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Abstract

We introduce the Mathematica package MT which can be used to compute, both analytically and numer-
ically, convolutions involving harmonic polylogarithms, polynomials or generalized functions. As appli-
cations contributions to next-to-next-to-next-to leading order Higgs boson production and the Drell-Yan
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Program summary

Title of program: MT

Available from:

http://www-ttp.physik.uni-karlsruhe.de/Progdata/ttp13/ttp13-27/

Computer for which the program is designed and others on which it is operable: Any computer
where Mathematica version 6 or higher is running.

Operating system or monitor under which the program has been tested: Linux

No. of bytes in distributed program including test data etc.: approximately 50 000 bytes, and tables
of approximately 60 megabytes

Distribution format: source code

Keywords: Convolution of partonic cross sections and splitting functions, Mellin transformation,
harmonic sums, harmonic polylogarithms, Higgs boson production, Drell-Yan process

Nature of physical problem: For the treatment of collinear divergences connected to initial-state
radiation it is necessary to consider convolutions of partonic cross sections with splitting functions.
MT can be used to compute such convolutions.

Method of solution: MT is implemented in Mathematica and we provide several functions in order
to perform transformations to Mellin space, manipulations of the expressions, and inverse Mellin
transformations.

Restrictions on the complexity of the problem: In case the weight of the input quantities is too high
the tables for the (inverse) Mellin transforms have to be extended. In the current implementation
the tables contain expressions up to weight eight, code for the generation of tables of even higher
weight is provided, too.
MT can only handle convolutions of expressions involving harmonic polylogarithms, plus distributions
and polynomials in the partonic variable x.

Typical running time: In general the run time for the individual operations is at most of the order
of a few minutes (depending on the speed and memory of the computer).

1. Introduction

The calculation of higher order perturbative corrections within QCD inevitably contains contributions
where quarks and/or gluons are radiated off initial-state partons. Such processes are accompanied by
infra-red singularities which arise from collinear emissions.

These divergences must cancel against convolutions of splitting functions with lower-order cross sections
which provide subtraction terms leading to finite partonic cross sections. The origin of the subtraction
terms are ultra-violet divergences present in the bare parton densities which, due to the masslessness of all
involved partons, can be viewed as counterterms for collinear divergences in the partonic cross section [1].
Alternatively, one can consider the removal of the divergences as a redefinition of the parton distribution
functions (PDFs). Since the latter are in general given in the MS scheme we adopt this scheme also for
our calculations.

In this paper we provide a description of the Mathematica package MT which can be used to perform
convolutions of splitting functions with partonic cross sections expressed in terms of harmonic polylog-
arithms (HPLs), delta functions, plus distributions, polynomials in x, and factors 1/x, 1/(1 − x), and
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1/(1 + x). Here x is the partonic variable typically defined as x = M2/s where M is the mass of the
(intermediate) final state and

√
s is the partonic center-of-mass energy.

The method to compute convolutions implemented in MT relies heavily on the Mellin transformation and
its properties. For a comprehensive discussion of the Mellin transform and the list of all Mellin images
appearing in the calculation of the next-to-next-to-leading order (NNLO) Higgs boson production rate
see Refs. [2, 3]. In contrast, we decided to relate all required results to a limited set of Mellin transforms
of HPLs with a certain maximum weight.

As applications we discuss convolution contributions to next-to-next-to-next-to-leading order (N3LO)
Higgs boson production and the Drell-Yan process. In particular we provide the partonic cross sections up
to NNLO expanded sufficiently deep in ǫ = (4−D)/2, where D is the number of space-time dimensions.
As far as Higgs boson production is concerned the results have been obtained in Refs. [4, 5]. The
corresponding results for the Drell-Yan process are new. It is convenient to introduce the following
notation for the partonic cross sections

σ̃ij(x) = A

[

σ̃
(0)
ij (x) +

αs

π
σ̃
(1)
ij (x) +

(αs

π

)2

σ̃
(2)
ij (x) + . . .

]

, (1)

where A collects all constants such that

σ̃
(0),Higgs
ij = δigδjg

δ(1− x)

1− ǫ
, (2)

and

σ̃
(0),DY
ij = δiqδjq̄δ(1 − x)(1 − ǫ) . (3)

The indices i and j in Eq. (1) refer to the partons in the initial state, i.e., gluons and massless quarks.

The crucial input to the convolution integrals are the splitting functions Pij(x) describing the probability
of parton j to turn by emission into parton i with the fraction x of its initial energy. We define the
perturbative expansion by

Pij(x) = δijδ(1 − x) +
αs

π
P

(1)
ij (x) +

(αs

π

)2

P
(2)
ij (x) +

(αs

π

)3

P
(3)
ij (x) + . . . , (4)

where the analytic results for the k-loop splitting function P
(k)
ij (x) can be found in Refs. [6, 7, 8, 9].

Together with the program MT we provide a Mathematica file splitfnsMVV.m which contains splitting
functions computed in [8, 9] in a slightly modified form. Namely, the upper index is shifted by one and
the singular contributions are stated explicitly in terms of generalized functions. In Tab. 1 we provide the
translation from the notation used in the file to that of Eq. (4). Note that for the quark contributions the
indices i and j are omitted and additional super- and subscripts are introduced in order to distinguish
the various contributions.

The outline of the paper is as follows: the algorithm realized in MT is described in the following section,
its functionality in Section 3. Examples for the application of MT are given in Sections 4 and 5 where
the subtraction terms are discussed for Higgs boson production and the Drell-Yan process at N3LO. A
summary is given in Section 6.

2. Systematic approach to convolution integrals

Convolution integrals of partonic cross sections and splitting functions are defined as

[f ⊗ g] (x) =

∫ 1

0

dx1dx2δ(x − x1x2)f(x1)g(x2) , (5)
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splitfnsMVV.m Eq. (4) comments, connection to [8, 9]

Pgg1 P
(1)
gg —

Pgq1 P
(1)
gq —

Pqg1 P
(1)
qg —

Pqq1 P
(1)
ns —

Pgg2 P
(2)
gg —

Pgq2 P
(2)
gq —

Pqg2 P
(2)
qg —

Pnsp2 P
(2)+
ns quark-quark non-singlet, equals P v

qq + P v
qq̄

Pnsm2 P
(2)−
ns quark-quark non-singlet, equals P v

qq − P v
qq̄

Pps2 P
(2)
ps quark-quark pure singlet

Pgg3 P
(3)
gg —

Pgq3 P
(3)
gq —

Pqg3 P
(3)
qg —

Pnsp3 P
(3)+
ns quark-quark non-singlet, equals P v

qq + P v
qq̄

Pnsm3 P
(3)−
ns + P

(3)s
ns quark-quark non-singlet, equals P v

qq − P v
qq̄ + P s

ns,

P
(3)s
ns is proportional to dabcdabc/nc

Pps3 P
(3)
ps quark-quark pure singlet

Table 1: Notation for P
(k)
ij used in splitfnsMVV.m and in Eq. (4). The superscripts v and s stand

for “valence” and “sea”. Note that the superscript indicating the loop-order is shifted in our notation

compared to Refs. [8, 9] by +1 and that P
(3)s
ns appears at three loops for the first time.

where the functions f and g include combinations of HPLs (for the definition see below) up to certain
maximum weight with factors 1/x, 1/(1 − x), and 1/(1 + x), polynomials in x, and the generalized

functions δ(1− x) and
[

lnk(1−x)
1−x

]

+
.

Although the algorithm used for the computation of the convolution integrals has already been presented
before (see Appendix B of [10] and Ref. [4]), we decided to review its description for completeness’ sake.
An alternative way to compute the same convolution integrals has been presented in Ref. [5].

Convolutions [f ⊗ g] are most conveniently dealt with by considering Mellin transforms defined through

Mn [f(x)] =

∫ 1

0

dxxn−1f(x) , (6)

since in Mellin space convolution integrals turn into products of Mellin images:

Mn

[

[f ⊗ g](x)
]

= Mn [f(x)]Mn [g(x)] . (7)

Mellin transforms relate HPLs and their derivatives to harmonic sums [11, 12]. HPLs H~a(x) are nested
integrals, recursively defined via

H(x) = 1, H
a,~b

(x) =

∫ x

0

dx′fa(x
′) H~b

(x′), f0(x) =
1

x
, f1(x) =

1

1− x
, f−1(x) =

1

1 + x
, (8)

where one refers to the number of indices as weight. Up to weight three HPLs may be represented by
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combinations of ordinary logarithms and Nielsen polylogarithms. E.g. up to weight one we have

H(x) = 1 ,

H0(x) = lnx ,

H1(x) = − ln(1− x) ,

H−1(x) = ln(1 + x) . (9)

Harmonic sums S~a(x) are defined in a similar fashion as nested sums:

S(n) = 1, S
a,~b

(n) =
n
∑

i=1

fa(i) S~b(i), fa(i) =

{

i−a, a ≥ 0 ,
(−1)i ia, a < 0 ,

(10)

where the weight is defined as the sum of the absolute values of the indices.

For illustration we demonstrate Mellin transforms of HPLs through weight one:

Mn[1] =
1

n
,

Mn[H0(x)] = − 1

n2
,

Mn[H1(x)] =
S1(n)

n
,

Mn[H−1(x)] = − (−1)n

n
(S−1(n) + ln 2) +

ln 2

n
. (11)

The main ingredient in our algorithm are relations among Mellin transforms of functions f(x), xkf(x) and
df(x)/dx established with the help of integration-by-parts identities. From the definition of the Mellin
transform it is obvious that

Mn

[

xkf(x)
]

= Mn+k [f(x)] , (12)

and furthermore if f(x) is regular for x → 1, then

Mn

[

d

dx
f(x)

]

= xn−1f(x)
∣

∣

∣

1

0
− (n− 1)Mn−1 [f(x)] . (13)

Note that in the limit x → 0 the boundary term in Eq. (13) vanishes since we always consider n higher
than the order of the highest pole that f(x) may have at x = 0. However, in the limit x → 1 logarithmic
singularities of the form lnk(1−x) may appear. They are treated with the help of “regularized derivatives”

∂̂x which are defined as

Mn

[

∂̂x1
]

= 1 ,

Mn

[

∂̂xf(x)
]

= R [f(x)]− (n− 1)Mn−1 [f(x)] . (14)

The operation R regulates the boundary term by dropping all logarithmically divergent contributions:

R[gk(x) ln
k(1− x) + gk−1(x) ln

k−1(1− x) + . . .+ g0(x)] = g0(1) , gk(1) 6= 0 ∀k > 0 . (15)

To motivate this definition let us remark that it corresponds to regulating divergences by means of delta
and plus distributions. As an example consider f(x) = H1(x) = − ln(1−x). Since dH1(x)/dx = 1/(1−x)
the Mellin transform Mn[df(x)/dx] is not defined. On the other hand, if we replace 1/(1 − x) by the
corresponding plus distribution we have

Mn

[

[

1

1− x

]

+

]

= −S1(n− 1) . (16)
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The same result is obtained by applying Eq. (14) as can be seen by the following chain of equations

Mn

[

∂̂xH1(x)
]

= R [− ln(1 − x)]− (n− 1)Mn−1 [− ln(1− x)] = 0− (n− 1)
S1(n− 1)

n− 1
= −S1(n− 1) .

Furthermore, in case f(x) is not divergent for x → 1 Eq. (14) reduces to the usual derivative (see Eq. (13)).
For example,

∂̂xH−1(x) =
d

dx
H−1(x) =

1

1 + x
, ∂̂xH−1,1(x) =

d

dx
H−1,1(x) =

H1(x)

1 + x
. (17)

The concept of regularized derivatives relates HPLs to “common” generalized functions. This allows for a
unified treatment of Mellin transforms of derivatives of HPLs, independent of the presence of divergences.
Hence it is sufficient to consider Mellin transforms of regularized derivatives in case Mellin transforms
for generalized functions are needed. To illustrate this point let us show a few examples for regularized
derivatives of HPLs

∂̂x 1 = δ(1− x) ,

∂̂xH1(x) =

[

1

1− x

]

+

,

∂̂xH1,1(x) = −
[

ln(1 − x)

1− x

]

+

,

∂̂xH1,1,1(x) =
1

2

[

ln2(1− x)

1− x

]

+

,

∂̂xH1,2(x) =
π2

6

[

1

1− x

]

+

+
H2(x) − π2

6

1− x
. (18)

To continue the example of HPLs up to weight one, we list the Mellin transforms of their regularized
derivatives

Mn[∂̂x1] = 1 ,

Mn[∂̂xH0(x)] =
1

n− 1
,

Mn[∂̂xH1(x)] = −S1(n− 1) ,

Mn[∂̂xH−1(x)] = (−1)n−1S−1(n− 1) + (−1)n−1 ln 2 . (19)

One can interpret the combination of Mellin transforms of HPLs (see Eq. (11)) and their generalized
derivatives (see Eq. (19)) computed up to a fixed maximum weight as a system of linear equations. This
system can be solved for monomials of the form 1/nk, S~a(n)/n

k, and (−1)nS~a(n)/n
k. The solution is

then equivalent to the inverse Mellin transform.

We conclude our example for quantities up to weight one by providing their inverse Mellin transforms:

M−1
x

[

1

n

]

= 1 ,

M−1
x [1] = ∂̂x1 ,

M−1
x

[

1

n2

]

= −H0(x) ,

M−1
x [S1(n)] = −x∂̂xH1(x) ,

M−1
x

[

S1(n)

n

]

= H1(x) . (20)
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The discussion above allows us to formulate the following algorithm. Given the task of finding a convo-
lution of functions f and g, one may perform the following steps.

1. Transform the expressions f and g to Mellin n-space.

2. Compute a table of Mellin transforms of HPLs up to a fixed maximum weight.

3. Prepare a corresponding table holding regularized derivatives of HPLs.

4. Solve the system of linear equations composed of the tables from steps 2 and 3.

5. Perform inverse transformation to x-space by substituting the results from step 4 into the expression
M−1

n [Mn [f ]Mn [g]].

In step 2, Mellin transforms of HPLs are obtained by using the FORM package harmpol [13]. In step 3,
Mellin transforms of regularized derivatives of HPLs are obtained from the result of step 2 via Eq. (14).
Although some inverse transforms cannot be determined from the system of equations in step 4, in
practice they cancel in final expressions for the convolutions in step 5. In MT the precomputed results of
steps 2 and 4 are tabulated to speed-up the calculation and provided in the form of table files.

In the considered examples of Higgs boson and vector boson production (cf. Sections 4 and 5) we were
able to compute all necessary convolutions relevant at N3LO applying this algorithm.

3. Description of MT

MT is a Mathematica package for computing analytically convolutions of HPLs with factors 1/x, 1/(1−x)

and 1/(1+x), polynomials in x, and generalized functions δ(1−x) and
[

lnk(1−x)
1−x

]

+
, via Mellin transforms.

For cross checks it also provides capability to compute convolutions numerically. It requires Mathematica
version 6 or later and the HPL package [14, 15]. Having installed MT properly as described in the provided
README file, one can load it via

In[1] := <<MT‘

The package handles the following objects:

• HPL[{m1,. . .,mN}, x] = Hm1,...,mN
(x) is the HPL provided by HPL package.

• PlusDistribution[k, 1− x] =
[

lnk(1−x)
1−x

]

+
is the plus distribution (k = 0, 1, 2, . . .).

PlusDistrubition[−1, 1− x] = δ(1 − x) is the delta function.

• DReg[f, x] = ∂̂xf is the regularized derivative of the expression f with respect to x which can be

obtained by replacing every singular term lnk(1−x)
1−x

in the result of the ordinary differentiation df
dx

with a plus distribution
[

lnk(1−x)
1−x

]

+
. We define DReg[1, x] = ∂̂x1 = δ(1 − x). Mellin transforms

of regularized derivatives are given by Eq. (14).

• HSum[{m1,. . .,mN}, n] = Sm1,...,mN
(n) is the harmonic sum which appears in Mellin transforms

of HPLs.

For computing convolutions, both analytically and numerically, MT package provides the following func-
tions:
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• Convolution[f1,. . .,fN,x] gives the convolution with respect to x of the expressions f1, . . ., fN ,

[f1 ⊗ . . .⊗ fN ](x) =

∫ 1

0

dx1 . . .

∫ 1

0

dxN f1(x1) . . . fN (xN )δ(x − x1 . . . xN ). (21)

For illustration we consider the following examples:

In[2] := Convolution[HPL[{0},x]/(1+x),HPL[{0},x]/(1-x),x]

Out[2] =
H−2,0(x)

x+ 1
−

H2,0(x)

x+ 1
−

H0,0,0(x)

x+ 1
−

π2 H0(x)

12(x + 1)
−

ζ(3)

2(x+ 1)

In[3] := Convolution[PlusDistribution[0,1-x],(HPL[{2},x]-HPL[{2},1])/(1-x),x]

Out[3] = −

H1,2(x)

1− x
−

H2,0(x)

1− x
−

2H2,1(x)

1− x
+

π2 H0(x)

6(1− x)
+

π2 H1(x)

6(1− x)
−

H3(x)

1− x
−

ζ(3)

1− x

In[4] := Convolution[PlusDistribution[0,1-x],PlusDistribution[0,1-x],x]

Out[4] = 2

[

log(1− x)

1− x

]

+

−

H0(x)

1− x
−

1

6
π2δ(1− x)

Since Convolution converts the convolution into a product of Mellin transforms of the expressions
and then performs the inverse Mellin transform to obtain the result, the maximum weight of the
expressions that Convolution can handle is limited by the weight implemented in the tables of the
transforms. In the current version MT can handle expressions up to weight six by default,1 tables up
to weight eight can be loaded if necessary. In case higher weights are needed Convolution returns
a result containing unevaluated Mellin and inverse Mellin transforms.

• NConvolution[f1,. . .,fN,x,a] numerically computes the convolution with respect to x of the ex-
pressions f1, . . ., fN at x = a, by using Mathematica’s built-in NIntegrate function. In case the
result contains plus distributions NConvolution evaluates the corresponding coefficients numeri-
cally. The numerical computation of the above examples for x = 3/10 looks as follows:

In[5] := NConvolution[HPL[{0},x]/(1+x),HPL[{0},x]/(1-x),x,3/10]

Out[5] = 0.600799

In[6] := NConvolution[PlusDistribution[0,1-x],(HPL[{2},x]-HPL[{2},1])/(1-x),x,3/10]

Out[6] = −2.86725 + 1.7975 × 10−17
i

In[7] := NConvolution[PlusDistribution[0,1-x],PlusDistribution[0,1-x],x,3/10]

Out[7] = 2.

[

log(1− x)

1− x

]

+

− 1.64493 δ(1− x) + 1.71996

Currently NConvolution supports convolutions of up to three functions exclusive of delta func-
tions, which can be removed trivially. If the expressions contain plus distributions the auxiliary

1In the final result for the N3LO contributions only weight-five HPLs appear. However, in intermediate steps harmonic
sums of weight six are present which require the corresponding tables.
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regularization [16]

lnk(1− x)

1− x
→ lim

a→1

1

ηk
∂k

∂ak
(1− x)−1+aη (22)

is introduced before the numerical integration of each individual term. In a next step the singular-
ities in the integrals for x → 0 and x → 1 are separated, the differentiation w.r.t. a is performed,
the limit a → 1 is taken, and the result is expanded in η. All pole terms 1/ηk should cancel among
the integrals and the leading term gives the result of the convolution. The remaining integrals must
have no divergences and can be performed numerically. NConvolution checks that all pole terms
cancel within an absolute tolerance controlled by Tolerance option (10−6 by default).

Since NConvolution performs the convolution numerically, the result must be finite. Moreover it
must be possible to evaluate the integrand numerically, i.e., it cannot contain any symbols, except
those specified by Constants option. If Constants option is used, NConvolution tries to collect
terms involving the same powers of these constants and splits the convolution with respect to them.
The use of Constants is illustrated by the following example:

In[8] := NConvolution[(1+c)*x+x^2,HPL[{0},x],x,3/10,Constants->{c}]

Out[8] = −0.503973 c− 0.878459

NConvolution accepts also the following options, which are passed to NIntegrate: AccuracyGoal,
MaxPoints, MaxRecursion, Method, MinRecursion, PrecisionGoal, and WorkingPrecision. One
may need to change these options when the convergence of the numerical integration is slow. Note
that NConvolution may turn out to be very slow if it is called with more than two functions in the
argument.

• NEval[f, x, a] gives the numerical value of the expression f at x = a and is similar to N[f /. x
→ a] but does not touch x in generalized functions. This is convenient in case one wants to obtain
a numerical value by substituting a certain value of x into a result of Convolution which contains
plus distributions. For example the comparison with NConvolution (see example above) may look
as follows:

In[9] := Convolution[PlusDistribution[0,1-x],PlusDistribution[0,1-x],x]

Out[9] = 2

[

log(1− x)

1− x

]

+

−

H0(x)

1− x
−

1

6
π2δ(1− x)

In[10] := NEval[%,x,3/10]

Out[10] = 2.

[

log(1− x)

1− x

]

+

− 1.64493 δ(1− x) + 1.71996

NEval[f, x, a, n] attempts to output the result with n-digit precision.

Convolution utilizes Mellin transforms and inverse Mellin transforms for computing convolutions. MT

package also provides functions that allow users to find Mellin transforms and inverse Mellin transforms:

• MTMellinn[f, x, n] computes the Mellin transform with respect to x of the expression f :

Mn

[

f(x)
]

=

∫ 1

0

dxxn−1f(x) , (23)

which is illustrated in the following example:

9



In[11] := MTMellinn[HPL[{1},x]/(1+x),x,n]

Out[11] = (−1)n−1 S−1,1(n− 1) +
1

12
π2(−1)n−1

−

1

2
(−1)n−1 log2(2)

In[12] := MTMellinn[(HPL[{2},x]-HPL[{2},1])/(1-x),x,n]

Out[12] = S2,1(n− 1)− 2ζ(3)

In[13] := MTMellinn[PlusDistribution[2,1-x],x,n]

Out[13] = −2 S1,1,1(n− 1)

• NMTMellinn[f, x, a] numerically computes the Mellin transform with respect to x of the expres-
sion f with n = a.

In[14] := NMTMellinn[HPL[{1},x]/(1+x),x,12]

Out[14] = 0.133014

In[15] := NMTMellinn[(HPL[{2},x]-HPL[{2},1])/(1-x),x,12]

Out[15] = −0.351258

In[16] := NMTMellinn[PlusDistribution[2,1-x],x,12]

Out[16] = −14.684

NMTMellinn accepts the following options (see also NConvolution): AccuracyGoal, Constants,
MaxPoints, MaxRecursion, Method, MinRecursion, PrecisionGoal, and WorkingPrecision.

• MTInverse[f, x, n] gives the inverse Mellin transform with respect to n of the expression f .

In[17] := MTInverse[HSum[{2,1},n]/n,x,n]

Out[17] =
1

6
π2 H1(x)− H1,2(x)

In[18] := MTInverse[(-1)^n*HSum[{-1},n]/n,x,n]

Out[18] = − log(2) MTInverse

(

(−1)n

n
, x, n

)

− H−1(x) + log(2)

In the latter example the inverse Mellin transform cannot be expressed in terms of HPLs and is
instead reduced to a simpler one.

In the following we list further functions defined in MT package which may be useful for users:

• MTPlusToDReg[f] converts plus distributions in the expression f into regularized derivatives.
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In[19] := MTPlusToDReg[PlusDistribution[3,1-x]]

Out[19] = −6 ∂̂x H1,1,1,1(x)

• MTDRegToPlus[f] converts regularized derivatives in the expression f into plus distributions.

In[20] := MTDRegToPlus[DReg[HPL[{1,1,1,1},x],x]]

Out[20] = −

1

6

[

log3(1− x)

1− x

]

+

• MTPlusSimplify[f] performs transformations on terms in the expression f containing generalized
functions such that their coefficients become constants:

δ(1− x)f(x) = δ(1− x)f(1), (24)
[

lnk(1 − x)

1− x

]

+

f(x) =

[

lnk(1− x)

1− x

]

+

f(1) +
lnk(1− x)

1− x

[

f(x)− f(1)
]

. (25)

In[21] := MTPlusSimplify[PlusDistribution[1,1-x]*HPL[{2},x]]

Out[21] =
1

6
π2

[

log(1− x)

1− x

]

+

+
H1(x)

(

π2
− 6H2(x)

)

6(1− x)

• MTHarmonize[f, n] shifts the argument of harmonic sums in the expression f such that each term
in the result individually depends on a single argument n+ i.

In[22] := MTHarmonize[HSum[{1,-1},n+2]/n,n]

Out[22] =
S1,−1(n)

n
+

3S−1(n)

2n
−

S−1(n+ 1)

n+ 1
−

S−1(n+ 2)

2(n+ 2)
−

5(−1)n

4n
−

3(−1)n+1

2(n+ 1)
−

(−1)n+2

4(n+ 2)

• MTNormalize[f, n] normalizes the argument of harmonic sums in the expression f such that they
have n as argument.

In[23] := MTNormalize[HSum[{-1,2},n+1],n]

Out[23] = S−1,2(n) −
(−1)n S2(n)

n+ 1
−

(−1)n

(n+ 1)3

• MTProductExpand[f] substitutes products of harmonic sums in the expression f with harmonic
sums of higher weights. For a discussion of the corresponding algebra see, e.g., Appendix B of [10].

In[24] := MTProductExpand[HSum[{2},n]*HSum[{-1},n]]

Out[24] = S−1,2(n) + S2,−1(n)− S−3(n)

11



• CancelMTInverse[f] tries to cancel unevaluated inverse Mellin transforms in the expression f .

In[25] := MTInverse[HSum[{-1},n+1],x,n] - MTInverse[HSum[{-1},n] - (-1)^n/(n+1),x,n]

Out[25] = x MTInverse
(

S−1(n), x, n
)

− MTInverse

(

S−1(n), x, n
)

− x MTInverse

(

(−1)n

n
, x, n

)

In[26] := CancelMTInverse[%]

Out[26] = 0

4. Example 1: collinear singularities for Higgs boson production at the LHC

After the discovery of a new Higgs boson-like particle at the LHC it is now of primary importance to
measure its properties like cross sections, branching ratios and couplings with high precision. Current
experimental results are compatible with a Standard Model Higgs boson.

The main production mechanism for the latter is the gluon fusion process. Although even second order
corrections have been computed for this process (see Refs. [17, 18] and references therein) the perturbative
uncertainties are still of the order of 10% and thus it would be desirable to have the next term in the
perturbative expansion. MT can compute the related subtraction terms for the collinear divergences
originating from radiation of partons off initial-state particles.

The N3LO convolutions to this process have already been discussed in Refs. [4, 5] where results for all
convolutions are provided in electronic form. Thus let us at this point only provide an example which
demonstrates the use of MT.

The results for the partonic cross sections up to NNLO expanded sufficiently deeply in ǫ such that finite
results at N3LO can be obtained are listed in the file sig_tilde_LO_NLO_NNLO.m which can be found on

the webpage [19] (see also Ref. [4]). As an example we consider the convolution of σ̃
(1)
qg /x with P

(1)
gg and

P
(1)
ns which is computed as2

2In the examples we present in this and the next Section we do not show the complete output but abbreviate it using
ellipses.
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In[1] := <<MT‘

In[2] := <<sig_tilde_LO_NLO_NNLO.m

In[3] := <<splitfnsMVV.m

In[4] := Convolution[rsigc["NLO", "qg"]/x, Pgg1/.splitfnsMVV, Pqq1/.splitfnsMVV, x];

In[5] := Collect[%, {ep, HPL[__], PlusDistribution[__], nl}, Together]

Out[5] = . . .+

(

4(8x3 + 11x2 + 56x− 49)

9x
−

8nl(x2
− 2x+ 2)

27x

)

H1,0(x) + . . .

+ ep

(

. . .+H2(x)

(

−

4(5x2 + 2x+ 4)H0,0(
mu

2

Mh2 )

3x
−

2nl(9x2
− 26x + 7)

27x

+
256x3 + 237π2x2 + 432x2

− 78π2x+ 2832x + 276π2
− 1129

27x

)

+ . . .

)

+ ep2

(

. . .−
4(9x2 + 6x+ 4)H5(x)

3x
+ . . .+

1

19440x
(−276480x3ζ(3) + 2688π4x3 + . . .

− 1538205)

)

Note that the number of massless quarks both in sig_tilde_LO_NLO_NNLO.m and splitfnsMVV is denoted
by nl.

In analogy to this example it is possible to obtain all convolution contributions for the Higgs boson pro-
duction by combining results from sig_tilde_LO_NLO_NNLO.m and splitfnsMVV.m, including multiple
convolutions.

5. Example 2: collinear singularities for Drell-Yan production

The Drell-Yan process, i.e., the production of a lepton pair in hadronic collisions mediated by a vector
boson, constitutes an important benchmark process at hadron colliders. In particular, it provides in-
formation about the PDFs and is a useful tool in searches for heavier gauge bosons by examining the
invariant mass of the produced leptons.

In the following we briefly discuss the computation of the total cross section up to NNLO with the em-
phasis on higher-order terms in ǫ. The results are later used in order to evaluate the collinear subtraction
terms at N3LO using MT. In our discussion we discard all contributions which contain a one-loop triangle
diagram with two gluons and a gauge boson as external particles as subgraph since they cancel after
summing over all quarks of a family. Thus, we can restrict ourselves to the use of naive anti-commuting
γ5 in the axial-vector coupling of the W or Z boson.

For the calculation of the total cross section we apply the same techniques as for the Higgs production [20,
21], i.e., we use the optical theorem and consider the imaginary part of the forward-scattering amplitude
by cutting the gauge boson, light quark and gluon lines. It is convenient to treat the purely virtual
corrections separately since in that case only the cut through the gauge boson is considered, see also
Fig. 1. The NNLO expression for the resulting quark form factor can be found in Refs. [22, 23, 24, 25],
N3LO results are presented in Refs. [26, 27, 28].

Sample Feynman diagrams for the single- and double-real corrections, considered simultaneously, can be
found in Fig. 1. At NLO and NNLO the following channels have to be considered

• NLO: qq̄ and qg,

13



(a) LO: qq̄, v
(b) NLO: qq̄, v (c) NNLO: gg, r2

(d) LO: qg, r
(e) NLO: qg, r-v

(f) N3LO: qq̄, r2-v and r3

Figure 1: Sample Feynman diagrams up to N3LO contributing to the Drell-Yan process. The wiggly
lines denote a generic vector boson, i.e., γ, W , or Z. The dashed lines attached to crosses mark the
considered cut(s) through a massive vector boson and additional massless particles. The captions state
the perturbative order, the channel and the type of contributions (“r” for real, “v” for virtual, or their
interference).

• NNLO: qq̄, qg, gg, qq, qq′,

where q′ denotes a quark different from q and the channels involving q̄ are not listed separately.

The first step in the evaluation of the Feynman integrals is the reduction to master integrals using the
Laporta algorithm [29]. We use our own C++ implementation for this step. The NNLO master integrals
are taken from Ref. [10] (see also [30]) which guarantees that the final result is available including O(ǫ)
terms.

We present our result using the same notation as in Ref. [31], but set equal the renormalization and
the factorization scale, which does not reduce the complexity of the convolutions to be calculated. In

particular, we provide terms up to O(ǫ2) for the NLO quantities ∆
(1)
qq̄ ,∆

(1)
qg of Eqs. (B.2), (B.17) and up

to O(ǫ) for the NNLO results in Eqs. (B.7), (B.18), (B.21), (B.22), (B.24)-(B.26). For ǫ = 0 our results
agree with Refs. [31, 32]. We note that, in order to find agreement we had to set the color factor TF = 1/2
in some cases. Moreover in the case of the gluon-gluon contribution the color factor CACF /TF has been
attached to the labels coeff[] that will be discussed below. We refrain from explicitly listing analytic
results in the paper but provide computer-readable expressions in Ref. [33] (see also Appendix).

It is convenient to identify our partonic cross sections with results of Eq. (A.20) from Ref. [31] which
provides a complete expression for the hadronic cross section. The partonic results are easily obtained
by removing in that equation the convolutions with the parton density functions, and multiplying by
x. Furthermore, in our expressions the summation over initial-state quark and anti-quark flavours is
not contained. However, our expressions in the file sig_DY_LO_NLO_NNLO.m contain the prefactors of
the quantities x∆(x) collected in coeff[]. In Tab. 2 we provide translation rules from our analytic
expressions to the notation used in Eq. (A.20) of Ref. [31].
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channel sig_DY_LO_NLO_NNLO.m lines of (A.20) in [31] contains

σ̃
(0)
qq̄ rsigc["LO", "qb"] 2 ∆

(0)
qq̄ = δ(1 − x)

σ̃
(1)
qq̄ rsigc["NLO", "qb"] 2 ∆

(1)
qq̄

σ̃
(1)
qg rsigc["NLO", "qg"] 6 ∆

(1)
qg

σ̃
(2)
gg rsigc["NNLO", "gg"] 11 ∆

(2)
gg

σ̃
(2)
qq̄ rsigc["NNLO", "qb"] 2-5 ∆

(2)
qq̄ ,∆

(2)
qq̄,B2 ,∆

(2)
qq̄,BC ,∆

(2),V
qq̄,AB

σ̃
(2)
qg rsigc["NNLO", "qg"] 6 ∆

(2)
qg

σ̃
(2)
qq′ rsigc["NNLO", "qp"] 7,8 ∆

(2)
qq,C2 ,∆

(2),V
qq̄,CD

σ̃
(2)
qq rsigc["NNLO", "qq"] 9,10 ∆

(2)
qq,CE ,∆

(2)
qq,CF

Table 2: The second column contains the notation for the order and channel shown in the first column
as used in the file sig_DY_LO_NLO_NNLO.m. The third column indicates in which lines of Eq. (A.20) from
Ref. [31] one can find the corresponding expression. The last column lists the expressions of Ref. [31] one
has to consider in order to get our result for the partonic cross section of the second column.

We are now in the position to evaluate all convolutions needed up to N3LO using MT. As a first example
we consider the convolution

σ̃
(1)
qq̄

x
⊗ P (1)

ns , (26)

which is a contribution to NNLO. Let us emphasize once more that σ̃
(1)
qq̄ is proportional to x∆

(1)
qq̄ . The

corresponding Mathematica session looks as follows:

In[1] := <<MT‘

In[2] := <<sig_DY_LO_NLO_NNLO.m

In[3] := <<splitfnsMVV.m

In[4] := Convolution[(rsigc["NLO", "qb"]/x)/.{CF->4/3, CA->3, TF->1/2},

Pqq1/.splitfnsMVV, x];

In[5] := Collect[%, {coeff[_], ep, Lv, HPL[__], PlusDistribution[__],nl}, Together]

Out[5] = coeff(”Cii[qi, bj] ∗ (vi∧2 + ai∧2) ∗ alphas/Pi”)

(

. . .−
32(2x2 + 1)H2(x)

9(x− 1)
+. . .+Lv

(

. . .−
32

9
(x+1)H1(x)+

2

27
(8π2

−27)δ(1−x)+. . .

)

+. . .

+ ep

(

. . .−
256

9
(x+ 1)H1,1,1(x) + . . .+

4

27
(−96ζ(3)− 48 + 19π2)

[ 1

1− x

]

+

−

2(−72x2ζ(3) + . . .+ 60)

27(x − 1)

)

+ ep2

(

. . .−
320(x2 + 1)H1,2,1(x)

9(x− 1)
+ . . .

+Lv3

(

. . .−
16

27
(x+ 1)H1(x) +

1

81
(8π2

− 27)δ(1− x) + . . .

)

+ . . .+
160

27

[ log4(1− x)

(1− x)

]

+

+ . . .

))

As one can see, all prefactors are collected in the arguments of the function coeff[]. Furthermore, the
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final result is available up to order ǫ2 which is needed since the convolution with P
(1)
ns is accompanied by

a pole in ǫ and the NNLO expression gets multiplied by a renormalization constant which also has an
1/ǫ-term.

One of the most involved convolutions which we have to consider is

σ̃
(2)
qq̄

x
⊗ P (1)

ns , (27)

since σ
(2)
qq̄ contains HPLs up to order four and plus distributions up to

[

ln4(1−x)
1−x

]

+
. Using MT the calcu-

lation looks as follows

In[6] := Convolution[(rsigc["NNLO","qb"]/x)/.{CF->4/3,CA->3,TF->1/2},

Pqq1/.splitfnsMVV,x];

In[7] := Collect[%,{coeff[_],ep,Lv,HPL[__],PlusDistribution[__],nl},Together]

Out[7] = coeff(”delta[i, j] ∗ Sum[k, l,Q] ∗ Cff[qk,bl] ∗ (vk∧2 + ak∧2) ∗ alphas∧2/Pi∧2”)(. . .)

+ coeff(”delta[i, j] ∗ Sum[k,QB] ∗ (Cif[qi, bk] + Cif[bi, qk]) ∗ (vi∧2 + ai∧2)

∗alphas∧2/Pi∧2”)(. . .)

+ coeff(”Cii[qi, bj] ∗ (vi∧2 + ai∧2) ∗ alphas∧2/Pi∧2”)

(

. . .+

(

8nl(11x2 + 12)

27(x − 1)
−

4(605x2
− 922x + 617)

27(x− 1)

)

H1,2(x)

+ . . .+ Lv2

(

. . .−
2

27
nl(x + 5) + . . .

)

+ . . .

+ ep

(

. . .−
4(593x2 + 635) H1,0,0,0,0(x)

27(x − 1)
−

4(1411x2 + 1507) H1,1,0,0,0(x)

27(x− 1)
+ . . .

+

(

464nl

243
+

8

243
(1712π2

− 429)

)

[ log3(1− x)

(1− x)

]

+

+

(

40

27
−

80nl

27

)

[ log4(1− x)

(1− x)

]

+

−

1024

27

[ log5(1− x)

(1− x)

]

+

+ . . .

))

where the notation for the symbols is given in the Appendix.

6. Summary

The main purpose of this paper is the presentation of the Mathematica package MT which can be used
to compute convolution integrals. An algorithm has been implemented based on Mellin transformation
and the introduction of generalized derivatives which allows for a simultaneous treatment of HPLs and
delta and plus distributions on the same footing. MT contains several functions to perform (inverse)
Mellin transforms and manipulations of harmonic sums and plus distributions. Furthermore, Mellin
transformations and convolutions can also be performed numerically.

To exemplify the functionality of MT we have considered all convolution integrals to the Higgs boson
production and Drell-Yan process up to N3LO in QCD perturbation theory. As a by-product the NNLO
Drell-Yan cross section has been computed including O(ǫ) terms.

MT can be downloaded from the website [33] which also contains the splitting functions and the partonic
cross sections for the Drell-Yan process in computer-readable form. The partonic cross sections for Higgs
production can be found on the website [19].
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ep ǫ
nl nl

CF CF

CA CA

TF TF

Lv ln(µ2/Q2)
coeff[] Labels in the argument are described in Tab. 4.

Table 3: Notation used in sig_DY_LO_NLO_NNLO.m.

alphas αs

Sum[k,QB]
∑

k∈Q,Q̄

qi qi
bi q̄i

Cii[qi,bj] coupling matrix C ii(qi, q̄j) to vector bosons
Cif[qi,qj] coupling matrix C if(qi, qj) to vector bosons
Cff[qk,bl] coupling matrix Cff(qk, q̄l) to vector bosons

vi vi
ai ai

delta[i,j] δij

Table 4: Symbolic notation used in the argument of coeff[] in sig_DY_LO_NLO_NNLO.m. For further
explanations see also Appendix A of Ref. [31].
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Appendix: Description of sig_DY_LO_NLO_NNLO.m

The Mathematica file sig_DY_LO_NLO_NNLO.m contains the partonic cross sections for Drell-Yan produc-
tion at LO, NLO and NNLO encoded in the functions listed in Tab. 2. The meaning of the symbols used
in sig_DY_LO_NLO_NNLO.m is explained in Tabs. 3 and 4 where CF = 4/3, CA = 3 and TF = 1/2 are QCD
color factors, nl counts the number of massless quarks and ǫ = (4−D)/2 is the regularization parameter

with D being the space-time dimension. µ is the renormalization scale and
√

Q2 is the invariant mass of
the produced lepton pair.
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