PDRF: A General Dispersion Relation Solver for Magnetized Multi-Fluid Plasma

Hua-sheng XIE
Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, 310027, PRC

Abstract

A general dispersion-relation solver that numerically evaluates the full propagation properties of all the waves in fluid plasmas is presented. The effects of anisotropic pressure, external magnetic fields and beams, relativistic dynamics, as well as local plasma inhomogeneity are included. [Computer Physics Communications, (2013); doi: 10.1016/j.cpc.2013.10.012; code: http://cpc.cs.qub.ac.uk/summaries/AERF_v1_0.html]

Program summary

Title of program: PDRF

Catalogue identifier: AERF_vl_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERF_vl_0.html
Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland
Computer for which the program is designed and others on which it has been tested: Computers: Any computer running MATLAB 7. Tested on DELL OptiPlex 380.
Installations: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, PRC
Operating systems under which the program has been tested: Windows XP Pro
Programming language used: MATLAB 7
Memory required to execute with typical data: 10 M
No. of lines in distributed program, including test data, etc.: 340
No. of bytes in distributed program, including test data, etc.: 12000
Distribution format: .tar.gz
Nature of physical problem: This dispersion relation solver calculates all the solutions and gives corresponding polarizations for magnetized fluid plasma with arbitrary number of components and arbitrary orient wave vector, with and without anisotropic pressure, relativistic, beam and local inhomogeneity effects.
Method of solution: Solving as matrix eigenvalue problem.
Restrictions on the complexity of the problem: No kinetic and nonlinear effects.
Typical running time: About 1 second on a Intel Pentium 2.60 GHz PC.
Unusual features of the program: Giving all the solutions and polarizations.
Keywords: Plasma physics, Dispersion relation, Multi-Fluid, Waves, Instabilities, Matrix eigenvalue PACS: $52.27 . \mathrm{Cm}, 52.27 . \mathrm{Ny}, 52.35 . \mathrm{Qz}, 52.35 . \mathrm{Hr}, 52.35 .-\mathrm{g}$

1. Introduction

Since only a few relatively simple dispersion relations in plasma physics are analytical tractable, it is of practical interest to develop general numerical schemes for obtaining and solving the dispersion relations of given plasma systems. Traditionally, one obtains the dispersion relations from the determinant of the corresponding dielectric
tensor for the eigenvalues of the wave solutions, such as that of the kinetic code WHAMP (Waves in Homogeneous Anisotropic Multicomponent Magnetized Plasma) by Ronnmark[1, 2] and the Mathematica fluid code for magnetized parallel beam plasmas by Bret[3]. It is however difficult to generalize such treatments to include arbitrary number of fluid species with good convergence or to obtain all the solutions of a given system.

In this work, we use a full-matrix approach to transform the task of obtaining the dispersion relations to an equivalent matrix eigenvalue problem by introducing a general dispersion relation solver PDRF (Plasma Dispersion Relation - Fluid Version) for magnetized multi-fluid plasmas including anisotropic, relativistic, beam and weak inhomogeneity effects. Our solver should be useful for investigating wave propagation properties in astrophysical, space, laser, and laboratory plasmas.

2. Theory and Method

We consider a multi-fluid plasma in an external magnetic field $\boldsymbol{B}_{0}=\left(0,0, B_{0}\right)$. The flow velocity of the fluid component j is $\boldsymbol{v}_{j 0}=\left(v_{j 0 x}, v_{j 0 y}, v_{j 0 z}\right)$. The species densities are allowed to be locally inhomogeneous, with $\nabla n_{j 0} / n_{j 0}=$ $\left(\epsilon_{n j x}, \epsilon_{n j y}, 0\right)=$ constant. For simplicity, temperature gradient effects are ignored, and the wave vector is assumed to be $\boldsymbol{k}=\left(k_{x}, 0, k_{z}\right)=(k \sin \theta, 0, k \cos \theta)$. We do not need to obtain the 3 by 3 dispersion relation matrix for $\boldsymbol{E}=\left(E_{x}, E_{y}, E_{z}\right)$, as done in many existing analytical or numerical treatments, such as in Stix[4], Ronnmark[1, 2] and Bret[3]. Instead, we use the original full dispersion relation matrix and treat it as a matrix eigenvalue problem, instead of directly solving for its determinant.

2.1. Governing equations

We start with the fluid equations

$$
\begin{gather*}
\partial_{t} n_{j}=-\nabla \cdot\left(n_{j} \boldsymbol{v}_{j}\right), \tag{1a}\\
\partial_{t} \boldsymbol{u}_{j}=-\boldsymbol{v}_{j} \cdot \nabla \boldsymbol{u}_{j}+\frac{q_{j}}{m_{j}}\left(\boldsymbol{E}+\boldsymbol{v}_{j} \times \boldsymbol{B}\right)-\frac{\nabla \boldsymbol{P}_{j}}{\rho_{j}}-\sum_{i}\left(\boldsymbol{u}_{i}-\boldsymbol{u}_{j}\right) v_{i j}, \tag{1b}\\
\partial_{t} \boldsymbol{E}=c^{2} \nabla \times \boldsymbol{B}-\boldsymbol{J} / \epsilon_{0}, \tag{1c}\\
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E}, \tag{1d}
\end{gather*}
$$

where $\boldsymbol{u}_{j}=\gamma_{j} \boldsymbol{v}_{j}$, and

$$
\begin{gather*}
\boldsymbol{J}=\sum_{j} q_{j} n_{j} \boldsymbol{v}_{j} \tag{2a}\\
d_{t}\left(P_{\| j} \rho_{j}^{-\gamma_{\| j}}\right)=0 \tag{2b}\\
d_{t}\left(P_{\perp j} \rho_{j}^{-\gamma_{\perp j}}\right)=0 \tag{2c}
\end{gather*}
$$

where $\rho_{j} \equiv m_{j} n_{j}, c^{2}=1 / \mu_{0} \epsilon_{0}, \gamma_{j}=\left(1-v_{j}^{2} / c^{2}\right)^{-1 / 2}$, and $\gamma_{\| j}$ and $\gamma_{\perp j}$ are the parallel and perpendicular adiabatic coefficients, respectively. Furthermore, $P_{\|, \perp}=n T_{\|, \perp}, \boldsymbol{P}=P_{\|} \hat{\boldsymbol{b}} \hat{\boldsymbol{b}}+P_{\perp}(\boldsymbol{I}-\hat{\boldsymbol{b}} \hat{\boldsymbol{b}})$ and $\hat{\boldsymbol{b}}=\boldsymbol{B} / B$. Note that our anisotropy model differs from that of CGL[6], but can be reduced to that of Bret and Deutsch[5] by setting $\gamma_{\| j}=\gamma_{\perp j}=\gamma_{T j}$. By further setting $T_{\perp j}=T_{\| j}$, we can recover the isotropic pressure case.

After linearizing, (2) becomes

$$
\begin{gather*}
\boldsymbol{J}=\sum_{j} q_{j}\left(n_{j 0} \boldsymbol{v}_{j 1}+n_{j 1} \boldsymbol{v}_{j 0}\right), \tag{3a}\\
P_{\|, \perp j 1}=c_{\|, \perp j}^{2} n_{j 1}, \tag{3b}
\end{gather*}
$$

where $c_{\|, \perp j}^{2}=\gamma_{\|, \perp j} P_{\|, \perp j 0} / \rho_{j 0}$ and $\boldsymbol{P}_{j 0}=n_{j 0} \boldsymbol{T}_{j 0}$.
We note that

$$
\nabla \cdot \boldsymbol{P}_{j 1}=\left(i k_{x}, 0, i k_{z}\right) \cdot\left[\begin{array}{ccc}
P_{\perp j 1} & 0 & \Delta_{j} B_{x 1} \tag{4}\\
0 & P_{\perp j 1} & \Delta_{j} B_{y 1} \\
\Delta_{j} B_{x 1} & \Delta_{j} B_{y 1} & P_{\| j 1}
\end{array}\right],
$$

where $\Delta_{j} \equiv\left(P_{\| j 0}-P_{\perp j 0}\right) / B_{0}$ and $\beta_{\|, \perp j}=2 \mu_{0} P_{\|, \perp j} / B_{0}^{2}$. The off-diagonal terms coming from the tensor rotation (see similar expressions in Appendix A from $\hat{\boldsymbol{b}}_{0}$ to $\hat{\boldsymbol{b}}$ are related to energy exchange and are important for the anisotropic instabilities. An incorrect treatment or ignoring these off-diagonal terms can cause loss of the firehose and other unstable anisotropic modes.

2.2. Full-matrix treatment

The linearized version of 11 with $f=f_{0}+f_{1} e^{i k \cdot r-i \omega t}, f_{1} \ll f_{0}$ is equivalent to a matrix eigenvalue problem

$$
\begin{equation*}
\lambda \boldsymbol{A} \boldsymbol{X}=\boldsymbol{M} \boldsymbol{X} \tag{5}
\end{equation*}
$$

with $\lambda=-i \omega$ the eigenvalue and \boldsymbol{X} the corresponding eigenvector, which also gives the polarization of each nor$\mathrm{mal} /$ eigen mode solution. Similar treatments can be found in [7] for the MHD equations and [8] for the ten-moment equations.

Accordingly, we have $\boldsymbol{X}=\left(n_{j 1}, v_{j 1 x}, v_{j 1 y}, v_{j 1 z}, E_{1 x}, E_{1 y}, E_{1 z}, B_{1 x}, B_{1 y}, B_{1 z}\right)^{T}, \boldsymbol{u}_{j 1}=\gamma_{j 0}\left[\boldsymbol{v}_{j 1}+\gamma_{j 0}^{2}\left(\boldsymbol{v}_{j 0} \cdot \boldsymbol{v}_{j 1}\right) \boldsymbol{v}_{j 0} / c^{2}\right]=$ $\left\{a_{j p q}\right\} \cdot \boldsymbol{v}_{j 1}(p, q=x, y, z), \gamma_{j 0}=\left(1-v_{j 0}^{2} / c^{2}\right)^{-1 / 2}$, and \boldsymbol{A} is given by

$$
\left[\begin{array}{cccccccccc}
\{1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{6}\\
0 & a_{j x x} & a_{j x y} & a_{j x z} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{j y x} & a_{j y y} & a_{j y z} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{j z x} & a_{j z y} & \left.a_{j z z}\right\} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

For simplicity, the relativistic effects in the friction terms $v_{i j}$ are ignored. The matrix \boldsymbol{M} is then given by ($v_{i j}$ terms when $i \neq j$ are not given explicitly here)
where $\omega_{c j}=q_{j} B_{0} / m_{j}, q_{e}=-e, \omega_{p j}^{2}=n_{j 0} q_{j}^{2} / \epsilon_{0} m_{j}$, and $\left\{b_{j p q}\right\}=v_{j j}-i\left(\boldsymbol{k} \cdot \boldsymbol{v}_{j 0}\right) \cdot\left\{a_{j p q}\right\}$. Furthermore,

$$
\left\{a_{j p q}\right\} \equiv\left[\begin{array}{ccc}
a_{j x x} & a_{j x y} & a_{j x z} \tag{8}\\
a_{j y x} & a_{j y y} & a_{j y z} \\
a_{j z x} & a_{j z y} & a_{j z z}
\end{array}\right]=\left[\begin{array}{ccc}
\gamma_{j 0}+\gamma_{j 0}^{3} v_{j 0 x}^{2} / c^{2} & \gamma_{j 0}^{3} v_{j 0 x} v_{j 0 y} / c^{2} & \gamma_{j 0}^{3} v_{j 0 x} v_{j 0 z} / c^{2} \\
\gamma_{j 0}^{3} v_{j 0 x} v_{j 0 y} / c^{2} & \gamma_{j 0}+\gamma_{j 0}^{3} v_{j 0 y}^{2} / c^{2} & \gamma_{j 0}^{3} v_{j 0 y} v_{j 0 z} / c^{2} \\
\gamma_{j 0}^{3} v_{j 0 x} v_{j 0 z} / c^{2} & \gamma_{j 0}^{3} v_{j 0 z} v_{j 0 y} / c^{2} & \gamma_{j 0}+\gamma_{j 0}^{3} v_{j 0 z}^{2} / c^{2}
\end{array}\right]
$$

For a plasma containing s species of particles, the dimensions of \boldsymbol{A} and \boldsymbol{M} are $(4 s+6) \times(4 s+6)$. We can get all the linear harmonic wave solutions of the system without any convergence difficulty using a standard matrix eigenvalue solver, e.g., LAPACK or the function eig() in MATLAB. Here, a MATLAB code PDRF for solving the above eigenvalue problem is provided. By setting γ_{j} to 1, i.e., $\boldsymbol{A}=\boldsymbol{I}$ and $\left\{a_{j p q}\right\}=\boldsymbol{I}$, PDRF reduces to the non-relativistic case.

2.3. Validity

For the perturbation analysis, we have assumed $Q_{0}=\sum_{j} q_{j} n_{j 0} \sim 0, \boldsymbol{J}_{0}=\sum_{j} q_{j} n_{j 0} \boldsymbol{v}_{j 0} \sim 0, \boldsymbol{v}_{j 0} \cdot \nabla n_{j 0} \sim 0$ and $\boldsymbol{F}_{j 0}=q_{j} \boldsymbol{E}_{0}+q_{j}\left(\boldsymbol{v}_{j 0} \times \boldsymbol{B}_{0}\right)-\nabla \boldsymbol{P}_{j 0} / n_{j 0}-m_{j} \sum_{i}\left(\boldsymbol{v}_{i 0}-\boldsymbol{v}_{j 0}\right) v_{i j} \sim 0$. In practice, these often-used assumptions may not always be valid. For example, a finite external current \boldsymbol{J}_{0} would be associated with an external $\boldsymbol{B}_{0 J}$ field. To

Table 1: Validity of the linearization.

-	1	2	3	4	5	6	7
Case $\neq 0$	$\sum_{j} q_{j} n_{j 0}$	$\sum_{j} q_{j} n_{j 0} \boldsymbol{v}_{j 0}$	\boldsymbol{E}_{0}	$\nabla \boldsymbol{P}_{j 0}$	$\boldsymbol{v}_{j 0} \times \boldsymbol{B}_{0}$	$\sum_{i}\left(\boldsymbol{v}_{i 0}-\boldsymbol{v}_{j 0}\right) v_{i j}$	$\boldsymbol{v}_{j 0} \cdot \nabla n_{j 0}$

Table 2: Comparison of the cold plasma solutions using the matrix method and Swanson's polynomial method 9.

ω^{M}	± 10.5152	± 10.0031	± 9.5158	$\pm(2.4020 \mathrm{E}-4-\mathrm{i} 8 \mathrm{E}-19)$	$\pm(1.1330 \mathrm{E}-4-\mathrm{i} 1 \mathrm{E}-16)$	± 0	± 0
ω^{S}	± 10.5152	± 10.0031	± 9.5158	$\pm 2.4020 \mathrm{E}-4$	$\pm 1.1330 \mathrm{E}-4$	-	-

determined the latter, we will need the boundary conditions or other information. That could also mean that the system is no longer homogenous. For example, a local current can generate an inhomogeneous magnetic field around it. Such finite lowest-order quantities cannot be removed by simple coordinate transformations. Similar difficulties can appear for non-parallel external beams. On the other hand, finite $\boldsymbol{v}_{\perp 0}$ is allowed if there are external electric fields, local inhomogeneities, gravitational force, etc. in the perpendicular direction. Moreover, when global gradient or inhomogeneity effects are included, the system will not be near uniform and a full treatment including the space dependent lowest order terms as well as the appropriate boundary conditions are required. However, here we are interested only in the local perturbations, so that the harmonic analysis, namely an $e^{i \boldsymbol{k} \cdot \boldsymbol{r}-i \omega t}$ dependence for the first order (linear) quantities, can still be used [4]). Possible breakdowns of the assumptions in PDRF are summarized in Table 1

3. Benchmarks

3.1. Cold plasma

The numerical solutions ω^{M} of (5] and that ω^{S} of Swanson's fifth order polynomial method[9] for a cold twocomponent plasma in the absence of an external beam are shown in Table 2 for $k c=0.1, \theta=\pi / 3, m_{i} / m_{e}=1836$ and $\omega_{p e}=10 \omega_{c e}$ (Note: hereafter, $\left.\omega_{c j}=\left|\omega_{c j}\right|\right)$. We see that the two results are fully consistent. The small difference $\left(<10^{-15}\right)$ can be attributed to numerical errors. The dispersion curves for $\omega_{r, i}$ versus k and θ are given in Fig. 1 , for $m_{i} / m_{e}=4$ and $\omega_{p e}=2 \omega_{c e}$.

3.2. The firehose and mirror instabilities

Two well-known low-frequency hydromagnetic anisotropic instabilities are the firehose and mirror instabilities. The dispersion relation for the firehose (or, anisotropic shear Alfvén) mode is $\left(\frac{\omega}{k_{z} v_{A}}\right)^{2} \simeq 1+\sum_{j} \frac{\beta_{\perp j}-\beta_{\| j}}{2}$. For $k_{z} \ll k_{\perp}$, using the reduced expression from the bi-Maxwellian dispersion relation, we can obtain the mirror instability threshold $1+\sum_{j} \beta_{\perp j}\left(1-\frac{\beta_{\perp j}}{\beta_{\| j}}\right)<0$ [10]. A correction (replacing Δ_{j} by $2 \Delta_{j}$) in the matrix element $M_{v_{j l 2}, B_{x 1}}$ is required to give the same mirror instability threshold of the kinetic bi-Maxwellian plasma prediction since there is an extra factor 2 in the bi-Maxwellian expression[11], i.e.,

$$
\begin{equation*}
\delta p_{\perp}=2 p_{\perp}\left(1-\frac{p_{\perp}}{p_{\|}}\right) \delta B_{\perp}, \tag{9}
\end{equation*}
$$

when compared to (4). A similar difference for the mirror instability solutions of the single-fluid MHD and the bi-Maxwellian kinetic equations also exists [12].

Figure 2 shows the thresholds of the two instabilities versus β_{\perp} for $\beta_{\|, \perp e}=0$ and $\beta_{\| i}=8$. The non-relativistic results for both the with and without the factor 2 corrected mirror instabilities are given. For the without-correction case, the mirror instability threshold should be $1+\sum_{j} \frac{\beta_{\perp j}}{2}\left(1-\frac{\beta_{\perp j}}{\beta_{\| j}}\right)<0$, which is confirmed in Fig. 2 .a). We see that in general the numerical and analytical results agree. It should be pointed out that the CGL anisotropic fluid model (not considered) can involve other terms originating from the transformation of $\delta \boldsymbol{B}$ to δP.
(a) ω_{r} vs. k, $\theta=45^{\circ}$
(b) ω_{i} vs. $k, m_{1} / m_{e}=4$
(c) ω_{r} vs. $\theta, \mathrm{kc}=2$
(d) ω_{i} vs. θ

Figure 1: The dispersion curves $\omega_{r, i}$ versus k and θ for $m_{i} / m_{e}=4$ and $\omega_{p e}=2 \omega_{c e}$.

Figure 2: The firehose and mirror instability thresholds. The dash lines are from the analytical predictions.

Table 3: Comparison of the relativistic beam plasma solutions from the PDRF and Bret's code 3].

	ω^{M}	3.2736	3.2731	0.9934	0.3000	0.3000	$0.2890-\mathrm{i} 0.1664$	$0.2890+\mathrm{i} 0.1664$
$B_{0}=0$	ω^{B}	3.2736	3.2731	0.9934	0.3000	0.3000	$0.2890-\mathrm{i} 0.1664$	$0.2890+\mathrm{i} 0.1664$
Un-magnetized	ω^{M}	$\mathrm{E}-16$	0.0000	-0.0300	-0.0300	-1.0313	-3.2732	-3.2736
	ω^{B}	0	0	-0.0300	-0.0300	-1.0313	-3.2732	-3.2736
	ω^{M}	3.2945	3.2693	1.3427	0.5168	0.0771	$0.2999+\mathrm{i} 0.0034$	$0.2999-\mathrm{i} 0.0034$
$B_{0} \neq 0$	ω^{B}	3.2945	3.2693	1.3427	0.5168	0.0771	$0.2999+\mathrm{i} 0.0034$	$0.2999-\mathrm{i} 0.0034$
Magnetized	ω^{M}	0.0440	$\mathrm{E}-16$	$\mathrm{E}-16$	-0.1019	-1.3983	-3.2732	-3.2910
	ω^{B}	0.0440	0	0	-0.1019	-1.3983	-3.2732	-3.2910

Figure 3: The maximum growth rate $\gamma_{\max }$ vs. $\left(k_{x}, k_{z}\right)$ for the relativistic electron beam mode with and without background B_{0}.

3.3. Relativistic beam modes

We now test the results of Bret [3]. The ions are immobile. For the beam electrons, we have $\gamma_{b}=4.0$ and $n_{b}=0.1 n_{p}$, where the subscripts b and p denote the beam and background electron quantities. For the background electrons we have $v_{p}=-v_{b} n_{b} / n_{p}$. For $\left(Z_{x}, 0, Z_{z}\right)=\boldsymbol{k} v_{b} / \omega_{p p}=(0.3,0,3.0)$, the PDRF result ω^{M} and Bret's result ω^{B} are listed in Table3 We see that they are indeed the same for both magnetized ($B_{0} \neq 0, \omega_{c e}=\omega_{p p}$) and unmagnetized ($B_{0}=0$) plasmas.

Figure 3 shows the maximum growth rate of the beam mode. To produce the results in Fig 3, the Bret method using Mathematica takes about 1 minute, whereas PDRF using MATLAB takes a few seconds.

3.4. The Doppler effects

In the traditional non-relativistic multi-fluid or kinetic plasma systems, the Maxwell equations are Lorentz invariant and the conservation equations are Galilean invariant, so that the overall system is neither Galilean invariant

$$
\begin{equation*}
\boldsymbol{k}^{\prime}=\boldsymbol{k}, \quad \omega^{\prime}=\omega-\boldsymbol{k} \cdot \boldsymbol{v}_{0} \tag{10}
\end{equation*}
$$

nor Lorentz invariant

$$
\begin{equation*}
\boldsymbol{k}^{\prime}=\gamma\left(\boldsymbol{k}_{\|}-\boldsymbol{v}_{0} \omega / c^{2}\right)+\boldsymbol{k}_{\perp}, \quad \omega^{\prime}=\gamma\left(\omega-\boldsymbol{k} \cdot \boldsymbol{v}_{0}\right) \tag{11}
\end{equation*}
$$

which can lead to inaccurate treatment of the Doppler effects. For instance, the solutions (both the frequency and the growth rate) for the electron beam system ($v_{e 0}=v_{d}, v_{i 0}=0$) and the reverse ion beam system ($v_{e 0}=0, v_{i 0}=-v_{d}$) would be very different, although these two systems are equivalent under a coordinate transformation. On the other hand, the relativistic multi-fluid plasma equations should be Lorentz invariant.

Figure 4: Dispersion and polarization of the quasi-electrostatic cold-plasma LHW. One can see that for large $k c$, (a) the numerical solution $\omega_{r}(k)$ (red curve) approaches the analytical value $\omega_{L H}=\sqrt{\omega_{c i} \omega_{c e}}$ (green dashed line), and (b) the expression $\left|\boldsymbol{k} \times \boldsymbol{E}_{1}\right| /\left|\boldsymbol{k} \cdot \boldsymbol{E}_{1}\right|$ (red curve) for $\omega_{L H}=0.5$ becomes very small, i.e., $\simeq 10^{-2} \ll 1$ (green dashed line).

We now consider the Lorentz invariant (11) for the single-ion $(s=e, i)$ relativistic cold plasma modes. The relativistic background density is $n_{0}=\gamma\left(v_{0}\right) n_{0}^{0}$, where v_{0} is the velocity of the moving frame. The initial parameters are $m_{i}=4, m_{e}=1, q_{i}=-q_{e}=1, n_{i}=n_{e}=4.0, v_{0}=0, v_{i 0 z}=v_{0}, v_{e 0 z}=0, k_{x} c=0.5$, and $k_{z} c=1.0$, which lead to several solutions. For convenience, we consider the solution $\omega=2.792204183976196$ (which corresponds to the largest real ω) and go to the ion moving frame with $v_{i 0 z}^{\prime}=0$ (but $v_{e 0 z}^{\prime}=-v_{0}$), which leads to $k_{x}^{\prime} c=0.5$ and $k_{z}^{\prime} c=-3.471022809144551$. The electron and ion densities then become $n_{e 0}^{\prime}=9.176629354822472$ and $n_{i 0}^{\prime}=$ 1.743559577416269 , respectively. Using these new parameters, PDRF gives the largest real part solution $\omega_{M}^{\prime}=$ $4.341014114998466+0 i$, and $\sqrt{11}$ yields $\omega_{L}^{\prime}=4.341014114998465+0 i$. Therefore, the difference between ω_{M}^{\prime} and ω_{L}^{\prime} is only in the last decimal place.

For the $\mathfrak{J} \omega \neq 0$ modes, the Doppler shifted wave vector is not limited to a real number but can be complex, which is also supported by PDRF. In principle, one can also consider the effects of nonparallel beams, as well as that of $v_{i j}$ and \boldsymbol{P}, on the Doppler shift.

3.5. Low hybrid wave polarization and gradient drift instability

The lower hybrid wave (LHW, $k_{\|} \simeq 0$) is a quasi-electrostatic mode, i.e., $\left|\boldsymbol{k} \times \boldsymbol{E}_{1}\right| \ll\left|\boldsymbol{k} \cdot \boldsymbol{E}_{1}\right|$. The polarization property of the LHW obtained from PDRF is shown in Fig. 4. which confirms the quasi-electrostatic nature of the wave.

Another interesting benchmark is the LH drift wave [13, 14],

$$
\begin{equation*}
1-\frac{\omega_{p i}^{2}}{\left(\omega-k v_{0}\right)^{2}}+\frac{\omega_{p e}^{2}}{\omega_{c e}^{2}}\left(1+\frac{\omega_{p e}^{2}}{k^{2} c^{2}}-\frac{\omega_{c c} \epsilon_{n}}{k \omega}\right)=0 \tag{12}
\end{equation*}
$$

where ϵ_{n} is the gradient parameter and $v_{0}=v_{i 0}-v_{e 0}$ is the drift velocity in the electron frame, which can be due to the density or pressure gradient or $\boldsymbol{E}_{0} \times \boldsymbol{B}_{0}$. The equilibrium drift velocity is $\boldsymbol{v}_{j 0}=\boldsymbol{v}_{D j}=-\frac{T_{j}}{q_{j} \boldsymbol{B}_{0}} \nabla\left(\ln n_{j 0}\right) \times \hat{\boldsymbol{b}}_{0}$.

For $v_{0}=0$ and $\epsilon_{n}=0$, (12) yields the usual LHW solution, which is very close to the PDRF solution, as shown in Figs. 5 (a) and (b). For $v_{0} \neq 0$, a typical result is shown in Figs. 5 (c) and (d), for $\epsilon_{n i y}=\epsilon_{n e y}=\epsilon_{n}=-0.15$ and $v_{i 0 x}=-v_{e 0 x}=v_{0} / 2=0.01$. We can see that the PDRF solutions also qualitatively agree with (12). The quantitative disagreement can be attributed to the fact that the dispersion relation $\sqrt{12}$ is approximate and is derived using a Galilean transformation, whereas PDRF is more exact and is not Galilean invariant. For example, for cold plasmas with $v_{0}=0$ but $\epsilon_{n} \neq 0$, the first row of the matrix \boldsymbol{M} is zero, so that ϵ_{n} does not affect the solutions, whereas ϵ_{n} will affect (12) when $v_{0}=0$.

Figure 5: Low hybrid drift instability. Red dot lines are solutions from 12 with transformation $\omega^{\prime}=\omega-k v_{0} / 2$.

3.6. Other effects

In PDRF, the effects of the pressure \boldsymbol{P}, the density gradient $\nabla n_{0} / n_{0}$ (for local inhomogeneity) and collisions $v_{i j}$ are given by simple models and the relativistic effects of these parameters have not been included. However, it is easy to modify the equations (1) and (2), or the corresponding matrices \boldsymbol{A} and \boldsymbol{M}, when improvement of the model equations is needed.

4. Discussion

Usually one identifies a wave through its frequency. To see its other properties such as the polarization, one should also evaluate its eigenvectors. For example, strictly speaking, a pure shear Alfén wave should not involve pressure perturbations, and a pure ion acoustic wave (IAW) should not involve magnetic perturbations. In the preceding section, we have used the eigenvector to verify the quasi-electrostatic property of LHW. Information of the eigenvectors can be useful for identifying different waves having the same or nearly the same frequencies, for efficiently exciting specific waves by fixing the initial condition or the source (such as an antenna), for diagnostics of more detailed properties of the waves, etc. This is because the perturbations in a system are given by $X=\sum_{j} c_{j} X_{j}$, where X_{j} are the eigenvectors of the eigenmode and c_{j} is the corresponding coefficient. The power spectrum of a single wave parameter (e.g., n_{1} or $B_{x 1}$) cannot accurately determine the coefficients, since different parameter values will give different power spectrums.

With conventional dispersion relation solvers, usually only the wave frequency is obtained. One has to obtain the corresponding eigenvectors separately. PDRF provides a way to obtain the eigenvectors together with the eigenvalues.

To summarize, in this paper a general multi-fluid dispersion relation solver is provided, which shows good performance in several benchmark cases. The solver can include effects that cannot be handled by conventional solvers. The full-matrix treatment provides a general and accurate method for obtaining the dispersion relation of waves in complex fluid plasma systems. A similar treatment for kinetic plasma systems is still under development.

Acknowledgements

The author would like to thank M. Y. Yu for improving the manuscript. This work is partly inspired when the author was collaborating with Liu Chen, W. Kong, Y. Lin and X. Y. Wang in the GeFi project. Discussions and comments from Y. Xiao and Ling Chen are also appreciated. This work is supported by Fundamental Research Fund for Chinese Central Universities.

Appendix A. Extension to unmagnetized plasmas

Setting $\boldsymbol{B}_{0}=0$ in PDRF, we can obtain a simple unmagnetized-plasma version solver, such as shown in Fig. 3 . For an unmagnetized plasma, we need a new treatment for the anisotropic pressure, since there is no parallel background \boldsymbol{B}_{0}. Here, for the pressure $P_{\| j}$ and $P_{\perp j}$, the $\|$ and \perp are parallel and perpendicular to \boldsymbol{v}_{j} when $\boldsymbol{v}_{j 0} \neq 0$. Without loss of generality, we set $\boldsymbol{k}=\left(0,0, k_{z}\right)$.

A rotation matrix
is required to transform $\hat{\Pi}_{j}$ and $\hat{\perp}_{j}$ to $\hat{x}, \hat{y}, \hat{z}$, i.e., the pressure tensor should be

$$
\boldsymbol{P}_{j}=\boldsymbol{R}_{j}^{T} \cdot\left[\begin{array}{ccc}
P_{\perp j} & 0 & 0 \tag{A.2}\\
0 & P_{\perp j} & 0 \\
0 & 0 & P_{\| j}
\end{array}\right] \cdot \boldsymbol{R}_{j},
$$

which yields

$$
\begin{gather*}
P_{j x x}=P_{\perp j}+\left(P_{\| j}-P_{\perp j}\right) \frac{v_{j x}^{2}}{v_{j}^{2}} \quad, \quad P_{j y y}=P_{\perp j}+\left(P_{\| j}-P_{\perp j}\right) \frac{v_{j y}^{2}}{v_{j}^{2}}, \\
P_{j z z}=P_{\perp j}+\left(P_{\| j}-P_{\perp j}\right) \frac{v_{j z}^{2}}{v_{j}^{2}} \quad, \quad P_{j x y}=P_{j y x}=\left(P_{\| j}-P_{\perp j}\right) \frac{v_{j x} v_{j y}}{v_{j}^{2}}, \\
P_{j z x}=P_{j x z}=\left(P_{\| j}-P_{\perp j}\right) \frac{v_{j x} v_{j z}}{v_{j}^{2}} \quad, \quad P_{j z y y}=P_{j y z}=\left(P_{\| j}-P_{\perp j}\right) \frac{v_{j y} v_{j z}}{v_{j}^{2}} . \tag{A.3}
\end{gather*}
$$

For $\boldsymbol{v}_{j 0}=0$, one should set $\boldsymbol{P}_{j}=P_{j}$ as a scalar quantity.
Treatment for other unmagnetized plasmas are similar to that for the magnetized plasma. The above description provides a guide for developing a more general unmagnetized plasma version of PDRF.

Appendix B. PDRF User Manual

PDRF consists of two files: the main program "pdrf.m" and the input data file "pdrf.in". The input file has the follow structure

qs	ms	ns	vsx	vsy	vsz	csz	csp	epsnjx	epsnjy
-1.0	1.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0	4.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

One can add the corresponding parameters for additional species.
Normalizations and other parameters can be reset in "pdrf.m". Since PDRF is a short code, one can also easily modify the default setup for other applications.

References

[1] K. Ronnmark, KGI Report No. 179, Sweden, 1982.
[2] K. Ronnmark, Plasma Phys., 25 (1983) 699.
[3] A. Bret, Computer Phys. Comm., 176 (2007) 362.
[4] T. Stix, Waves in Plasmas, AIP Press, 1992.
[5] A. Bret and C. Deutsch, Phys. Plasmas, 13 (2006) 042106.
[6] G. F. Chew, M. L. Goldberger and F. E. Low, Proc. Roy. Soc. (London), A236 (1956) 112.
[7] J. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas, Cambridge, 2004.
[8] A. Hakim, J. Fusion Energy, 27 (2008) 36.
[9] D. G. Swanson, Plasma Waves, IOP, 2nd (Ed.), 2003.
[10] A. Hasegawa, Plasma Instabilities and Nonlinear Effects, Springer, 1975.
[11] D. J. Southwood and M. G. Kivelson, J. Geophys. Res., 98(1993) 9181.
[12] L. N. Hau and B. U. Sonnerup, Geophys. Res. Lett., 20 (1993), 1763.
[13] N. A. Krall and P. C. Liewer, Phys. Rev. A, 4 (1971) 2094.
[14] K. Yatsui, T. Imai and M. Furumi, J. Phys. Soc. Jpn., 42 (1977) 652.

