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Abstract

The book “Handbook of Finsler geometry” has been included with a CD containing an
elegant Maple package, FINSLER, for calculations in Finsler geometry. Using this pack-
age, an example concerning a Finsler generalization of Einstein’s vacuum field equations
was treated. In this example, the calculation of the components of the hv-curvature of
Cartan connection leads to wrong expressions. On the other hand, the FINSLER package
works only in dimension four. We introduce a new Finsler package in which we fix the
two problems and solve them. Moreover, we extend this package to compute not only
the geometric objects associated with Cartan connection but also those associated with
Berwald, Chern and Hashiguchi connections in any dimension. These improvements have
been illustrated by a concrete example. Furthermore, the problem of simplifying tensor
expressions is treated. This paper is intended to make calculations in Finsler geometry
more easier and simpler.
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1. Introduction

Antonelli et. al. have had a good contribution in Finsler geometry computations using
MAPLE (cf. [3], [4],[9]). Rutz and Portugal [11] have introduced the remarkable FINSLER
package [10] (it is also included in a CD with the “Handbook of Finsler geometry” [2]).
They illustrated how to use this package by an example related to general relativity.

During the preparation of our paper [13], searching for some Finsler counterexamples,
we have encountered some problems concerning FINSLER package. In fact, we studied an
example in which the coefficients of Berwald connection are functions of positional argument
xi only. Hence, the space under consideration is Berwaldian and is thus Landesbergian.
It is well known that for a Landesberg space the hv-curvature P h

ijk of Cartan connection
vanishes. But according to the package, the program calculated non-vanishing components
of P h

ijk. After a deep reading of the source code (Finsler.mpl), we discovered an error in

the definition of P h
ijk (similar error is found in “Handbook of Finsler geometry, II ”, page

1154). Another problem with this package is that of dimension. If one considers a Finsler
space of dimension three, the package can not compute the components of the h-curvature
Rh

ijk and hv-curvature P h
ijk of Cartan connection.

In our modified package we solve the above two mentioned problems. We illustrate
our modification and extension of the FINSLER package by treating a concrete example
of a three dimensional Finsler space. We calculate the curvature tensors of the four funda-
mental connections of Finsler geometry, namely, Cartan, Berwald, Chern and Hashiguchi
connections. The geometric objects, not defined in the FINSLER package, can be added
in a similar manner. We also propose a technique for simplifying tensor expressions.

2. Notations and preliminaries

In this section, we give a brief introduction to Finsler connections. For more details,
we refer, for example, to [2], [5], [6] and [12].

Let (M,F ) be a Finsler manifold. Let (xi) be the coordinates of any point of M and
(yi) a supporting element at this point. Partial differentiation with respect to xi (resp. yi)
will be denoted by ∂i (resp. ∂̇i). We use the following notations:

li := ∂̇iF = gijl
j = gij

yj

F
: the normalized supporting element; li := yi

F
,

lij := ∂̇ilj ,

hij := F lij = gij − lilj : the angular metric tensor,

Cijk :=
1
2
∂̇kgij =

1
4
∂̇i∂̇j ∂̇kF

2: the Cartan tensor,

C i
jk := griCrjk: the (h)hv-torsion tensor,

γi
jk(x, y) :=

1
2
gir(∂jgkr + ∂kgjr − ∂rgjk): the Christoffel symbols with respect to ∂i,

Gi(x, y) := 1
2
γi
jky

jyk: the components of the canonical spray associated with (M,F ),

N i
j := ∂̇jG

i: the Barthel (or Cartan nonlinear) connection associated with (M,F ),

Gi
jh := ∂̇hN

i
j = ∂̇h∂̇jG

i: the coefficients of Berwald connection,

δi := ∂i −N r
i ∂̇r: the basis vector fields of the horizontal bundle,
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Γi
jk(x, y) :=

1
2
gir(δjgkr + δkgjr − δrgjk): the Christoffel symbols with respect to δi.

A Finsler connection [1] on M is a triple FΓ = (F i
jk(x, y),N

i
j(x, y),C

i
jk(x, y)) such

that, under a change of coordinates (xi) → (x̃k), the geometric objects F i
jk(x, y), N

i
j(x, y)

and C i
jk transform respectively as follows:

F̃
k

ij =
∂x̃k

∂xl

∂xp

∂x̃i

∂xq

∂x̃j
F l

pq +
∂2xp

∂x̃i∂x̃j

∂x̃k

∂xp
,

Ñ
i

j =
∂x̃i

∂xp

∂xq

∂x̃j
Np

q +
∂xp

∂x̃j

∂2x̃i

∂xp∂xq
yq, C̃

k

ij =
∂x̃k

∂xl

∂xp

∂x̃i

∂xq

∂x̃j
C l

pq.

Moreover, FΓ defines two types of covariant derivatives:

X i
j|k := δkX

i
j +Xr

jF
i
rk −X i

rF
r
jk.

X i
j |k := ∂̇kX

i
j +Xr

jC
i
rk −X i

rC
r
jk.

Let FΓ = (F i
jk,N

i
j ,C

i
jk) be an arbitrary Finsler connection. The (h)h-, (h)hv-, (v)h-,

(v)hv- and (v)v-torsion tensors of FΓ are given respectively by [7]:

Ti
jk = Fi

jk − Fi
kj, Ci

jk = the connection parameters Ci
jk,

Ri
jk = δkN

i
j − δjN

i
k, Pi

jk = ∂̇kN
i
j − Fi

jk, Si
jk = Ci

jk −Ci
kj.

and the h-, hv- and v-curvature tensors of FΓ are given respectively by [7]:

Ri
hjk = A(j,k){δkF

i
hj + Fm

hjF
i
mk}+Ci

hmR
m
jk,

Pi
hjk = ∂̇kF

i
hj −Ci

hk|j +Ci
hmP

m
jk, Si

hjk = A(j,k){∂̇kC
i
hj +Cm

hkC
i
mj},

where A(j,k){Ajk} := Ajk − Akj.

The Cartan connection is given by CΓ = (Γi
jk, N

i
j , C

i
jk), where Γi

jk, N
i
j and C i

jk are
as defined above. The (h)hv-, (v)h- and (v)hv-torsion tensors of CΓ are:

C i
jk =

1

2
gir∂̇kgrj, Ri

jk = δkN
i
j − δjN

i
k, P i

jk = ∂̇kN
i
j − Γi

jk.

The h-, hv- and v-curvature tensors of CΓ are:

Ri
hjk = A(j,k){δkΓ

i
hj + Γm

hjΓ
i
mk}+ C i

hmR
m
jk,

P i
hjk = ∂̇kΓ

i
hj − C i

hk|j + C i
hmP

m
jk , Si

hjk = A(j,k){C
m
hkC

i
mj}.

The Berwald connection is given by BΓ = (Gi
jk, N

i
j , 0). The associated geometric

objects will be marked by a circle. The (v)h-torsion tensor of BΓ is given by:

◦

Ri
jk = Ri

jk = δkN
i
j − δjN

i
k.

The h-, and hv-curvature tensors of BΓ are:

◦

Ri
hjk = A(j,k){δkG

i
hj +Gm

hjG
i
mk},

◦

P i
hjk = ∂̇kG

i
hj.
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The Chern (Rund) connection is given by RΓ = (Γi
jk, N

i
j , 0). The associated geo-

metric objects will be marked by a star. The (v)h- and (v)hv-torsion tensors of RΓ are:

⋆
Ri

jk = Ri
jk = δkN

i
j − δjN

i
k,

⋆
P i

jk = P i
jk = ∂̇kN

i
j − Γi

jk.

The h- and hv-curvature tensors of RΓ are:

⋆
Ri

hjk = A(j,k){δkΓ
i
hj + Γm

hjΓ
i
mk},

⋆
P i

hjk = ∂̇kΓ
i
hj.

The Hashiguchi connection is given by HΓ = (Gi
jk, N

i
j , C

i
jk). The associated geo-

metric objects will be marked by an asterisk. The (h)hv- and (v)h-torsion tensors ofHΓ are:

∗
C i

jk = C i
jk,

∗
Ri

jk = Ri
jk = δkN

i
j − δjN

i
k.

The h-, hv- and v-curvature tensors of HΓ are:

∗
Ri

hjk = A(j,k){δkG
i
hj +Gm

hjG
i
mk}+ C i

hmR
m
jk,

∗
P i

hjk = ∂̇kG
i
hj − C i

hk
∗

|j
,

∗
Si
hjk = A(j,k){C

m
hkC

i
mj}.

Table 1: Fundamental linear connections [12]

Cartan Berwald Chern (Rund) Hashiguchi

(Fh
ij ,N

h
i ,C

h
ij) (Γh

ij , N
h
i , C

h
ij) (Gh

ij , N
h
i , 0) (Γh

ij , N
h
i , 0) (Gh

ij , N
h
i , C

h
ij)

C
on

n
ec
ti
on

(h)h-torsion T
i
jk 0 0 0 0

(h)hv-torsion C
i
jk Ci

jk 0 0 Ci
jk

T
or
si
on

s

(v)h-torsion R
i
jk Ri

jk

◦

Ri
jk = Ri

jk

⋆
Ri

jk = Ri
jk

∗
Ri

jk = Ri
jk

(v)hv-torsion P
i
jk P i

jk = Ci
jk|hy

h 0
⋆
P i

jk = P i
jk 0

(v)v-torsion S
i
jk 0 0 0 0

h-curvature R
h
ijk Rh

ijk

◦

Rh
ijk

⋆
Rh

ijk

∗
Rh

ijk

hv-curvature P
h
ijk P h

ijk

◦

P h
ijk

⋆
P h

ijk

∗
P h

ijk

C
u
rv
at
u
re
s

v-curvature S
h
ijk Sh

ijk 0 0
∗
Sh
ijk = Sh

ijk

h-cov. der. Ki
j|k Ki

j
◦

|k
Ki

j
⋆

|k
= Ki

j|k Ki

j
∗

|k
= Ki

j
◦

|k

v-cov. der. Ki
j |k Ki

j

◦

|k = ∂̇kK
i
j Ki

j

⋆

|k = Ki
j

◦

|k Ki
j

∗

|k = Ki
j |kC

ov
ar
ia
n
t

d
er
iv
at
iv
es
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3. Notes on the FINSLER package

In [11], Rutz and Portugal discussed and applied the FINSLER package they introduced
in [10]. This package is an extension of the RIEMANN package [9]. The FINSLER package
is included in a CD with the book [2], where an interesting example related to general
relativity, namely, a family of metrics known as the Schwarzschild solution to Einstein’s
field equations, has been treated. Important geometric objects and, in particular, the three
curvature tensors of Cartan connection have been computed.

When performing some applications using the FINSLER package, we have encountered
some problems. To show one of these problems, let us consider the following example. Let

M = R
4, U = {(x, y) ∈ R

4 × R
4 : x1 6= 0; y4 6= 0, y21 + y22 + y23 6= 0}. Let F be the Finsler

structure defined on the open subset U of TM by:

F =

√
x1y4

√
y21 + y22 + y23.

Based on this package, the non-vanishing coefficients of Berwald connection are as follows:

G1
11 = G2

12 = G3
13 =

1

x1
, G1

22 = G1
33 = −

1

x1
.

This shows that the coefficients of Berwald connection are functions of the positional argu-
ment xi only. Hence, the space under consideration is Berwaldian and is thus Landesber-
gian. Consequently, the hv-curvature P h

ijk of Cartan connection should vanish identically.

However, the FINSLER package calculated non-vanishing components of P h
ijk.

After a deep study of the source code (Finsler.mpl), we have discovered some wrong
indices in the definition of P h

ijk. (Similar error is found in [2], page 1154). Another problem
with this package is the problem of dimension. If one considers a three dimensional Finsler
space, the package can not compute the components of the hh-curvature Rh

ijk and hv-

curvature P h
ijk of Cartan connection. The package response is that these objects are outside

dimension.

Summing up, we have two problems with the Rutz and Portugal’s package. The first
is the wrong calculations of the curvature P h

ijk. The second is the disability of computing

Rh
ijk and P h

ijk in dimensions different from 4.

4. Improvement of the package

In this section, we solve the two above mentioned problems. Moreover, we extend the
package in order to compute various geometric objects associated not only with Cartan
connection but also with the other fundamental connections in Finsler geometry. And this
is for any dimension. Other geometric objects can be similarly added to the package. We
illustrate these tasks using a concrete example.

Rutz and Portugal have illustrated how to use the package [11]. However, let us recall
some instructions to make the use of this package easier. When we write, for example,
N[i,-j] we mean N i

j , i.e., a positive (resp. negative) index means that it is a contravariant
(resp. covariant) index. If one wants to lower or raise an index by the metric or the inverse
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metric, he just changes its sign from positive to negative or vice versa. The command
tdiff (N[i,-j], X[k]) means ∂kN

i
j , the command tddiff (N[i,-j], Y[k]) means ∂̇kN

i
j and the

command Hdiff (N[i,-j], X[k]) means δkN
i
j .

In addition to the definitions of geometric objects existing already in the FINSLER
package, we add other definitions by using the command definetensor. We rewrite the
correct expression of P h

ijk and tackle the issue of dimension.

Now, let us illustrate what have been said before using a concrete example.

LetM = R
3, U = {(x1, x2, x3; y1, y2, y3) ∈ R

3×R
3 : x3 6= 0; y2 6= 0, y12+y32 6= 0} ⊂ TM .

Let F be the Finsler structure defined on U by

F =

√
x3y13

y2
+ y32.

It should first be noted that, according to Table 1, we have only three independent torsions,
namely, Ch

ij, R
h
ij and P h

ij . So, we will compute these torsions for Cartan connection and we
will not repeat their calculation for the other connections.

Following the instructions of the FINSLER package, the following calculations can be
performed.

> restart;
> libname := libname, ‘c:/Finsler‘:
> with(Finsler);

[Dcoordinates,Hdiff , K, connection, init ,metricfunction, tddiff ]
> Dimension := 3:
> coordinates(x1,x2,x3):
> Dcoordinates(y1,y2,y3):

‘The coordinates are:‘

X1 = x1

X2 = x2

X3 = x3

‘The d-coordinates are:‘

Y 1 = y1

Y 2 = y2

Y 3 = y3

Finsler structure F:

> F := sqrt(x3*y1^3/y2+y3^2);

F :=
√

x3y13

y2
+ y3 2

Plotting the Finsler structure in a special domain:

> plot3d(subs(x1=5,y3=5,F), y1 = -2..2, y2 =-2..2,
> axes=BOXED,style=patch);

6



Figure 1

Metric tensor gij:

> F0:= y1^3*x3/y2+y3^2;

F0 := x3y13

y2
+ y3 2

> metricfunction(F0):

‘The components of the metric are:‘

gx1x1 =
3 x3y1

y2
gx1x2 = −

3

2

x3y1 2

y2 2

gx2x2 =
x3y1 3

y2 3 gx3x3 = 1

Inverse metric tensor gij:

> show(g[i,j]);

gx1x1 =
4y2

3x3y1
gx1x2 =

2y2 2

x3y1 2

gx2x2 =
4y2 3

x3y1 3 gx3x3 = 1

Supporting element li:

> show(l[-i]);

lx1 =
3

2

x3y1 2

y2
√

x3y13+y2y32

y2

lx2 = −
1

2

x3y1 3

y2 2
√

x3y13+y2y32

y2

lx3 =
y3√

x3y13+y2y32

y2

7



Angular metric tensor hij:

> definetensor(h[-i,-j] = g[-i,-j]-l[-i]*l[-j],symm);

> show(h[-i, -j]);

hx1x1 =
3

4

x3y1
(
x3y1 3 + 4y2y3 2

)

y2
(
x3y1 3 + y2y3 2

) hx1x2 = −
3

4

x3y1 2
(
x3y1 3 + 2y2y3 2

)

y2
(
x3y1 3 + y2y3 2

)

hx1x3
= −

3

2

x3y1 2y3

x3y1 3 + y2y3 2 hx2x2
=

1

4

x3y1 3
(
3x3y1 3 + 4y2y3 2

)

y2 3
(
x3y1 3 + y2y3 2

)

hx2x3
=

1

2

x3y1 3y3

y2
(
x3y1 3 + y2y3 2

) hx3x3
=

x3y1 3

x3y1 3 + y2y3 2

Cartan tensor Cijk:

> show(C[-i,-j,-k]);

Cx1x1x1
=

3

2

x3

y2
Cx1x1x2 = −

3

2

x3y1

y2 2

Cx1x2x2
=

3

2

x3y1 2

y2 3 Cx2x2x2
= −

3

2

x3y1 3

y2 4

Spray coefficients Gi:

> show(G[i]);

Gx1 =
1

2

y1 y3

x3
Gx2 =

1

2

y2 y3

x3

Gx3 = −
1

4

y1 3

y2

Nonlinear connection (Barthel connection) N i
j :

> show(N[i,-j]);

Nx1
x1 =

1

2

y3

x3
Nx1

x3 =
1

2

y1

x3

Nx2
x2 =

1

2

y3

x3
Nx2

x3 =
1

2

y2

x3

Nx3
x1 = −

3

4

y1 2

y2
Nx3

x2 =
1

4

y1 3

y2

Coefficients of Berwald connection Gi
jk:

> show(G[i,-j,-k]);

Gx3
x1x1 = −

3

2

y1

y2
Gx3

x1x2 =
3

4

y1 2

y2 2

Gx1
x1x3 =

1

2x3
Gx3

x2x2 = −
1

2

y1 3

y2 3

Gx2
x2x3 =

1

2x3

8



Coefficients of Cartan connection Γi
jk:

> show(Gammastar[i,-j,-k]);

Gammastar x1x1x1 =
1

2

y3

x3y1
Gammastar x2x1x1 =

3

2

y2y3

x3y1 2

Gammastar x3x1x1 = −
3

2

y1

y2
Gammastar x1x1x2 = −

1

2

y3

x3y2

Gammastarx2x1x2 = −
3

2

y3

x3y1
Gammastarx3x1x2 =

3

4

y1 2

y2 2

Gammastar x1x1x3 =
1

2x3
Gammastar x1x2x2 =

1

2

y1y3

x3y2 2

Gammastar x2x2x2 =
3

2

y3

x3y2
Gammastarx3x2x2 = −

1

2

y1 3

y2 3

Gammastarx2x2x3 =
1

2x3

Torsion tensors of Cartan connection

• (h)hv-torsion Ch
ij:

> show(C[i,-j,-k]);

C x1
x1x1 = −

1

y1
C x1

x1x2 =
1

y2

C x1
x2x2 = −

y1

y2 2 C x2x1x1 = −
3y2

y1 2

C x2
x1x2 =

3

y1
C x2

x2x2 = −
3

y2

• (v)h-torsion Rh
ij:

> definetensor(RN[i,-j,-k]=Hdiff(N[i,-j],X[k])-Hdiff(N[i,-k],X[j]));

> show(RN[i,-j,-k]);

RN x1
x1x2 = −

1

8

y1 3

x3y2 2 RN x2
x1x2 = −

3

8

y1 2

x3y2

RN x1
x1x3 = −

1

4

y3

x3 2 RN x3
x1x3 =

3

8

y1 2

x3y2

RN x2
x2x3 = −

1

4

y3

x3 2 RN x3
x2x3 = −

1

8

y1 3

x3y2 2

• (v)hv-torsion P h
ij:

> definetensor(PT[i,-j,-k] = G[i,-j,-k]- Gammastar[i,-j,-k]):

> show(PT[i,-j,-k]);

PT x1
x1x1 = −

1

2

y3

x3y1
PT x2

x1x1 = −
3

2

y2y3

x3y1 2

PT x1
x1x2 =

1

2

y3

x3y2
PT x2

x1x2 =
3

2

y3

x3y1

PT x1
x2x2 = −

1

2

y1y3

x3y2 2 PT x2
x2x2 = −

3

2

y3

x3y2
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Curvature tensors of Cartan connection

• h-curvature tensor Rh
ijk:

> definetensor(RC[i,-h,-j,-k] = Hdiff(Gammastar[i,-h,-j],X[k])
> -Hdiff(Gammastar[i,-h,-k], X[j])+Gammastar[m,-h,-j]
> *Gammastar[i,-m, -k]-Gammastar[m,-h,-k]*Gammastar[i,-m,-j]
> +C[i,-h,-m]*RG[m,-j,-k], antisymm[3,4]):

> show(RC[i,-h,-j,-k]);

RC x1
x1x1x2 = −

3

8

y1 2

x3y2 2 RC x1
x2x1x2 =

1

4

y1 3

x3y2 3

RC x2
x1x1x2 = −

3

4

y1

x3y2
RC x2

x2x1x2 =
3

8

y1 2

x3y2 2

RC x2
x3x1x3 = −

1

4x3 2 RC x3
x1x1x3 =

3

4

y1

x3y2

RC x3
x2x1x3 = −

3

8

y1 2

x3y2 2 RC x2
x3x2x3 = −

1

4x3 2

RC x3
x1x2x3 = −

3

8

y1 2

x3y2 2 RC x3
x2x2x3 =

1

4

y1 3

x3y2 3

• hv-curvature tensor P h
ijk:

> definetensor(FT[i,-j,-k,-h] = Hdiff(C[i,-j,-k], X[h])
> +Gammastar[i,-h,-u]*C[u,-k,-j]-Gammastar[u,-k,-h]*C[i,-u,-j]
> -Gammastar[u,-h,-j]*C[i,-u,-k]):
> definetensor(PC[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j],Y[k])
> -FT[i,-h,-k,-j]+C[i,-h,-m]*PT[m,-j,-k]);

PC x1
x3x1x1 = −

1

2x3y1
PC x1

x3x1x2 =
1

2x3y2

PC x1
x3x2x1 =

1

2x3y2
PC x1

x3x2x2 = −
1

2

y1

x3y2 2

PC x2
x3x1x1 = −

3

2

y2

x3y1 2 PC x2
x3x1x2 =

3

2x3y1

PC x2
x3x2x1 =

3

2x3y1
PC x2

x3x2x2 = −
3

2x3y2

PC x3
x1x1x1 = −

3

4y2
PC x3

x1x1x2 =
3

4

y1

y2 2

PC x3
x1x2x1 =

3

4

y1

y2 2 PC x3
x1x2x2 = −

3

4

y1 2

y2 3

PC x3
x2x1x1 =

3

4

y1

y2 2 PC x3
x2x1x2 = −

3

4

y1 2

y2 3

PC x3
x2x2x1 = −

3

4

y1 2

y2 3 PC x3
x2x2x2 =

3

4

y1 3

y2 4

• v-curvature tensor Sh
ijk:

> definetensor(S[i,-h,-j,-k] = C[m,-h,-k]*C[i,-m,-j]
> -C[m,-h,-j]*C[i,-m,-k]):

10



> show(S[i,-h,-j,-k]);

Sh
ijk = 0

Curvature tensors of Berwald connection

• h-curvature tensor
◦

Rh
ijk:

> definetensor(RB[i,-h,-j,-k]= Hdiff(G[i,-h,-j], X[k])
> -Hdiff(G[i,-h,-k], X[j])+G[m,-h,-j]*G[i,-m,-k]
> -G[m,-h,-k]*G[i,-m,-j], antisymm[3, 4]):

> show(RB[-i,h,-j,-k]);

RB x1
x1x1x2 = −

3

8

y1 2

x3y2 2 RB x1
x2x1x2 =

1

4

y1 3

x3y2 3

RB x2
x1x1x2 = −

3

4

y1

x3y2
RB x2

x2x1x2 =
3

8

y1 2

x3y2 2

RB x2
x3x1x3 = −

1

4x3 2 RB x3
x1x1x3 =

3

4

y1

x3y2

RB x3
x2x1x3 = −

3

8

y1 2

x3y2 2 RB x2
x3x2x3 = −

1

4x3 2

RB x3
x1x2x3 = −

3

8

y1 2

x3y2 2 RB x3
x2x2x3 =

1

4

y1 3

x3y2 3

• hv-curvature tensor
◦

P h
ijk:

> definetensor(PB[i,-h,-j,-k]= tddiff(G[i,-h,-j],Y[k])):

> show(PB[h,-i,-j,-k]);

PB x3
x1x1x1 = −

3

2y2
PB x3

x1x1x2 =
3

2

y1

y2 2

PB x3
x1x2x2 = −

3

2

y1 2

y2 3 PB x3
x2x2x2 =

3

2

y1 3

y2 4

Curvature tensors of Chern connection

• h-curvature tensor
⋆
Rh

ijk:

> definetensor(Rchern[i,-h,-j,-k] = Hdiff(Gammastar[i,-h,-j], X[k])
> -Hdiff(Gammastar[i,-h,-k],X[j])+Gammastar[m,-h,-j]*Gammastar[i,-m,-k]
> -Gammastar[m,-h,-k]*Gammastar[i,-m,-j], antisymm[3,4]):

> show(Rchern[i,-h,-j,-k]);

11



Rchernx1
x1x1x2 = −

1

8

y1 2

x3y2 2 Rchernx2
x2x1x2 = −

3

8

y1 2

x3y2 2

Rchernx1
x1x1x3 = −

1

4

y3

x3 2y1
Rchernx1

x2x1x3 =
1

4

y3

x3 2y2

Rchernx2
x3x1x3 = −

1

4x3 2 Rchernx2
x1x1x3 = −

3

4

y2y3

x3 2y1 2

Rchernx2
x2x1x3 =

3

4

y3

x3 2y1
Rchernx3

x1x1x3 =
3

4

y1

x3y2

Rchernx3
x2x1x3 = −

3

8

y1 2

x3y2 2 Rchernx1
x1x2x3 =

1

4

y3

x3 2y2

Rchernx1
x2x2x3 = −

1

4

y1y3

x3 2y2 2 Rchernx2
x1x2x3 =

3

4

y3

x3 2y1

Rchernx2
x2x2x3 = −

3

4

y3

x3 2y2
Rchernx2

x3x2x3 = −
1

4x3 2

Rchernx3
x1x2x3 = −

3

8

y1 2

x3y2 2 Rchernx3
x2x2x3 =

1

4

y1 3

x3y2 3

• hv-curvature tensor
⋆
P h

ijk:

> definetensor(Pchern[i,-h,-j,-k]=tddiff(Gammastar[i,-h,-j],Y[k])):

> show(Pchern[h,-i,-j,-k]);

Pchernx1
x1x1x1 = −

1

2

y3

x3y1 2 Pchernx1
x1x1x3 =

1

2x3y1

Pchernx2
x1x1x1 = −

3y2y3

x3y1 3 Pchernx2
x1x1x2 =

3

2

y3

x3y1 2

Pchernx2
x1x1x3 =

3

2

y2

x3y1 2 Pchernx3
x1x1x1 = −

3

2y2

Pchernx3
x1x1x2 =

3

2

y1

y2 2 Pchernx1
x1x2x2 =

1

2

y3

x3y2 2

Pchernx1
x1x2x3 = −

1

2x3y2
Pchernx2

x1x2x1 =
3

2

y3

x3y1 2

Pchernx2
x1x2x3 = −

3

2x3y1
Pchernx3

x1x2x1 =
3

2

y1

y2 2

Pchernx3
x1x2x2 = −

3

2

y1 2

y2 3 Pchernx1
x2x2x1 =

1

2

y3

x3y2 2

Pchernx1
x2x2x2 = −

y1y3

x3y2 3 Pchernx1
x2x2x3 =

1

2

y1

x3y2 2

Pchernx2
x2x2x2 = −

3

2

y3

x3y2 2 Pchernx2
x2x2x3 =

3

2x3y2

Pchernx3
x2x2x1 = −

3

2

y1 2

y2 3 Pchernx3
x2x2x2 =

3

2

y1 3

y2 4

12



Curvature tensors of Hashiguchi connection

• h-curvature tensor
∗
Rh

ijk:

> definetensor(RH[i,-h,-j,-k] = Hdiff(G[i,-h,-j], X[k])
> -Hdiff(G[i,-h,-k],X[j])+G[m,-h,-j]*G[i,-m,-k]-G[m,-h,-k]*G[i,-m,-j]
> +C[i,-h,-m]*RG[m,-j,-k], antisymm[3, 4]):

> show(RH[i,-h,-j,-k]);

RH x1
x1x1x2 = −

5

8

y1 2

x3y2 2 RH x1
x2x1x2 =

1

2

y1 3

x3y2 3

RH x2
x1x1x2 = −

3

2

y1

x3y2
RH x2

x2x1x2 =
9

8

y1 2

x3y2 2

RH x1
x1x1x3 =

1

4

y3

x3y1 2 RH x1
x2x1x3 = −

1

4

y3

x3 2y2

RH x2
x3x1x3 = −

1

4x3 2 RH x2
x1x1x3 =

3

4

y2y3

x3 2y1 2

RH x2
x2x1x3 = −

3

4

y3

x3y1 2 RH x3
x1x1x3 =

3

4

y1

x3y2

RH x3
x2x1x3 = −

3

8

y1 2

x3y2 2 RH x1
x1x2x3 = −

1

4

y3

x3 2y2

RH x1
x2x2x3 =

1

4

y1y3

x3 2y2 2 RH x2
x1x2x3 = −

3

4

y3

x3y1 2

RH x2
x2x2x3 =

3

4

y3

x3 2y2
RH x2

x3x2x3 = −
1

4x3 2

RH x3
x1x2x3 = −

3

8

y1 2

x3y2 2 RH x3
x2x2x3 =

1

4

y1 3

x3y2 3

• hv-curvature tensor
∗
P h

ijk:

> definetensor(PH1[i,-h,-k,-j]=Hdiff(C[i,-h,-k],X[j])+G[i,-m,-j]
> *C[m,-h,-k]-G[m,-h,-j]*C[i,-m,-k]-G[m,-k,-j]*C[i,-h,-m]):
> definetensor(PH[i,-h,-j,-k] =
> tddiff(G[i,-h,-j], Y[k])-PH1[i,-h,-k,-j], symm[2,4]);

> show(PH[h,-i,-j,-k]);
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PH x1
x1x1x1 =

1

2

y3

x3y1 2 PH x2
x1x1x1 =

3y2y3

x3y1 3

PH x2
x1x2x1 = −

3

2

y3

x3y1 2 PH x3
x1x1x1 = −

3

4y2

PH x3
x1x2x1 =

3

4

y1

y2 2 PH x1
x1x2x2 = −

1

2

y3

x3y2 2

PH x2
x1x1x2 = −

3

2

y3

x3y1 2 PH x3
x1x1x2 =

3

4

y1

y2 2

PH x3
x1x2x2 = −

3

4

y1 2

y2 3 PH x1
x1x1x3 = −

1

2x3y1

PH x1
x1x2x3 =

1

2x3y2
PH x2

x1x1x3 = −
3

2

y2

x3y1 2

PH x2
x1x2x3 =

3

2x3y1
PH x1

x2x1x2 = −
1

2

y3

x3y2 2

PH x1
x2x2x2 =

y1y3

x3y2 3 PH x2
x2x2x2 =

3

2

y3

x3y2 2

PH x3
x2x1x2 = −

3

4

y1 2

y2 3 PH x3
x2x2x2 =

3

4

y1 3

y2 4

PH x1
x2x1x3 =

1

2x3y2
PH x1

x2x2x3 = −
1

2

y1

x3y2 2

PH x2
x2x1x3 =

3

2x3y1
PH x2

x2x2x3 = −
3

2x3y2

The v-curvature of Hashiguchi connection is the same as the v-curvature of Cartan con-
nection.

Remark 4.1. According to the above consideration, if we calculate the hv-curvature P of
Cartan connection, in the example mentioned in Section 3, we find that the components
P h
ijk vanish identically as expected.

5. Tensor simplification

It is well known that the simplification of tensor expressions is not an easy task [8].
However, we have noted that if we have a complicated formula of a geometric object, such
as P h

ijk, we can significantly simplify its expression as follows. We let the package compute

the tensor Phijk := grhP
r
ijk (instead of P h

ijk) and ask it to show the tensor P h
ijk.

To illustrate this technique let us consider the following example.

Let M = R
3, U = {(x1, x2, x3; y1, y2, y3) ∈ R

3 × R
3 : y1 6= 0, y2 6= 0, y3 6= 0}. Let F

be the Finsler structure defined on U by

F = (x1y23 + y12y3)1/3.
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For example, let us compute the component S1
112 of the v-curvature tensor Sh

ijk of
Cartan connection.

> definetensor(SC[i,-h,-j,-k] = C[m,-h,-k]*C[i,-m,-j]
> -C[m,-h,-j]*C[i,-m,-k]):

SC i
hjk = Cm

hkC
i
mj − Cm

hjC
i
mk

> show(SC[i,-h,-j,-k]);

SC x1
x1x1x2 = − 1

18

y3y1(−x1y23+y3y12)x1y22(y3y12−3x1y23)
(x1y23+y3y12)

4

− 2
27

y32y13x1y22(y3y12+3 x1y23)
(x1y23+y3y12)

4

+ 1
36

y1x1y22(−x1y23+y3y12) y3(−3 x1y23+5y3y12)
(x1y23+y3y12)

4

+ 1
54

y1x1y22(4y3 2y14+21y3y12x1y23+9x12y26)y3

(x1y23+y3y12)
4

The above expression is complicated. But, in fact, if we lower the index i in the
above definition and use the command show(SC[i,-h,-j,-k]), then we have the following
simplification.

> definetensor(SC[-i,-h,-j,-k] = C[m,-h,-k]*C[-i,-m,-j]
> -C[m,-h,-j]*C[-i,-m,-k]):

SC ihjk = Cm
hkCimj − Cm

hjCimk

> show(SC[i,-h,-j,-k]);

SC x1
x1x1x2 =

1
12

y3y1x1y22

(x1y23+y3y12)
2 ,

which is very simple compared with its expression before simplification.

Remark 5.1. Be careful when you lower or raise an index, this index should be lowerable
or raisable. For example, in the definition of P h

ijk we encounter the term ∂̇kΓ
i
hj (cf. §1).

The index i in this term can not be lowered since gim(∂̇kΓ
m
hj) 6= ∂̇k(gimΓ

m
hj). So we can

not use the command tddiff(Gammastar[-i,-h,-j], Y[k]). Such a problem can be treated as
illustrated below:

> definetensor(FT[i,-j,-k,-h]=Hdiff(C[i,-j,-k], X[h])
> +Gammastar[i,-h,-u]*C[u,-k,-j]-Gammastar[u,-k,-h]*C[i,-u,-j]
> -Gammastar[u,-h,-j]*C[i,-u,-k]);
> definetensor(PC[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j],Y[k])
> -FT[i,-h,-k,-j]+C[i,-h,-m]*PT[m,-j,-k]);

PC i
hjk = tddiff k

(
Gammastar ihj

)
− FT i

hkj + C i
hm PTm

jk

> show(PC[i,-h,-j,-k]);

PC x1
x1x1x1 =

1
72

1

(x1y23+y12y3)
2

y1

(
3x1y26(−y12y3+3x1y23)y12y3

(x1y23+y12y3)
2

+
10y12(y12y3+3x1y23)y26y3x1

(x1y23+y12y3)
2 + 3

2

x12y29(−y12y3+3x1y23)
(x1y23+y12y3)

2

+
5(y12y3+3x1y23)y29x12

(x1y23+y12y3)
2 + 3

2

y23y14(−y12y3+3x1y23)y32

(x1y23+y12y3)
2

+
5y23y14(y12y3+3x1y23)y32

(x1y23+y12y3)
2 − 15x1y2 6 + y1 2y3y2 3

)
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This component can be simplified using the above mentioned technique.

> definetensor(FT[i,-j,-k,-h] = Hdiff(C[i,-j,-k], X[h])
> +Gammastar[i,-h, u]*C[u,-k,-j]-Gammastar[u,-k,-h]*C[i,-u,-j]
> -Gammastar[u,-h,-j]*C[i,-u,-k]);

> definetensor(ST[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j], Y[k]));
> definetensor(PC[-i,-h,-j,-k] = g[-m,-i]*ST[m,-h,-j,-k]
> -FT[-i,-h,-k,-j]+C[-i,-h,-m]*PT[m,-j,-k]);

PC ihjk = gmi ST
m
hjk − FT ihkj + Cihm PTm

jk

> show(PC[i,-h,-j,-k]);

PC x1
x1x1x1 =

1
16

y23

y1(x1y23+y3y12)
,

which is simpler compared with its expression before simplification.

6. Conclusion

In this paper, we have achieved four objectives concerning the FINSLER package [10],
[11]:

• The wrong calculation of the components of the hv-curvature tensor P h
ijk of Cartan

connection has been corrected
• Modifications have been made so that the h- and hv-curvatures of Cartan connection

(and other geometric objects) could be computed in all dimensions (not only dimension 4).
• The package has been extended to compute not only the geometric objects associated

with Cartan connection but also those associated with other fundamental connections of
Finsler geometry. Other definitions can be added similarly to the package.

• A technique for simplifying tensor expressions has been introduced.

Thanks to the FINSLER package, one is able to study various examples and coun-
terexamples in Finsler and Riemannian geometries. For example, in [13] and [14], we have
studied interesting counterexamples in Finsler geometry.
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