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A new Langevin-Verlet thermostat that preserves the fluctuation-dissipation relationship for dis-
crete time steps, is applied to molecular modeling and tested against several popular suites (AMBER,
GROMACS, LAMMPS) using a small molecule as an example that can be easily simulated by all
three packages. Contrary to existing methods, the new thermostat exhibits no detectable changes in
the sampling statistics as the time step is varied in the entire numerical stability range. The simple
form of the method, which we express in the three common forms (Velocity-Explicit, Störmer-Verlet,
and Leap-Frog), allows for easy implementation within existing molecular simulation packages to
achieve faster and more accurate results with no cost in either computing time or programming
complexity.
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I. INTRODUCTION

Recently, a new stochastic thermostat [1], based on an
exact implementation of the fluctuation-dissipation re-
lationship in discrete time, was presented as integrated
into the well-known and widely used Verlet formalism.
It was analytically demonstrated that the method pro-
vides exact thermodynamic response for both flat and
harmonic potentials for any time step within the Verlet
stability criteria. This unique thermodynamic feature of
the approach, as implemented into the Verlet framework,
makes it attractive for a wide range of applications, where
it is desired to execute efficient and accurate simulations.
Here, we demonstrate that the G-JF method of Ref. [1]
is not limited to simple linear cases, but also extends its
usefulness to complex nonlinear systems.
Langevin dynamic simulations constitute an appealing

approach for simulations of physical systems in contact
with a thermodynamic heat bath. A very popular class of
such systems is molecular dynamics (MD) [2] of classical
particle ensembles. The method is based on numerical
integration of the Langevin equation

mv̇ = f(r, t)− αṙ + β(t) , (1)

where r is the coordinate, v = ṙ is its velocity, m is its
mass, f is a net deterministic force acting on r. The
friction constant α > 0 and the noise β are connected by
the fluctuation-dissipation relationship [3]

〈β(t)〉 = 0 (2)

〈β(t)β(t′)〉 = 2αkBTδ(t− t′) (3)

with kB and T being Boltzmann’s constant and the ther-
modynamic temperature, respectively. Given the appli-

cability of this equation to a wide spectrum of physical
systems with phenomenological dissipation and thermal
noise, there have been decades of development in numer-
ical methods for solving such equations. Specifically, the
perfection of the most important thermodynamic prop-
erties of discrete-time numerical simulations have been of
particular interest. We here point to the vast literature
through Refs. [1, 4–11] and references therein. The most
commonly sought after properties in stochastic simula-
tions have been i) diffusion of a particle in a flat poten-
tial, ii) transport on a linear ramp potential (which can
be mapped directly onto the diffusive behavior in a flat
potential), and iii) Boltzmann sampling in harmonic po-
tentials [12]. Since the G-JF method [1] exhibits all these
features thermodynamically correct in discrete time, we
here wish to provide additional expressions for practical
implementation of the method. We also provide a sim-
ple, yet representative, example of how the method per-
forms for a nonlinear and complex system in comparison
to several widely used contemporary molecular dynamics
simulation suites.

II. THE THREE VERLET EXPRESSIONS

Verlet integrators are usually expressed in one of three
forms [13]: A) velocity-explicit Verlet (VE), which ad-
vances the trajectory one time step based on the coor-
dinate and its conjugate variable (here the velocity), B)
Störmer-Verlet (SV), which uses coordinates at two con-
secutive time steps to advance time, and C) leap-frog
(LF), which advances the trajectory based on the coor-
dinate and its conjugate variable, the latter being rep-
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resented at half-integer time steps relative to the coor-
dinate. The three typical Verlet formulations produce
identical trajectories, and, thus, are different expressions
of the exact same method. Consequently, applications
of the Verlet method are commonly expressed in any of
the available forms. Since all three identical methods
are frequently used in the literature, we start here with
the recently published G-JF thermostat that was derived
in the natural VE form, and re-express the algorithm in
the two other popular forms. The previous harmonic
oscillator analysis [1] of the method applies to all three
variants since they produce identical results. Specifically,
the three following formulations will result in the correct
fluctuation-dissipation relationship and thus, the correct
thermodynamic response in linear systems.

A. Velocity Explicit G-JF

We take our starting point with the VE G-JF expres-
sions that were derived and analyzed in [1]. Denoting dis-
crete time variables by the integer time step superscript,
such that, e.g., rn = r(tn), the algorithm for advancing
rn and vn one time step of dt reads

rn+1 = rn + b dt vn +
b dt2

2m
fn +

b dt

2m
βn+1 (4)

vn+1 = avn +
dt

2m
(afn + fn+1) +

b

m
βn+1 , (5)

where

a =
1− αdt

2m

1 + αdt
2m

, b =
1

1 + αdt
2m

, (6)

and where

βn+1 =

∫ tn+1

tn

β(t′) dt′ (7)

is a standard Gaussian random number that satisfies

〈βn〉 = 0 , 〈βnβl〉 = 2αkBTdtδn,l . (8)

Setting the initial conditions (r0, v0), Eqs. (4)-(8) can
be directly used to generate the trajectory (rn, vn) from
which the dynamical and statistical information can be
derived.

B. Störmer-Verlet G-JF

We here start by rewriting Eqs. (4) and (5) for n →
n− 1:

rn = rn−1 + b dt vn−1 +
b dt2

2m
fn−1 +

b dt

2m
βn (9)

vn = avn−1 +
dt

2m
(afn−1 + fn) +

b

m
βn . (10)

As outlined in Ref. [1], Eq. (10) can be inserted into
Eq. (4) in order to replace vn, whereafter Eq. (9) is used
to replace the resulting vn−1. This yields

rn+1 = 2brn − arn−1 +
b dt2

m
fn +

b dt

2m
(βn + βn+1) ,

(11)

which is the SV formulation of the G-JF method. Unlike
the VE expressions, the SV equation does not contain
direct information about the velocity and is therefore not
directly applicable for natural initial conditions (r0, v0).
The self-consistent approach for starting this procedure
from (r0, v0) is to apply Eq. (9) for n = 0,

r1 = r0 + b dt v0 +
b dt2

2m
f0 +

b dt

2m
β1 , (12)

then apply Eq. (11) for all subsequent time steps n > 0.
In order to calculate both the complete dynamical trajec-
tory and important thermodynamic quantities, one needs
the velocity vn explicitly expressed as well. Consistent
with the method, we replace vn−1 in Eq. (10) by inserting
Eq. (9), such that

vn =
a

b

rn − rn−1

dt
+

dt

2m
fn +

1

2m
βn

=
rn+1 − (b− a)rn − arn−1

2dtb
+

1

4m
(βn − βn+1) .

(13)

Thus, Eqs. (11), (12), and (13) constitute the identical
SV form of the VE expressions.

C. Leap-Frog G-JF

This version of the Verlet method for Langevin equa-
tions comes with some flexibility in how the method is
expressed. We take the starting point with the SV form
given in Eq. (11) and introduce a reasonable definition of
the half-step velocity

vn+
1
2 =

rn+1 − rn

dt
. (14)

We now use Eq. (14) to replace rn+1 in Eq. (11) to obtain

vn+
1
2 = a

rn − rn−1

dt
+

b dt

m
fn +

b

2m
(βn + βn+1) ,

(15)

in which we can again apply Eq. (14) and arrive at

vn+
1
2 = avn−

1
2 +

b dt

m
fn +

b

2m
(βn + βn+1) . (16)

This equation is the half-time step velocity propagator,
which is complemented by Eq. (14) to yield a LF G-JF
method

rn+1 = rn + dt vn+
1
2 . (17)
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As was the case for the SV formulation of the method,
this LF representation does not trivially incorporate the
natural initial conditions (r0, v0). We therefore apply
Eq. (14) for n = 0 in combination with Eq. (12), resulting
in

v
1
2 = bv0 +

b dt

2m
f0 +

b

2m
β1 , (18)

to be used, along with Eq. (12), before applying Eqs. (16)
and (17) for n > 0. The proper integer-step velocity can
be found from combining Eqs. (16) and (4), resulting in

vn+
1
2 = avn−

1
2 + 2

rn+1 − rn

dt
− 2bvn +

b

2m
(βn+1 − βn) ,

(19)

where we can then, again, use Eq. (14) to obtain

vn =
1

2b
(vn+

1
2 + avn−

1
2 ) +

1

4m
(βn − βn+1) . (20)

Thus, Eqs. (16), (17), and (20) constitute a consistent
LF method, where initial conditions (r0, v0) are applied
through Eqs. (12) and (18).
Notice that while the given SV method is uniquely con-

nected to the VE expressions in both the coordinate {rn}
and its evaluated velocity {vn}, the development of LF is
not unique, even if LF is constructed to produce identical
trajectories (rn, vn) to those of VE and SV. The reason is
the aforementioned somewhat ambiguous choice in defin-
ing the half-step velocity vn+

1
2 in Eq. (14), and the sub-

sequent reconstruction of the integer-time velocity vn in
Eq. (20). Thus, one can exercise some freedom of choice
in the velocity equations when using the LF expressions.
For example, a sensible alternative to the half-step ve-

locity in Eq. (14) may be

un+ 1
2 =

rn+1 − rn

bdt
−

1

2m
βn+1 , (21)

where we use the symbol u for the revised definition of
the half-step velocity. Following the procedure starting
from Eq. (14), we can develop the following alternate
LF formulation, which also yields identical trajectories
(rn, vn). The two equations for half-step velocity and
integer-step position become

un+ 1
2 = aun− 1

2 +
dt

m
fn +

1

2m
βn . (22)

rn+1 = rn + b dt un+ 1
2 +

b dt

2m
βn+1 , (23)

with initiating half-step velocity u
1
2 and conversion to

integer-step velocity vn written

u
1
2 = v0 +

dt

2m
f0 (24)

vn =
1

2
(un+ 1

2 + aun− 1
2 ) +

1

4m
βn , (25)

respectively. As mentioned above, all LF formulations
of the thermostat yield identical trajectories for (rn, vn)
and therefore constitute the same method regardless of
the specific definition of the half-step velocity. Choosing
which one to use is entirely a matter of convenience. The
defined half-step velocity is simply an auxiliary variable,
which need not have any specific useful physical interpre-
tation for the evaluation of thermodynamic quantities.

III. TESTING THE METHOD

We exemplify the applicability of the G-JF method in
the context of a simple biomolecular simulation and we
make comparison to results of the widely-used molecular
dynamics codes AMBER [14], LAMMPS [16, 17], and
GROMACS [7]. These packages employ different com-
monly used stochastic thermostats. More comprehensive
discussions of other thermostats can be found in recent
references [1, 4, 5]. The purpose of the following simula-
tions is not to present new or ground-breaking results in
biomolecular science; instead, we choose a simple and
well-understood representative model system that can
illuminate, through simulations within well-established
MD packages, some key features of the new algorithm
as implemented into one of the codes that is particularly
amenable to revisions.

A. Simulation Details

We performed classical molecular dynamics simula-
tions of alanine dipeptide (illustrated in Figure 1a), a
small and well-studied biomolecule. Intramolecular inter-
actions among the solute atoms, including bond, angle,
dihedral, and non-bonded energies, were modeled with an
AMBER classical all-atom molecular mechanical treat-
ment [14], coupled with the recent ff12 parameter set
[15], while the extra-molecular environment was treated
as vacuum.
This model system was simulated at a target tempera-

ture of 300 K with four integration schemes for compari-
son: i) The BBK thermostat [10], which is implemented
and expressed within AMBER 12 (ntt=3) in the leap-
frog Verlet formulation [8]; ii) the method of Schneider
& Stoll [11], as implemented in the LAMMPS simula-
tion software [16] (with the combination of the nve and
langevin fixes); iii) a variation of the method of van Gun-
steren & Berendsen [9, 18], implemented in GROMACS
[7] (as the sd integrator [19]), which includes velocity
rescaling; and finally iv) the G-JF thermostat [1].
The latter was implemented into AMBER through

small modifications to the AMBER 12 source code [15].
Since the underlying LF Verlet integrator used in the
BBK method is consistent with Eqs. (16), (17), and (20),
revisions were only necessary with regard to the fluctu-
ation terms. The memory framework was modified to
include space for the correlating noise term from the pre-
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vious time step, corresponding to βn in Eqs. (16) and
(20), to be cached for use in subsequent integration steps.
A Langevin damping coefficient of 10 ps−1 was used
throughout all the simulations. Simulation input data
for LAMMPS and GROMACS runs were generated di-
rectly from AMBER-formatted coordinate and topology
files using the free tools amber2lammps.py (distributed
with the LAMMPS source code), and amb2gmx.pl [20],
respectively.
Data were collected from sets of ten independent 100 ps

simulations at several values of the integration time step,
from 0.5–3.1 fs in increments of 0.1 fs, and from 3.1–3.2 fs
in increments of 0.01 fs. Each simulation was initiated
from the same energy-minimized starting structure of the
peptide. For each independent simulation, initial atomic
velocities were assigned from a Maxwell-Boltzmann dis-
tribution appropriate to the target temperature and the
psuedo-random number chain was uniquely seeded.
First and second moments of the total potential en-

ergy distribution were chosen as measures of the sta-
bility and accuracy with which each integration method
could reproduce the statistical-mechanical properties of
the physical system. Average energy and its fluctuation
were computed based on samples at all integration steps.
The total number of integration stepsN was varied based
on the time step dt, such that N = ⌊100 ps/dt⌋.

B. Results

Figures 1b and c summarize the results and shows the
average total potential energy and its standard deviation
as a function of the simulated time step for all the in-
tegration methods. As expected, all methods give very
similar results for both the average and standard devi-
ation of the energies for as long as the time steps are
smaller than about 1 fs.
However, for increasing time steps the unmodified con-

temporary codes start deviating from the expected sta-
tistical values found for small dt. The two strongest de-
viations are found for the BBK method, implemented
in AMBER 12, and the thermostat of Schneider &
Stoll, implemented into LAMMPS. The same deviating
behavior, albeit seemingly with only one third devia-
tion, is found for the thermostat of van Gunsteren &
Berendsen, implemented into GROMACS. In contrast,
the G-JF method, implemented into AMBER 12 as de-
scribed above, shows the inherent feature of preserving
the fluctuation-dissipation relationship for any time step.
In fact, for these simulations, the G-JF method can give
statistical estimates at all time steps up to the stability
limit that are indistinguishable from those at small time
steps. The stability limit is here identified by adiabati-
cally increasing the time step of a simulation until sim-
ulations produce anomalously high velocities, indicating
that the Verlet integrator is no longer capable of pro-
ducing a meaningful trajectory for the simulation. The
existing stochastic thermostats seem stable up to 3.0 fs

FIG. 1: (a) Space-filling model of the simulated alanine dipep-
tide (Ac-Ala-NHMe) molecule. (b) Mean and (c) standard
deviation of the potential energy in the model alanine dipep-
tide, computed with different molecular dynamics codes and
various time steps. Results are depicted as follows, top curve
to bottom: Blue for LAMMPS; orange for AMBER; red for
GROMACS; and green for AMBER with the G-JF implemen-
tation.

for this simulation, while the G-JF is stable for up to a
slightly higher value 3.1 fs.

We close this section by arguing for the use of potential
energy (and its fluctuations) as a measure for the abil-
ity of the different thermostats to correctly sample the
phase space corresponding to the target temperature. A
seemingly more straightforward test would be to consider
the kinetic energy. However, as shown in Ref. [1] for the
harmonic oscillator case, the computed velocity vn, and
thereby the kinetic energy, is increasingly depressed for
increasing time step in any Verlet scheme, regardless of
the inclusion of a thermostat. Thus, when evaluating a
thermostat, measures of velocity and kinetic energy may
not be appropriate for determining the quality of statis-
tical sampling. Further, this observation may hint at sta-
tistical sampling problems arising from thermostats that
involve “velocity rescaling” as a way to obtain a desired
temperature.



5

IV. DISCUSSION AND CONCLUSION

The newly developed G-JF stochastic Verlet thermo-
stat has been applied to simulations of a small, yet non-
trivial and nonlinear, system representative of many ap-
plications in molecular modeling. It has previously been
analytically demonstrated that for linear systems the new
method yields exact statistical behavior of diffusion and
Boltzmann distributions for any time step leading to sta-
ble dynamics [1]. The simulations presented here indi-
cate that these attractive and robust statistical features
are likely to remain in other complex and nonlinear sys-
tems. Specifically, our present simulations demonstrate
that the statistical behavior of potential energy remains
sound for any time step up to the limit where the atomic
trajectories suddenly diverge. In contrast, available con-
temporary molecular dynamics codes with other stochas-
tic thermostats show deviating behavior for increasing
time step, indicating that the interpretation of thermo-
dynamic data from those algorithms must be done with
caution and small time steps. This seems to be the case
for the three popular molecular dynamics codes that we
have investigated here, and is likely to be true also for
other available MD simulation codes. In order to fa-
cilitate comparison between the stochastic thermostats,

we use the same AMBER force fields in all four sets of
simulations. We emphasize that simulations with the
G-JF thermostat have been completed by implementing
the new simple algorithm into an existing available code
(AMBER 12), to ensure direct comparison between the
thermostats without any other differences in parameters
or simulation details. Thus, based on the preliminary
tests and analyses, we suggest that the algorithm pre-
sented here and in Ref. [1] be implemented into existing
molecular dynamics codes for further use and evaluation.
In order to facilitate such revisions, we have explicitly
provided the algorithm in all three commonly used for-
mulations of the Verlet method.
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