inner workings of the program.

We consider the time-dependent Schrödinger equation,

i~
∂

∂t
ψ(t) = Ĥψ(t), (1)

with Ĥ the Hamiltonian for the motion of a particle interacting with an
external time-dependent potential V (t), i.e.,

Ĥ = K̂ + V̂ =
P̂ 2

2m
+ V (t), (2)

where K̂ and V̂ are the kinetic and potential energy operators, respectively,
P̂ is the momentum operator, and m the mass of the particle. (The same
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Hamiltonian is obtained for a vibrating diatomic molecule, where the spatial
coordinate is replaced by the internuclear distance, and the potential V (t)
is the sum of the internal potential energy and an external, time-dependent
potential, as will be shown in Sec. 4.1.)

The formal solution to eq. (1) is given by the time evolution operator Û ,
itself a solution of the time-dependent Schrödinger equation [11],

i~
∂

∂t
Û = ĤÛ , (3)

such that, given an initial wave function at time t0, ψ(t0), the solution at
any time t is obtained from

ψ(t) = Û(t, t0)ψ(t0). (4)

As the Hamiltonian is time dependent, we have that [12]

Û(t, t0) = T̂ exp

[

− i

~

∫ t

t0

Ĥ(t′)dt′
]

= T̂ exp

{

− i

~

∫ t

t0

[

K̂ + V̂ (t′)
]

dt′
}

. (5)

In eq. (5), the time-ordering operator T̂ ensures that the Hamiltonian is ap-
plied to the wave function in order of increasing time, as in general the Hamil-
tonian does not commute with itself at a different time, i.e., [Ĥ(t), Ĥ(t′)] 6= 0
iff t 6= t′ [11, 13]. By considering a small time increment ∆t, we can do with-
out the time-ordering operator by considering the approximate short-time
evolution operator [13],

Û(t+∆t, t) = exp

{

− i

~

∫ t+∆t

t

[

K̂ + V̂ (t′)
]

dt′
}

. (6)

We are concerned here with time-dependent potentials that also have a
spatial dependence, V̂ ≡ V (x, t), such as those produced by ion traps or
focused laser pulses, such that V̂ ≡ V (x, t), in which case K̂ and V̂ do not

commute. For two non-commuting operators Â and B̂, eÂ+B̂ 6= eÂeB̂, but
the split-operator method [4, 5] allows the approximation of the evolution
operator with minimal error,

Û(t+∆t, t) = exp

[

− i∆t
2~

K̂

]

exp

[

− i

~

∫ t+∆t

t

V̂ (t′)dt′
]

× exp

[

− i∆t
2~

K̂

]

+O(∆t3). (7)
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Using the midpoint formula [14] for the integral of the potential,

∫ t+∆t

t

f(t′)dt′ = f(t+∆t/2)∆t+O(∆t3), (8)

we get

Û(t +∆t, t) ≈ exp

[

− i∆t
2~

K̂

]

exp

[

− i∆t
~
V (t +

∆t

2
)

]

exp

[

− i∆t
2~

K̂

]

, (9)

where the global error is O(∆t3). The choice of the order of the operators K̂
and V̂ in the above equations is arbitrary, but the choice we make here allows
for a faster execution in the majority of cases, i.e., when the intermediate
value of the wave function is not needed at all time steps. We can then link
together n consecutive time steps into

Û(t + n∆t, t) = Û(t+ n∆t, t+ [n− 1]∆t)Û(t + [n− 1]∆t, t+ [n− 2]∆t)

× · · · × Û(t +∆t, t)

= exp

[

− i∆t
2~

K̂

]

exp

[

− i∆t
~
V̂ (t+

2n− 1

2
∆t)

]

×
{

1
∏

j=n−1

exp

[

− i∆t
~
K̂

]

exp

[

− i∆t
~
V̂ (t+

2j − 1

2
∆t)

]

}

× exp

[

− i∆t
2~

K̂

]

, (10)

where two sequential operations of K̂ are combined into one. The same is
not possible with V̂ due to its time dependence.

We choose to discretize the problem on a finite spatial grid, i.e., x =
(x, y, z) is restricted to the values

xi = xmin + i∆x, i = 0, . . . , nx − 1,

yj = ymin + j∆y, j = 0, . . . , ny − 1,

zk = zmin + k∆z, k = 0, . . . , nz − 1, (11)

where the number of grid points (nx, ny, nz) are (integer) parameters, as is
the size of the grid, with bounds x ∈ [xmin, xmax] and where

∆x =
xmax − xmin

nx − 1
, (12)
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with equivalent expressions in y and z.
The problem now becomes that of calculating the exponential of matri-

ces K and V, which is only trivial for a diagonal matrix [15]. In the original
implementation of the split-operator method [4, 5], this is remedied by con-
sidering that while the matrix for V̂ is diagonal for a spatial representation
of the wave function, K̂ is diagonal in momentum space. By using a Fourier
transform (here represented by the operator F) and its inverse (F−1), we
can write

exp

[

− i∆t
2~

K̂(x)

]

ψ(x) = F−1 exp

[

− i∆t
2~

K̂(p)

]

Fψ(x), (13)

where, considering that K̂ = P̂ 2/2m,

K̂(p) =
p2

2m
, (14)

K̂(x) = − ~
2

2m
∇2, (15)

since the operators transform as −i~∇ ⇔ p when going from position to
momentum space [11]. Equation (13) is efficiently implemented numerically
using a Fast Fourier Transform (fft) [16]. After the forward transform,
the momentum grid, obtained from the wave vector k = p/~, is discretized
according to [16]

px,i = 2π~
i

nx∆x
, i = −nx

2
, . . . ,

nx

2
,

py,j = 2π~
j

ny∆y
, j = −ny

2
, . . . ,

ny

2
,

pz,k = 2π~
k

nz∆z
, k = −nz

2
, . . . ,

nz

2
. (16)

Care must be taken to associate the appropriate momentum value to each
element of the Fourier-transformed wave function, considering the order of
the output from fft routines [16]. Algorithm 1 summarizes the split-operator
method as presented here.

2.2. Parallel implementation

We consider now the implementation of the algorithm described above on
a multi-processor architecture with distributed memory. The “natural” ap-
proach to parallelizing the problem is to divide the spatial grid, and therefore
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Algorithm 1: Main algorithm for the split-operator method.

Initialize ψ(t = 0)
for j ← 1 to nt/nprint do

ψ̃(p)← Fψ(x)
Multiply ψ̃(p) by exp

[

− i∆t
2~

p
2

2m

]

ψ(x)← F−1ψ̃(p)
for i← 1 to nprint − 1 do

Multiply ψ(x) by exp
[

− i∆t
~
V (x, t)

]

ψ̃(p)← Fψ(x)
Multiply ψ̃(p) by exp

[

− i∆t
~

p
2

2m

]

ψ(x)← F−1ψ̃(p)

end

Multiply ψ(x) by exp
[

− i∆t
~
V (x, t)

]

ψ̃(p)← Fψ(x)
Multiply ψ̃(p) by exp

[

− i∆t
2~

p
2

2m

]

ψ(x)← F−1ψ̃(p)

Calculate observables 〈Â〉 ≡ 〈ψ(x)|Â|ψ(x)〉
end
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the wave function, among the processors. Each processor can work on its lo-
cal slice of the wave function, except for the Fourier transform, which requires
information across slices. This functionality is pre-built into the parallel im-
plementation of the fft package fftw [17], of which we take advantage.
The communications themselves are implemented using the Message Passing
Interface (mpi) library [18, 19].

For a 3D (or 2D) problem, the wave function is split along the x direction,
with each processor having a subset of the grid in x, but with the full extent in
y and z. To minimize the amount of communication after the forward fft,
we use the intermediate transposed function, where the split is now along
the y dimension. The original arrangement is recovered after the backward
function, so this is transparent to the user of our program. In addition, fftw
offers the possibility of performing a 1D transform in parallel, which we also
implement here.

The only constrain this imposes on the user is that a 1D problem may
only be defined along x, and a 2D problem in the xy-plane (in order to
simplify the concurrent implementation of serial and parallel versions, this
constraint also applies to the serial version). In addition to the total number
of grid points along x, nx, each processor has access to nx,local, the number of
grid points in x for this processor, along with nx,0, the corresponding initial
index. In other words, each processor has a grid in x defined by

xi = xmin + (i+ nx,0)∆x, i = 0, . . . , nx,local, (17)

with the grids in y and z still defined by eq. (11).

3. User guide

3.1. Summary of the steps for compilation and execution

Having defined the physical problem to be simulated, namely by setting
up the potential V (x, t) and initial wave function ψ(x; t = 0), the following
routines must be coded (see section 3.2 for details):

• initialize potential

• potential

• initialize wf

• initialize user observe (can be empty)
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• user observe (can be empty)

The files containing these functions must include the header file wavepacket.h.
The program can then be compiled according to the instructions in sec-
tion 3.3.

A parameter file must then be created, see section 3.4. The program can
then be executed using a command similar to

wavepacket parameters.in

3.2. User-defined functions

The physical problem that is actually simulated by the program depends
on two principal elements, the time-dependent potential V (x, t) and the ini-
tial wave function ψ(x; t = 0). In addition, the user may be interested in
observables that are not calculated by the main program (the list a which is
given in Sec. 3.4). The user must supply functions which define those ele-
ments, which are linked to at compile time. How these functions are declared
and what they are expected to perform is described in what follows, along
with the data structure that is passed to those functions.

3.2.1. Data structure parameters

The data structure parameters is defined in the header file wavepacket.h,
which must be included at the top of the users own C files to be linked to
the program. A variable of type parameters is passed to the user’s func-
tions, and contains all parameters the main program is aware of and that are
useful/necessary for the execution of the tasks of the user-supplied routines.
The structure reads

typedef struct

{

/* Parameters and grid */

int size, rank;

size_t nx, ny, nz, n, nx_local, nx0, n_local;

double x_min, y_min, z_min, x_max, y_max, z_max, dx, dy, dz;

double *x, *y, *z, *x2, *y2, *z2;

double mass, dt, hbar;

} parameters;

where the different variables are:

9



• size: Number of processors on which the program is running.

• rank: Rank of the local processor, with a value in the range [0, size−1].
In the serial version, the value is therefore rank = 0. (Note: All input
and output to/from disk is performed by the processor of rank 0.)

• nx, ny, nz: Number of grid points along x, y, and z, respectively. In
the parallel version, this refers to the full grid, which is then split among
the processors. For a one or two-dimensional problem, ny and/or nz
should be set to 1. (x is always the principal axis in the program.) For
best performance, these should be set to a product of powers of small
prime integers, e.g.,

nx = 2i3j5k7l.

See the documentation of fftw for more details [20].

• n = nx× ny× nz.

• nx local: Number of grid points in x on the local processor, see
Sec. 2.2. In the serial version, nx local = nx.

• nx0: Index of the first local grid point in x, see Sec. 2.2. In the serial
version, nx0 = 0.

• x min, y min, z min, x max, y max, z max: Values of the first and
last grid points along x, y, and z.

• dx, dy, dz: Grid spacings ∆x, ∆y, and ∆z, respectively, see eq. (12).

• x, y, z: Arrays of size nx local, ny, and nz, respectively, containing
the value of the corresponding coordinate at the grid point.

• x2, y2, z2: Arrays of size nx local, ny, and nz, respectively, con-
taining the square of the value of the corresponding coordinate at the
grid point.

• mass: Mass of the particle.

• dt: Time step ∆t of the time evolution, see eq. (6).

• hbar: Value of ~, Planck’s constant over 2π, in the proper units. (See
Sec. 3.4.)
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3.2.2. Initializing the potential

In the initialization phase of the program, before the time evolution, the
function

void

initialize_potential (const parameters params, const int argv,

char ** const argc);

is called, with the constant variable params containing all the values specified
in Sec. 3.2.1. argv and argc are the variables relating to the command line
arguments, as passed to the main program:

int

main (int argv, char **argc);

This function should perform all necessary pre-calculations and opera-
tions, including reading from a file additional parameters, for the potential
function. The objective is to reduce as most as possible the time necessary
for a call to the potential function.

3.2.3. Potential function

The function

double

potential (const parameters params, const double t,

double * const pot);

should return the value of the potential V (x, t), for all (local) grid points at
time t, in the array pot, of dimension pot[nx local][ny][nz].

3.2.4. Initial wave function

The initial wave function ψ(x, t = 0) is set by the function

void

initialize_wf (const parameters params, const int argv,

char ** const argc, double complex *psi);

where psi is a 3D array of dimension psi[nx local][ny][nz]. If the wave
function is to be read from a file, users can make use of the functions
read wf text and read wf bin, described in Sec. 3.2.6.
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3.2.5. User-defined observables

In addition to the observables that are built in, which are described in
Sec. 3.4, users may define additional observables, such as the projection of
the wave function on eigenstates.

The function

void

initialize_user_observe (const parameters params, const int argc,

char ** const argv);

is called once at the beginning of the execution. It should perform all opera-
tions needed before any call to user observe. The arguments passed to the
function are the same as those of initialize potential, see Sec. 3.2.2.

During the time evolution, every nprint time step, the function

void

user_observe (const parameters params, const double t,

const double complex * const psi);

is called, with the current time t and wave function psi.
The printing out of the results, as well as the eventual opening of a

file, is to be performed within these user-supplied functions. In a parallel
implementation, only the processor of rank 0 should be responsible for these
tasks, and proper communication must be set up to ensure the full result is
available to this processor.

Note that these functions must be present in the source file that will be
linked with the main program, even if additional observables are not desired.
In this case, the function body can be left blank.

3.2.6. Useful functions

A series of functions declared in the header file wavepacket.h and that
are part of the main program are also available for use within the user-defined
functions described above.

• double

norm (const parameters params,

const double complex * const psi);

calculates
√

〈psi|psi〉.
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• double complex

integrate3D (const parameters params,

const double complex * const f1,

const double complex * const f2);

given f1 ≡ f1 and f2 ≡ f2, calculates

〈f1|f2〉 =
∫ zmax

zmin

∫ ymax

ymin

∫ xmax

xmin

f ∗

1 f2 dx dy dz.

(Correct results are also obtained for 1D and 2D systems.)

• double

expectation1D (const parameters params, const int dir,

const double * const f,

const double complex * const psi);

given f(ξ) ≡ f and ψ ≡ psi, calculates

〈ψ|f(ξ)|ψ〉 =
∫ zmax

zmin

∫ ymax

ymin

∫ xmax

xmin

ψ∗f(ξ)ψ dx dy dz,

where ξ = x, y, z for dir = 1, 2, 3, respectively.

• void

read_wf_bin (const parameters params,

const char * const wf_bin,

double complex * const psi);

opens the file with filename wf bin and reads the wave function into
psi. The file must be in a binary format, as written when the keyword
wf output binary is present in the parameter file, see Sec. 3.4. In
the parallel version, the file is read by the processor of rank 0, and
each processor is assigned its local part of the wave function of size
psi[nx local][ny][nz].

• void

distribute_wf (const parameters params,

double complex * const psi_in,

double complex * const psi_out);

given the wave function psi in[nx][ny][nz] located on the processor
of rank 0, returns in psi out[nx local][ny][nz] the local part of
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the wave function on each processor. Intended only to be used in the
parallel version, the function will simply copy psi in into psi out in
the serial version.

• void

abort ()

terminates the program. This is the preferred method for exiting the
program (e.g., in case of error) in user-supplied routines, especially in
the parallel version.

3.3. Compiling the program

A sample makefile is supplied with the program, which should be straight-
forward to adapt to one’s needs. Without a makefile, a typical command-line
compilation would look something like

gcc -O3 -std=c99 -o wavepacket wavepacket.c user_defined.c \

-lfftw3 -lm

where the file user defined.c contains all the routines specified in sec-
tion 3.2.

By default, the compiling will produce the serial version of the program.
To compile the mpi parallel version requires defining the macro MPI, i.e., by
adding -DMPI as an argument to the compiler (through CFLAGS in the make-
file). In addition, mpi libraries must be linked to, including -lfftw3 mpi.

3.4. Parameter file

When executing the program, it will expect the first command-line argu-
ment to consist of the name of the parameter file. This file is expected to
contain a series of statements of the type ’key = value’, each on a separate
line. The order of these statements is not important, and blank lines are
ignored, but white space must separate key and value from the equal sign.
Note that the program does not check for duplicate keys, such that the last
value found will be used (except for the key output, see below). Table 1
presents the keys recognized by the program. If a key listed with a default
value of “none” is absent from the parameter file, the program will print
out a relevant error message and the execution will be aborted. The key
units can take the value SI if the Système International set of units is de-
sired (kg, m, s), with AU (the default) corresponding to atomic units, where
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~ = me = e = 1, with me and e the mass and the charge of the electron,
respectively. Some equivalences between the two sets are given in Tab. 2. All
parameters with units (mass, grid limits, time step) must be consistent with
the set of units chosen.

In addition, the output of the program is controlled by a series of flags,
set in the same fashion as above, with the key output and value equal to
the desired flag. A list of valid flags is given in Tab. 3. These values will be
printed out in the file designated by the results file key, for the initial wave
function and every nprint iteration of the time step ∆t. The program will
abort with an error message if nprint > nt. Note that if nt mod nprint 6= 0,
the values for the final wave function will not be calculated. The key nprint

needs only be present if any of the output flags is set.

3.5. Memory usage

Calculating the exact memory usage is a bit tricky, but as the main
use of memory is to store the wave function and some work arrays, we can
estimate a minimum amount of memory necessary according to the grid size.
Considering that a double precision real takes up 8 bytes of memory, the
program requires at least

40
(nxnynz)

nproc
+ 56

(

nx

nproc
+ ny + nz

)

bytes per processor, where nproc ≡ size is the number of processors used.
This value holds when the autocorrelation function is not calculated; other-
wise, the initial wave function must be stored and the factor 40 above changes
to 56. Obviously, this estimate does not include any memory allocated within
user-supplied routines.

4. Sample results

4.1. Laser excitation of vibration

As a first example, let us consider a vibrating diatomic molecule, with
the Hamiltonian

Ĥ = − ~
2

2m

1

r2
d

dr
r2

d

dr
+ Ṽ (r), (18)

for a wave function ψ̃(r, θ, φ, t) in spherical coordinates, with m the reduced
mass and Ṽ (r) the molecular potential [11]. We neglect here the rotation
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Table 1: Recognized parameters to be found in the parameter file. Parameters with no
default value must be present, with the exception of those indicated as none*.

Key Value type Description Default value

units double System of units used, AU

SI or atomic units (AU)
mass double m, mass of the particle none

nx size t nx, number of grid points none

in x
ny size t ny, number of grid points 1

in y
nz size t nz, number of grid points 1

in z
x min double Value of the first grid point none

along x
x max double Value of the last grid point none

along x
y min double Value of the first grid point 0

along y (none if ny > 1)
y max double Value of the last grid point y min

along y (none if ny > 1)
z min double Value of the first grid point 0

along z (none if nz > 1)
z max double Value of the last grid point z min

along z (none if nz > 1)
dt double Time step ∆t none

nt unsigned int Number of time steps none

nprint unsigned int Interval of the calculation (see text)
of the observables

results file char Output file name for results

observables
wf output text char File name for output of final none*

wave function in text format
wf output binary char File name for output of final none*

wave function in binary
format
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Table 2: Values of some atomic units [21].

Atomic unit Symbol SI value

length a0 0.529 177 210 92× 10−10 m
time 2.418 884 326 502× 10−17 s
mass me 9.109 382 91× 10−31 kg
energy Eh 4.359 744 34× 10−18 J

Table 3: Recognized output flags.

Flag Description

norm Norm,
√

〈ψ|ψ〉
energy Energy, E = 〈ψ|Ĥ|ψ〉
x avg Average position in x, 〈x〉 = 〈ψ|x|ψ〉
y avg Average position in y, 〈y〉 = 〈ψ|y|ψ〉
z avg Average position in z, 〈z〉 = 〈ψ|z|ψ〉
sx Width in x, 〈x2〉 − 〈x〉2
sy Width in y, 〈y2〉 − 〈y〉2
sz Width in z, 〈z2〉 − 〈z〉2
autocorrelation Autocorrelation function, |〈ψ(0) |ψ(t)〉|2
user defined User-defined observables (see Sec. 3.2.5)
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of the molecule, and only look at the radial part of the wave function,
ψ̃(r, t). Setting ψ ≡ rψ̃, and substituting x for r, we get the one-dimensional
Schrödinger equation

i~
∂

∂t
ψ(x, t) =

[

− ~
2

2m

d2

dx2
+ V (x, t)

]

ψ(x, t), (19)

which is the one-dimensional equivalent of eq. (1) with Hamiltonian eq. (2)
and with the full potential V (x, t) taken as a sum of the molecular potential
Ṽ (x) and the coupling of the molecule to a laser pulse, VL(x, t). We note
that recovering an operator of the form d2/dx2 is a very special case obtained
here for a diatomic molecule, and that in general the kinetic energy operator
for the internal motion of a molecule can be quite different, such that this
program may not be used to study the internal dynamics of molecules in
general.

For the molecular potential, we take a Morse potential [22, 23],

Ṽ (x) = D
[

1− e−a(x−xe)
]2
, (20)

and from the data of ref. [24], we derive the parameters for 12C16O in the
ground electronic state:

m = 12498.10

D = 0.4076

a = 1.230211

xe = 2.1322214

with m = mCmO/(mC +mO) the reduced mass, and all values expressed in
atomic units (see Tab. 2).

Using a classical model for the laser field and the dipole approximation,
the laser-molecule coupling is given by [25]

VL(x, t) = µ(x)E(t), (21)

where µ(x) is the dipole moment of the molecule and E(t) the electric field of
the laser. We approximate the internuclear-separation-dependent permanent
dipole moment of the molecule as the linear function

µ(x) = µ0 + µ′ (x− xe) , (22)
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with the values (in atomic units) µ = −0.1466 and µ′ = −0.948 [26]. For the
laser pulse, we take

E(t) = E0f(t) cos(ωt) (23)

with E0 and ω the amplitude and frequency of the field, respectively, and the
envelope function

f(t) =

{

sin2
(

π t
tf−ti

)

if ti ≤ t ≤ tf

0 otherwise
(24)

In this sample simulation, we take the following values (in atomic units):

E0 = 1.69× 10−3

ω = 9.8864× 10−3

ti = 0

tf = 41341.37

This corresponds to a 1 ps pulse at an irradiance of 1011 W/cm2, resonant
with the v = 0→ v = 1 transition.

Using a dvr method [27], we precomputed the first five vibrational eigen-
states φv of the Morse potential for 12C16O on a grid of 4000 points, from
x = 1.5 × 10−3 a.u. to 6 a.u.. The data, stored in file CO vib.txt, are
read when the wave function is initialized in the function initialize wf,
and the initial wave function is set to ψ(x, t = 0) = φ0(x). The function
user observe is programmed to calculate the projection of the wave func-
tion on the first five eigenstates, i.e.,

Pv(t) ≡ |〈φv|ψ(t)〉|2 . (25)

Using the same grid as the one described above for the calculation of
the vibrational states, we run the simulation for 500 000 time steps of length
∆t = 0.1 a.u., and calculate the projection of the wave function on the
vibrational eigenstates every 20 000 time steps. the result is shown in fig. 1.

4.2. Atomic ion in a Paul trap

Let us now consider the three-dimensional problem of the motion of a
charged atomic ion in a Paul trap [28, 29, 30]. These create a time-dependent
quadrupolar field allowing, under the right conditions, the confinement of an
ion.
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Figure 1: Projection of the time-dependent vibrational wave function of the CO molecule,
interacting with a resonant laser pulse, on the first five vibrational eigenstates.

The electric potential inside a Paul trap is of the form [29, 30]

Φ(x, t) =
U0 + V0 cosΩt

2d2
(

r2 − 2z2
)

, (26)

where U0 is a static electric potential, V0 the amplitude of an ac potential
of frequency Ω, and r2 ≡ x2 + y2. The scale factor d is obtained from
d2 = r20 + 2z20 , with r0 the radial distance from the center of the trap to
the ring electrode and z0 the axial distance to an end cap (see refs. [29, 30]
for more details). Considering an atomic ion of charge Ze, where e is the
elementary charge [21], we get the potential energy

V (x, t) = ZeΦ(x, t). (27)

For the simulation, we consider conditions similar to those of refs. [31, 32]
and take a 138Ba+ ion, m = 137.905232 u = 2.28997005× 10−25 kg [33], in a
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trap with characteristics:

U0 = 0 V

V0 = 200 V

Ω = 2π × 18 MHz

r0 = 1.6× 10−3 m

z0 = r0/
√
2

The initial state is taken as a Gaussian wave packet,

ψi(x, y, z) =

(

2

π

)3/4
∏

ξ=x,y,z

1
√
σξ

exp

[

i

~
pξ0 (ξ − ξ0)

]

exp

[

−(ξ − ξ0)
2

σ2
ξ

]

,

(28)
and we set

x0 = z0 = 2× 10−8 m

y0 = 1× 10−8 m

px0 = 1× 10−27 kgm s−1

py0 = pz0 = 0

σx = σy = 7.342× 10−8 m

σz = 5.192× 10−8 m

Using nx = ny = nz = 512 grid points, with the grid defined from−1×10−6 m
to 1 × 10−6 m along each Cartesian coordinate, we run the simulation for
nt = 18 500 time steps of length ∆t = 2×10−9 s, measuring the wave function
every 10 time steps. The resulting trajectory of the ion is shown in fig. 2.
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