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Abstract

The implementation of the orbital minimization method (OMM) for solving the self-
consistent Kohn-Sham (KS) problem for electronic structure calculations in a basis of
non-orthogonal numerical atomic orbitals of finite-range is reported. We explore the
possibilities for using the OMM as an exact cubic-scaling solver for the KS problem, and
compare its performance with that of explicit diagonalization in realistic systems. We
analyze the efficiency of the method depending on the choice of line search algorithm and
on two free parameters, the scale of the kinetic energy preconditioning and the eigen-
spectrum shift. The results of several timing tests are then discussed, showing that the
OMM can achieve a noticeable speedup with respect to diagonalization even for minimal
basis sets for which the number of occupied eigenstates represents a significant fraction
of the total basis size (> 15%). We investigate the hard and soft parallel scaling of the
method on multiple cores, finding a performance equal to or better than diagonalization
depending on the details of the OMM implementation. Finally, we discuss the possibility
of making use of the natural sparsity of the operator matrices for this type of basis,
leading to a method that scales linearly with basis size.

Keywords: finite-range numerical atomic orbitals, density-functional theory,
unconstrained minimization, preconditioning, parallel scaling

1. Introduction

Over the last two decades, density-functional theory [1, 2] (DFT) has become a ubiq-
uitous tool for studying molecular and condensed matter systems at the atomic level,
with applications ranging from the Earth sciences to nanotechnology [3, 4]. This is due
in no small part to the proliferation of fast, accurate, easily available and user friendly
software packages for performing DFT calculations (see, e.g., Refs. [5–12]). Much work
has gone into developing the methods used by such codes, and ongoing optimization of
the underlying algorithms is essential to keep up with the possibilities offered by new
computer architectures [13–16].
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Within the standard Kohn-Sham (KS) approach [2], the many-electron problem is
reduced to a self-consistent eigenvalue problem with an effective Hamiltonian. When
solving the problem in a basis, either repeated explicit diagonalizations (for small enough
bases), or one of a number of iterative minimization algorithms [5, 17–19] can be used.
The latter proceed either by minimizing the KS total energy functional directly, or as an
alternative to diagonalization for a fixed Hamiltonian, within an outer self-consistency
cycle for the electronic density. The use of an iterative algorithm of either form is essential
for plane-wave methods, as the large number of basis functions/atom makes diagonaliza-
tion prohibitively expensive for all but the smallest systems. One of the main advantages
of using such algorithms is that only the occupied subspace needs to be computed, and
for a plane-wave basis this typically corresponds to a very small fraction (< 1%) of the
total number of eigenstates. Methods based on localized atomic-like orbitals [6, 7, 11], on
the other hand, employ a much smaller number of basis functions/atom; in such cases,
therefore, diagonalization is feasible even for large systems. Furthermore, the fraction of
occupied eigenstates is much larger than for plane waves (10–20%), making diagonaliza-
tion not just competitive but indeed more efficient than most iterative algorithms.

In this paper, we present our implementation of an iterative minimization algorithm,
which we refer to as the orbital minimization method (OMM) following Refs. [15, 20],
as an alternative to explicit diagonalization in the SIESTA [7] code. The OMM works
by finding the N/2 Wannier functions (WFs) describing the occupied subspace of an
N -electron system by direct unconstrained minimization of an appropriately-constructed
energy functional. This functional was originally proposed independently by Mauri, Galli
and Car [21, 22], and Ordejón et al. [23, 24], in the context of linear-scaling DFT meth-
ods [15] with spatially confined WFs. In fact, a serial implementation of the linear-scaling
OMM was an integral part of the original version of SIESTA; nowadays, however, most
applications of the code employ diagonalization with LAPACK [25]/ScaLAPACK [26].
It is important to note that our new implementation is completely separate from this
old one, and is not a linear-scaling solver; our aim, instead, is to explore the potential of
the OMM as a conventional cubic-scaling iterative algorithm, which solves the KS prob-
lem exactly without introducing spatial truncations. Although previous investigations of
cubic-scaling iterative algorithms in SIESTA (both Jacobi-Davidson [27] and Lanczos-
like [28]) have found that a very small fraction of occupied eigenstates is needed to rival
the efficiency of diagonalization [29], we show that this is indeed possible with the OMM
even for a standard double-ζ basis with a single polarization shell (dζ+p), for which the
fraction of occupied eigenstates is significant, almost 20%.

The use of the OMM as a cubic-scaling DFT solver has previously been described
for a plane-wave basis by Pfrommer, Demmel and Simon [19] (alongside closely related
methods), and implemented in the PARATEC [30] plane-wave code. In contrast, SIESTA
makes use of a minimal basis of numerical atomic orbitals (NAOs) of finite range, leading
to formally sparse Hamiltonian and overlap matrices. Our implementation is therefore
somewhat different, in particular in the choice of preconditioner. Furthermore, the nat-
ural sparsity of the operators in our case can be used to eliminate the most expensive
type of matrix–matrix multiplication present in the algorithm, leading to qualitatively
different scaling behaviour with basis size.

The rest of the paper is organized as follows: in Sec. 2, we describe in detail the
implementation of the OMM and investigate its convergence properties. We give a the-
oretical overview of the method (Sec. 2.1 and Sec. 2.2), describe how the number of
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matrix operations can be minimized by careful consideration of the line search algo-
rithm (Sec. 2.3), discuss the issue of preconditioning (Sec. 2.4) and empirically assess
its efficiency (Sec. 2.5), detail the use of sparse–dense matrix operations (Sec. 2.6), and
comment on the issue of fractional occupancies (Sec. 2.7). In Sec. 3, we present scaling
tests performed in serial and in parallel, and then investigate the hard and soft parallel
scaling of the method (Sec. 3.1), and the scaling with basis size (Sec. 3.2). Finally, in
Sec. 4, we give a summary of our main conclusions.

2. Formalism and algorithmic considerations

2.1. OMM overview

We work in a basis of m finite-range NAOs {φµ(r)}, typically (but not necessarily)
atom-centred, and want to solve the generalized eigenvalue problem

Hcµ = εµScµ, (1)

where
Hµν = 〈φµ| ĤKS[ρ] |φν〉 , (2)

and
Sµν = 〈φµ|φν〉 . (3)

Within a single inner self-consistency (SCF) cycle, H depends on the fixed electronic
density ρ(r), and within an outer molecular dynamics (MD) step, both H and S depend
on the atomic positions {RI}.

Explicit diagonalization computes the KS eigenenergies {εµ} and the matrix of KS
eigenvectors cµ, from which the full density matrix can be obtained. Instead, in the
OMM we define a set of n = N/2 nonorthogonal WFs {χi(r)}:

|χi〉 =
m
∑

µ=1

Cµ
i |φµ〉 . (4)

The reduced subspace operators defined by the WFs are then, in matrix form:

HW = CHHC (5)

and
SW = CHSC. (6)

We can also define a subspace energy E, which, when minimized with respect to the coef-
ficients {Cµ

i }, will (by the variational principle) give the sum of the lowest n eigenvalues
of the original problem [19]:

E [C] = 2Tr
{

S−1
W HW

}

(7)

(we include a factor of two for spin degeneracy).
The minimization of the functional given in Eq. 7 has the advantage of being un-

constrained, since no orthonormalization is required. Nevertheless, performing such a
minimization is computationally demanding due to the presence of the inverse overlap
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S−1
W , which needs to be recomputed at every trial step; furthermore, this means that the

line search in a steepest descent (SD) or conjugate gradient (CG) algorithm has to be
solved numerically.

The OMM substitutes Eq. 7 with a different functional, one that does not contain
the inverse operation:

Ẽ [C] = 2Tr {[In + (In − SW)]HW} = 4Tr {HW} − 2Tr {SWHW} . (8)

It can be shown that this new functional drives the WFs towards orthonormality as it
is minimized [21–24]; at the minimum, therefore, SW = In, and Ẽ [C0] = E [C0] = E0,
where C0 describes the occupied subspace, and E0 is the ground-state KS (band) energy.
Eq. 8 can be derived either by replacing the inverse overlap matrix in Eq. 7 with a first-
order Taylor expansion [21], or by using a Lagrange multiplier approach to enforce the
desired orthonormality requirement on Tr {HW} at the solution [23].

The OMM functional, therefore, allows for unconstrained minimization without re-
quiring any matrix inversion; this is particularly suitable for developing linear-scaling
methods, since the inverse of a formally sparse SW matrix (obtained by constraining the
radii of the WFs) will not itself be sparse. However, the OMM in its original form was
quickly abandoned by the linear-scaling community, as the localization of the WFs intro-
duces many local minima that were found to lead to serious difficulties in obtaining the
true ground state [22, 24, 31]. Ultimately, this led to the development and implementa-
tion of various generalized OMMs to overcome the convergence problem [20, 31–33]. For
non-linear-scaling implementations of the OMM, however, this problem does not present
itself, as the WFs are not spatially constrained; the simplicity of the original functional
is therefore ideal in our case for developing an efficient algorithm.

2.2. Eigenspectrum shift

As shown by Ordejón et al. [24] and Kim, Mauri and Galli [31], a stationary point of
the OMM functional is obtained when all the WFs are either eigenvectors of Eq. 1 or zero,
subject to any arbitrary unitary transformation between them. If all the corresponding
eigenvalues are negative, this point will be a minimum; however, if any of them are
positive, it will become a saddle point. Therefore, the stationary point at C0 will be a
minimum provided that all the occupied eigenvalues are negative1.

Because of this, it is necessary to shift the eigenspectrum by η > εn for the mini-
mization procedure to be able to find the correct ground state. This is achieved by the
transformation

H → H− ηS, (9)

and the corresponding modification to the functional

Ẽ → Ẽ + nη. (10)

Pfrommer et al. have analyzed the efficiency of the OMM convergence as a function of η,
showing that the optimal choice (for minimizing the condition number of the associated
Hessian matrix) lies within the range

εn+1 − εn
4

+ εn ≤ η ≤ εm − ε1
4

+ ε1; (11)

1Furthermore, it can be shown that it will only be a global minimum if the entire eigenspectrum of
Ĥ is negative; otherwise, it will be a local minimum, and the functional will have no lower bound.
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therefore, if the width of the occupied bands is & 25% of that of the total eigenspectrum,
it will not be possible to find a value of η satisfying these conditions. This will generally
only be the case for a truly minimal (single-ζ) basis; even in such cases, however, we have
not observed in practice any noticeable decrease in efficiency (see Sec. 2.5.1 for further
discussion).

2.3. Line search

For the minimization of the OMM functional we use a CG scheme, with the conjugate
search direction D given by the Polak-Ribiére formula [34]. The gradient of the OMM
functional used for this scheme can be calculated as:

G = 8HC− 4SCHW − 4HCSW. (12)

A particularly convenient property of the functional is that it is a quartic function
along a given search direction. This means that the line search can be solved exactly,
either by fitting to five energy/gradient points along the line, or by directly computing
the coefficients {α0, . . . , α4} of the fourth-order polynomial. For the former approach,
previous implementations have used five energy points [23], or four energy points and
the initial gradient point [24]. For the latter approach, which is employed in our current
implementation, we give here the simplified expressions for calculating the coefficients:











































α0 = Ẽ [C]

α1 = 8Tr {H′

W} − 4Tr {S′

WHW} − 4Tr {SWH′

W}
α2 = 4Tr {H′′

W} − 2Tr {S′′

WHW} − 2Tr {SWH′′

W}
−4Tr {S′

WH′

W} − 4Tr
{

(S′

W)
H
H′

W

}

α3 = −4Tr {S′′

WH′

W} − 4Tr {S′

WH′′

W}
α4 = −2Tr {S′′

WH′′

W}

, (13)

where
H′

W = DHHC (14)

and
H′′

W = DHHD, (15)

and similarly for S′

W and S′′

W (in this case, D is the line search direction and C is the
starting point). Once the position of the line minimum x is solved for [35], the new
starting point for the following line search is easily computed:

{

Cnew = C+ xD

Hnew
W = HW + xH′

W + x (H′

W)
H
+ x2H′′

W

, (16)

and similarly for Snew
W .

Table 1 lists the number of matrix operations needed for solving the line search with
these different approaches. The three types of matrix–matrix multiplication listed are
the only cubic-scaling operations; of these, the one involving an m×m operator matrix
in the NAO basis (H or S) is the most expensive, generally by an order of magnitude.
When using the fitting approach, therefore, the cost of the line search is minimized by

5



Computational cost Fit 5 + 0 Fit 4 + 1 Fit
Operation Num. × Num. + (Ref. [23]) (Ref. [24]) 3 + 2 Coeffs.

= fm3 fm3 − fm2 ×10 ×8 ×6 ×2
= f2m3 f2m3 − fm2 ×2 ×2 ×4 ×2
= f2m3 f2m3 − f2m2 ×10 ×8 ×6 ×4

+ α = fm2 fm2 ×6 ×5 ×4 ×3
vec{ }·vec{ } fm2 fm2 − 1 - ×1 ×2 -
+ α = f2m2 f2m2 - - - ×6

Tr{ } f2m2 f2m2 − 1 ×5 ×4 ×3 ×10
Tr{ } - fm− 1 ×5 ×4 ×3 ×3

Table 1: Number of matrix operations needed for a CG line search, for three different fitting strategies
and for direct computation of the coefficients of the quartic function. ‘Fit a+ b’ refers to a fit of a energy
points and b gradient points. Listed are the type of operation, the number of elementary multiplications
and additions it requires, and the number of times it is used in a particular scheme. The matrices shown
schematically are: H, S (m × m); HW, SW (fm × fm); C, D (m × fm). f = n/m is the
fraction of occupied eigenstates. The cost of calculating the conjugate direction from the initial gradient
is not included, and is the same for all methods. We note that we do not make use of the Hermiticity of
the operators.

choosing three energy points and two gradient points, since calculating the gradient does
not require this operation if the energy has already been calculated at the same point2.

Calculating the coefficients of the quartic function directly has two advantages over
fitting to data points sampled along the line: firstly, it eliminates the necessity of choosing
a step length, which can pose some dangers from the numerical point of view (i.e., too
large or too small a sampling range can result in a significant error in the computed
value of x, sometimes failing entirely to find an existing minimum); secondly, and most
importantly, it reduces the number of operations that need to be performed almost
by a factor of three. We note, however, that we do not expect this approach to be
efficient for linear-scaling implementations of the OMM, because the matrix sparsity will
be progressively reduced from HW to H′

W to H′′

W, and all non-zero elements of the latter
two matrices are needed for calculating the coefficients.

2.4. Preconditioning

The problem of kinetic energy ill-conditioning is well known for plane-wave electronic
structure calculations [18]; however, it is also present for localized orbitals, as the high-
energy unoccupied eigenstates are similarly dominated by the kinetic energy contribution.
A preconditioner suitable for localized orbitals was proposed by Bowler and Gillan [36],
and then modified by Gan, Haynes and Payne [37] to respect the tensorial nature of
the search direction (which becomes apparent when using a non-orthogonal basis [38]).
Following the latter, we premultiply the gradient G by the preconditioning matrix:

P =

(

S+
1

τ
T

)

−1

, (17)

2In this discussion we assume that the results of the intermediate multiplications (HC), (SC), (HD),
and (SD) are saved and then reused for calculating G, H

′

W, S
′

W, (HC)new = (HC) + x (HD), and
(SC)new = (SC) + x (SD).
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where T is the kinetic energy matrix in the NAO basis, and τ sets the scale for the kinetic
energy preconditioning. For τ = ∞, the preconditioner becomes simply the inverse of
the overlap matrix, and, therefore, acts as a pure tensorial correction transforming the
covariant gradient defined in Eq. 12 into the contravariant gradient suitable for updating
the coefficients C. Within a similar scheme, Mostofi et al. [39] also postmultiply PG

by SW to account for the non-orthogonality of the WF basis in addition to that of the
underlying basis; however, this is not possible for the OMM, as the functional itself does
not respect tensorial rules for the WFs.

From the point of view of computational expense, the matrix inverse needed to find
P does not contribute significantly to the total, since it is only performed once at the
beginning of each MD step. However, calculating the preconditioned gradient adds an
operation of type = (Table 1) for each line search. This added expense is usually
more than compensated by the decrease in the number of line searches, as we will show.
An alternative approach is to reduce the generalized eigenvalue problem to standard form
by Cholesky factorization. This is the preferred method for cases in which kinetic energy
preconditioning is not needed, as it can be shown that the minimization of the reduced
Hamiltonian exactly follows that of the original problem with the application of the S−1

preconditioner; computationally, however, it is cheaper, since (a) no premultiplication of
the gradient is necessary, and (b) the calculation of SW is reduced to CHC, thus halving
the number of = operations listed in Table 1.

2.5. Convergence tests

2.5.1. Optimal values of τ and η

Fig. 1 shows a simple test case for our implementation of the OMM in SIESTA: the
convergence of the energy Ẽ[C] for a water molecule in a cubic box of side 10 Å. We
show the convergence of the CG minimization algorithm without preconditioning, and
with preconditioning for different values of τ . We have repeated the calculations for four
different basis sets, ranging from the smallest single-ζ basis to a large and extremely pre-
cise quadruple-ζ basis with two shells of polarization orbitals3. The fraction of occupied
eigenstates ranges from 67% for the former basis, down to 4% for the latter. The occu-
pied and unoccupied portions of the total eigenspectrum for the four bases are shown in
the upper panel of Fig. 2.

The main panel of Fig. 1 shows the energy convergence for the largest basis. In
this case, the preconditioner is essential for achieving convergence within a reasonable
number of line search iterations. This is due almost entirely to the tensorial correction,
as shown by the convergence behaviour in the limit of large τ . Nevertheless, the choice
of τ provides some additional speedup, with the best performance given by τ ∼ 1–10 Ry
(consistent with the idea of setting τ equal to the highest kinetic energy of the occupied
eigenstates [37], in this case 2.85 Ry).

As should be expected, the maximum speedup provided by kinetic energy precon-
ditioning increases with the size of the basis, while the optimal value of τ is system-
dependent and so does not change noticeably between bases (see inset of Fig. 1). For

3We employ the following notation for naming the bases: Aζ + Bp + Cp′, where A indicates the
number of ζ orbitals used for the valence shells (s: single, d: double, t: triple, q: quadruple), B for the
first polarization shell (if present), and C for the second one (if present). For single-ζ polarization shells,
the s prefix is omitted. For more information on the bases used for the water molecule, see Ref. [40].
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Figure 1: Convergence of the error in the OMM energy for the water molecule with respect to the ground-
state band energy calculated by explicit diagonalization (only a single SCF iteration is considered). The
inset shows the number of line search iterations needed to reach a fixed convergence threshold, as a
function of τ for four different basis sets (the number of basis orbitals is given in brackets). The main
panel shows the results for the qζ + tp + dp′ basis. The basis set notation is explained in the text.

very small (single- and double-ζ) bases, it provides little or even no benefit, but it be-
comes increasingly important when using larger triple- and quadruple-ζ bases. In fact,
while the number of iterations needed to reduce the energy error to within a given toler-
ance increases steadily with basis size when using the pure tensorial correction, it appears
instead to converge towards a fixed number when kinetic energy preconditioning is also
included.

We now return to the question of the optimal choice of the eigenvalue shift parameter,
η (Sec. 2.2), and its interaction with the preconditioner. Fig. 2 shows the number of
line search iterations needed for convergence of the water molecule using the four basis
sets described previously, both without and with preconditioning (lower left and right
panels, respectively). The eigenspectrum and the corresponding ‘optimal’ range of η
satisfying Eq. 11 are shown for each basis in the upper panel. For the single-ζ basis, no
η can be found to satisfy these conditions, due to the narrow width of the unoccupied
eigenspectrum.

For non-preconditioned minimization, the choice of η has almost no visible effect in
the logarithmic plot shown in Fig. 2; in fact, the ill-conditioning due to the tensorial
incorrectness of the gradient is much more important. Even so, in general the number of
line searches required for convergence is seen to increase as η is raised above ∼εn+1 (the
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Figure 2: Number of line search iterations needed to reach a fixed convergence threshold for the water
molecule, as a function of the eigenvalue shift parameter η for four different basis set. The upper panel
shows the width of the occupied and unoccupied portions of the eigenspectrum for each basis (the light
coloured boxes), and the range of optimal η satisfying Eq. 11 (the empty black box). The number of
basis orbitals is given in brackets in the key. The basis set notation is explained in the text. The lower
left panel shows the results of the minimization without preconditioning; the lower right panel shows
the results with preconditioning, for τ = 10 Ry (solid lines) and τ = ∞ (dashed lines).

lowest unoccupied eigenstate energy), with all bases exhibiting approximately similar
behaviour.

The case of the preconditioned CG algorithm is more interesting: the pure tensorial
correction (τ = ∞) removes the major source of ill-conditioning while not affecting the
width of the eigenspectrum, in doing so revealing a behaviour that confirms the analysis
of Pfrommer et al.; for the smaller bases the number of line searches increases steadily
as η is raised (and it does so fastest for the smallest basis), while for the larger bases
there is no increase, since the range of η shown in the figure lies within the optimal range
given by Eq. 11.

The application of kinetic energy preconditioning (τ = 10 Ry in this example) has the
effect of compressing the unoccupied eigenspectrum to approximately the same size for
all bases; the result, as should be expected, is that the effect of varying η is also almost
independent of basis. This behaviour is readily apparent in the figure. Unfortunately, as
reducing the width of the eigenspectrum necessarily reduces the optimal range of η, this
means that the choice of η becomes important even for large bases. The best choice is
found around the bottom of the unoccupied eigenspectrum. However, the increase in the
number of iterations with η is quite slow (2–3 additional line searches per Ry increase of
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η); as the Fermi level in SIESTA does not vary by more than 1 Ry for any reasonable
physical system, this should not pose a problem in practical applications of the OMM.

2.5.2. Self-consistent calculations

Finally, we discuss the performance of the OMM for realistic self-consistent single-
point energy calculations, typically requiring ∼20 SCF cycles. In common with other
iterative minimization algorithms, the OMM can reuse the final set of coefficients C from
one SCF step as the starting guess for the next one, progressively reducing the number
of line search iterations needed for each cycle. As shown in the examples in Fig. 3, the
last 5–10 SCF cycles in a self-consistent calculation require a single OMM line search.
Our stopping criterion for the minimization procedure is given by the relative energy
difference between subsequent line searches:

2
Ẽ [Cnew]− Ẽ [C]

Ẽ [Cnew] + Ẽ [C]
≤ etol; (18)

we use a convergence threshold of etol = 10−9. The total interacting energy of the self-
consistent system for all the examples shown is in close agreement with that obtained
by explicit diagonalization (with discrepancies of < 10−6 Ry/atom, on the same order
as the tolerance in the SCF convergence).

Fig. 3 shows the difference in convergence between non-preconditioned and precon-
ditioned minimization when varying either (a) the basis size, (b) the system size, or (c)
the material. The tests are performed on bulk crystalline silicon, except for (c), in which
other group IV elements with the same diamond crystal structure are also used. η is set
to zero for all systems, except for germanium, for which it is set to 0.5 Ry. When using
the preconditioner, τ is set to 10 Ry for all systems.

The preconditioner is extremely effective, not only in reducing the number of line
searches, but also in stabilizing the convergence. This is most important for curing the ill-
conditioning caused by large basis sets, as discussed previously, but also has a noticeable
effect when varying the material. The system size variation, instead, is already quite
stable, with the non-preconditioned minimization giving almost identical convergence
behaviour for all systems with ≥ 64 atoms.

2.6. Sparse algebra

Although we are not developing a linear-scaling solver, we may still take advantage
of the formal sparsity of the H and S matrices in SIESTA to reduce the computational
expense of the algorithm. In fact, in the description of the line search method given in
Sec. 2.3, there are four operations of type = that are multiplications of an m×m
sparse matrix with an m×n dense matrix (HC, HD, SC, SD). We can therefore substi-
tute the dense–dense multiplications with sparse–dense ones, reducing the cost of these
operations from O

(

m3
)

to O
(

m2
)

. The overall scaling of the solver, however, is still

O
(

m3
)

; hence, the details of the sparse–dense multiplication algorithm (which we have
developed internally to SIESTA to conform to its native sparse matrix representation [7])
are not particularly important, as this operation will no longer constitute the computa-
tional bottleneck other than for small systems, for which entirely dense multiplication is
preferable.
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The P matrix, also m ×m, is not formally sparse; attempts to truncate it (e.g., by
setting all elements below a threshold to zero) have not been successful in retaining the
advantage of preconditioning. We therefore leave PG as the only dense–dense multipli-
cation of its kind. Similarly, Cholesky factorization tends to destroy the sparsity of the
reduced H, and so no sparse–dense operations remain at all in this approach4.

2.7. Fractional occupancies

The issue of fractional occupancies is generally connected to that of finite-temperature
(Fermi-level smearing) calculations, in particular for achieving numerical stability of the
SCF convergence in metallic systems [43, 44]. A given smearing function can easily
be applied with a knowledge of the KS eigenenergies around the Fermi level, and their
corresponding eigenvectors; however, methods that do not explicitly make use of this
information have also been proposed, especially in the context of linear-scaling applica-
tions [45–47].

The current implementation of the OMM as described in this paper does not support
Fermi-level smearing, since the method does not natively provide information on indi-
vidual eigenstates. We shall not discuss this issue further here, but note that we plan to
address it in future; a possible simple method to do so would be as follows: (i) isolate
the Hilbert subspace for a small number of eigenstates above and below the Fermi level,
by two nested minimizations; (ii) solve for individual eigenstates in this subspace (either
by explicit diagonalization or band-by-band minimization) and apply the appropriate
fractional occupations to them.

Finally, it is important to note that the current implementation is nevertheless robust
for Hamiltonians with a degenerate ground state: tests have shown no difference in
the rate of convergence, and the correct band energy being recovered. However, the
degenerate eigenstates at the Fermi level will be partially filled in a random (i.e., non-
thermodynamic) combination, thereby resulting in a lowering of symmetry of the output
charge density. While this leads to instabilities in the SCF convergence for metallic
systems, we can expect it to be less problematic for the case of accidental degeneracies
appearing during the course of the self-consistency cycle.

3. Timing tests

In this section, we present some representative results obtained for the OMM, compar-
ing its performance in each case to that of explicit diagonalization using (Sca)LAPACK
(see Sec. 3.1 for more details). We consider five different variants of the OMM algorithm,
as listed in the key of Fig. 4:

• OMM (no precon.): entirely dense matrix multiplications using (P)BLAS [26, 48],
without preconditioning;

• OMM (precon.): entirely dense matrix multiplications using (P)BLAS, with pre-
conditioning (matrix inverse using (Sca)LAPACK);

4We note that sparsity-preserving factorizations have been developed [41, 42], although we do not
explore them in the current study.
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Figure 4: Timing test for a single-point energy calculation of 200 molecules of liquid water. The cumu-
lative time at each SCF iteration is shown in the upper panel, and the number of OMM line searches
performed for each step is shown in the lower panel. The shaded gray area shows the cumulative time
spent on operations outside of the solver routine (diagonalization/OMM), that are the same for all
calculations. τ = 10 Ry for all preconditioned simulations.

• OMM (sparse, no precon.): = operations performed sparse–dense, others
entirely dense using (P)BLAS, without preconditioning;

• OMM (sparse, precon.): = operations performed sparse–dense except the
preconditioning operation PG, performed dense–dense;

• OMM (Cholesky): entirely dense matrix multiplications using (P)BLAS, Cholesky
factorization using (Sca)LAPACK.

For all our test systems, we use norm-conserving Troullier-Martins pseudopoten-
tials [49] in separable Kleinman-Bylander form [50] (with a maximum angular momentum
component of l = 3), and, unless otherwise stated, dζ+p basis sets. We use the LDA [51]
exchange-correlation functional, and represent the electronic density on a real-space grid
with a grid cutoff [7] of 100 Ry, except for our simulations of liquid water, for which we
use the non-local vdW-DF functional of Dion et al. [52], and a grid cutoff of 150 Ry. The
simulation cell is periodic, and, unless otherwise stated, only the Γ-point is used.

Fig. 4 shows the timing results for a single-point energy calculation of a snapshot of
200 molecules of liquid water, extracted from an ab initio molecular dynamics (AIMD)
simulation. The matrix dimensions are m = 4600 and n = 800, and the level of sparsity
of the H and S matrices is approximately 94%. The test was run on 10 cores of a Dell
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No precon. Precon. Sparse, no precon. Sparse, precon. Cholesky

t/tdiagon 0.112 0.145 0.072 0.097 0.234

Table 2: Ratio of the average time taken for an SCF iteration with a single OMM line search t and the
average time taken for diagonalization tdiagon, for the test case shown in Fig. 4.

PowerEdge R910 server with four Intel Xeon E7-4850 processors. The code was compiled
using Open MPI and OpenBLAS [53].

The simulation takes 30 SCF iterations to reach self-consistency, within SIESTA’s
default tolerance on the density matrix; the plot shows the cumulative time at each
step. As should be expected, diagonalization uses a fixed amount of time per SCF
step, leading to a linear increase in time against iteration number. The OMM, instead,
benefits from the reuse of information, and so the time taken per step decreases steadily
during the first ∼10–15 steps, until reaching a constant minimum value, corresponding
to a single line search per SCF iteration. These single-line search steps are ∼4–14 times
faster for the OMM than for diagonalization depending on the specific algorithm used, as
shown in Table 2. The performance of the different OMM flavours reflects the number of
dense–dense = operations needed per line search, as discussed previously. Cholesky
factorization is the most expensive method for performing a single line search, due to
the extra cost of transforming the H matrix, and back-transforming the output density
matrix; however, it gains significantly with respect to the other methods in the initial
SCF steps with many line searches per step.

For non-preconditioned OMMs, the large number of line searches needed in the first
few SCF steps makes the method more expensive overall than diagonalization. When
using preconditioning or Cholesky factorization, instead, it is faster by up to almost 60%
(considering only the time taken for the solver part of the DFT simulation).

Large, disordered systems such as liquid water generally present the greatest challenge
for the OMM; crystalline systems with small unit cells and a fine Monkhorst-Pack (MP)
k-point grid [54] are instead found to be the most favourable, since (a) small system sizes
and crystalline order tend to require fewer line searches in the initial SCF steps, and (b)
multiple k-points allow for a greater reuse of information, not only from one SCF step to
the next, but also within a single SCF step from one k-point to another5. Furthermore,
our tests show a gain in relative efficiency for the OMM with respect to diagonalization
when using complex matrices instead of real ones.

Fig. 5 shows timing tests performed for two bulk crystalline systems: the 8-atom unit
cell of silicon (m = 104, n = 16), and the 2-atom unit cell of graphene (m = 26, n = 4).
We use MP grids of 9 × 9 × 9 for silicon, and 19 × 19 × 1 for graphene. The tests were
run in serial. Results for the sparse routines are not included, as sparsity is negligible
for such small systems. All the tested OMM flavours are faster than diagonalization for
these two systems, with the preconditioned and Cholesky-factorized algorithms achieving
speedups of 77% and 78%, respectively, for silicon, and 86% and 85% for graphene. The
non-preconditioned algorithm now also results in an appreciable speedup, of 44% for
silicon and 63% for graphene.

5However, the possibility of doing so is reduced when parallelizing the calculation across k-points;
information reuse is maximized when all k-points are solved sequentially.
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We note that the number of SCF iterations needed to reach the same convergence
tolerance differs slightly between solvers; this can also be seen for the examples in Fig. 3.
This is due to small differences in the density matrix obtained at the end of each SCF
step, which can be effectively eliminated by further reducing the OMM convergence
threshold etol defined in Sec. 2.5.2. Nevertheless, precoditionining/Cholesky factorization
is observed to decrease the number of SCF iterations needed for a given etol. We have
also investigated the possibility of starting the simulation with a fairly high value of etol,
and progressively reducing it during the self-consistency cycle; in general, however, tests
have shown that any saving obtained for the initial SCF steps in reducing the number of
line searches is then lost due to an increase in the total number of SCF iterations.

3.1. Hard and soft scaling

We now examine the efficiency of the OMM when parallelizing the calculation with
MPI-2. This is simply related to the scaling efficiency of the underlying PBLAS and
ScaLAPACK operations (and the sparse–dense multiplication, when used), and, hence,
should be comparable to that of diagonalization with ScaLAPACK. Although the ef-
ficiency might vary significantly depending on the hardware and the underlying BLAS
and MPI implementations used, we expect the relative trends between solvers to be fairly
consistent. Our tests were performed on a BullX cluster with dual-processor Intel Xeon
E5420 nodes and InfiniBand interconnects.

Both for the OMM solvers and diagonalization we employ a 2D block-cyclic data
distribution of the matrices, with the exception of the sparse OMM algorithms, which
employ a 1D block-cyclic distribution for compatibility with SIESTA’s sparse matrix rep-
resentation. Diagonalization is performed with a divide-and-conquer routine (pdsyevd/
pzheevd), using the same multi-step process described previously for the Quickstep
(CP2K) code in Ref. [9]. For the OMM solver with Cholesky factorization, the factoriza-
tion itself is performed with the pdpotrf/pzpotrf routine, and the subsequent reduction
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cores for each solver. For the 8-atom system, only diagonalization can be used for > 16 cores. τ = 10 Ry
for the preconditioned simulations.

of the generalized eigenvalue problem to standard form with the pdsygst/pzhegst rou-
tine. Instead, the OMM solvers with preconditioning make use of the pdgetrf/pzgetrf
routine for the factorization, and the pdgetri/pzgetri routine for the inversion (a gen-
eral routine must be used in this case, as P is not necessarily positive definite; in serial,
however, the dsytrf/zhetrf and dsytri/zhetri routines are available).

It has previously been noted that the scaling efficiency of ScaLAPACK factorization
and diagonalization can noticeably suffer when parallelizing over large numbers of cores
(& 103) [11, 55, 56], and several libraries [56–58] are being developed that can already
outperform it (notably, the ELPA [56] library within the FHI-aims [11] and, recently,
VASP [5] and CP2K [9] codes). Nevertheless, ScaLAPACK remains in wide usage, and
is well established for benchmark tests.

Firstly, we consider the case of hard scaling (Fig. 6), i.e., increasing the number of
cores while keeping the system size fixed. We do so for supercells of bulk silicon of 8, 64,
216, and 512 atoms, varying the number of cores from 8 to 64. The matrix dimensions
are m = 13Na and n = 2Na, where Na is the number of atoms. Fig. 6 shows the speedup
relative to the 8-core timings, which we define as 8t8/tNc

, where tNc
is the total time

spent by the solver for the self-consistent calculation on Nc cores.
There is a general increase in scaling efficiency with system size, as this is mainly
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determined by the number of atoms/core; almost nothing can be gained with most solvers
when decreasing this number to . 10. However, one OMM flavour (entirely dense algebra
with preconditioning) is noticeably more efficient than both diagonalization and the other
OMMs for all system sizes > 8 atoms, giving timing gains even when going down to only
a few atoms/core. For the 512-atom system, this method exhibits seemingly perfect hard
scaling in the range of cores considered; in contrast, the efficiency of diagonalization is
reduced to 55% on 64 cores.

Of the two other OMM flavours considered, Cholesky factorization gives efficiencies
similar to diagonalization, while the sparse routine with preconditioning is the least
efficient for small systems, but shows a substantial increase in efficiency for the largest
one. This is due to the level of sparsity of the m×m matrices increasing together with
the system size. It is important to note that the speedup in Fig. 6 is only defined relative
to the performance of the same solver on 8 cores; however, the OMMs are about twice
as fast as diagonalization on this number of cores, meaning that all OMM flavours are
actually consistently faster than diagonalization on all number of cores, even for cases in
which the hard scaling efficiency is lower.

Next, we consider the case of soft scaling (Fig. 7), i.e., keeping the number of
atoms/core constant and increasing the system size together with the number of cores.
For linear-scaling DFT codes, the aim in this case is to achieve a constant time-to-
solution. Conventional cubic-scaling solvers, however, can at best achieve quadratic
scaling, while an approximately constant time-to-solution requires a combination of hard
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and soft scaling.
For our test, we use snapshots of liquid water in simulations boxes of increasing

size, with 8 molecules/core (within the range of efficient hard scaling suggested by the
previous test) up to 128 cores. The matrix dimensions are m = 23Nm and n = 4Nm,
where Nm is the number of molecules. Fig. 7 shows the timings relative to the 8-core
(64-molecule) ones tNc

/t8, for each of three solvers. The ideal increase in time is therefore
given by N2

c /64, which is also shown in the figure. Both diagonalization and the OMM
routine using entirely dense operations give timings that agree very closely with this ideal
scaling, i.e., both methods exhibit essentially perfect soft scaling in the range of cores
considered. The OMM routine with sparse–dense operations, instead, gives better than
ideal scaling for the largest system; as for the hard scaling example, this is due to the
increased sparsity of the m×m matrices, which reduces the percentage of the total time
taken up by the = operations with respect to the smaller system sizes.

Both the hard and soft scaling tests, therefore, show the OMM to be at least as effi-
cient as diagonalization, and potentially more so, depending on the specific OMM flavour.
The improved parallel scaling of iterative solvers with respect to explicit diagonalization
with ScaLAPACK has also been demonstrated with the AIMPRO [55] and CP2K [9]
codes. As we have already noted, however, newer libraries developed for massively par-
allel architectures are increasing the competitiveness of diagonalization and the range of
system sizes for which it is feasible. Although some OMM algorithms are also dependent
on ScaLAPACK operations that will undoubtably benefit from these same developments,
the majority of the computational effort is concentrated on the matrix–matrix multiplica-
tions listed in Table 1, currently performed with the PBLAS pdgemm/pzgemm routine and
our custom sparse–dense routine. Based on the results of our tests, the sparse version of
the OMM solver appears to be the most promising for massive parallelization; this is also
the strategy pursued by CP2K for a similar iterative solver and localized basis [9]. To
this end, we can identify certain key improvements that need to be made to our current
implementation: (a) a sparsity-preserving factorization (and, hence, a sparse precondi-
tioner), and (b) a new sparse matrix representation for SIESTA, compatible with the 2D
block-cyclic data distribution scheme used by PBLAS, which exhibits better scaling to
large numbers of cores than the 1D one.

3.2. Basis size scaling

We conclude our timing tests by considering the scaling of the OMM with the basis
sizem, while keeping the system size (and the number of occupied eigenstates n) constant.
For this test, we move away from pure atomic basis sets, and use instead a hybrid
basis, consisting of the usual atom-centred orbitals, plus sets of spherical Bessel functions
confined to overlapping spheres and fixed in space to a regular grid, with each sphere
centred on a grid point. In doing so, we can reach very large basis sizes (approaching
those of plane-wave calculations), and demonstrate the qualitatively different scaling
behaviour of diagonalization, entirely dense and sparse–dense OMMs, this last method
being optimally suited to take advantage of the properties of high-quality, localized and
variational basis sets such as blips [59] or psincs [60].

Fig. 8 shows the total time taken by three different solvers for a self-consistent cal-
culation of 64 atoms of bulk silicon, performed on 16 cores. We use the standard dζ +p
basis for the atomic orbitals, and Bessel functions fixed to an 8×8×8 grid, offset by half
a grid spacing. The Bessel functions are confined within spheres of radius rB = g

√
3/2,
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Figure 8: Basis size scaling timing test for 64 atoms of bulk silicon using a hybrid basis. The black dash–
dotted lines show the fits to the data points for the three different solvers; a third-order polynomial is
used in each case.

where g is the grid spacing. The basis size is increased by adding shells of Bessel func-
tions of higher l, up to l = 3. The fraction of occupied eigenstates varies from 15% down
to 1.4%.

The polynomial fits in the figure show that the three solvers follow different scaling
behaviour with basis size: diagonalization is cubic, the OMM with entirely dense algebra
is quadratic, and the OMM with sparse–dense algebra is linear. This is straightforward
to explain from the list of operations in Table 1: only = scales as nm2, while all
other operations scale at worst as n2m; when using sparse algebra, however, the former
is reduced to nm.

Of course, this scaling behaviour is not unique to the OMM, but is shared with all
other iterative minimization methods. Achieving linear scaling up to large basis sizes,
however, requires not only a localized basis, but also a sparse preconditioner, or (as in
this example) a method that is sufficiently efficient even without preconditioning. This
statement might seem surprising, given the examples discussed in Sec. 2.5.1; however,
we have found that, while the ill-conditioning is very severe when increasing the number
of shells of the atomics orbitals, it is much less affected by the grid-based orbitals. In
fact, in the example shown in Fig. 8, the number of line searches needed for convergence
increases only by a factor of ∼2 between the smallest basis (m = 832) and the largest
one (m = 9024), while the width of the eigenspectrum increases by a factor of ∼8. By
comparison, for the system shown in Fig. 2, there is a factor of ∼300 increase in the
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number of line searches for a similar increase in the eigenspectrum width.

4. Conclusions

We have presented a cubic-scaling implementation of the OMM for finite-range atomic
basis sets within a self-consistent KS solver. Particular attention has been given to the
number and type of matrix operations needed for each line search step, and a number
of different variants of the main algorithm have been proposed, optionally making use of
the sparsity of the Hamiltonian and overlap matrices to reduce the computational cost
while retaining the full accuracy of the solution. The use of a preconditioning scheme for
localized orbitals has been investigated, and has been found to be effective in stabilizing
the number of iterations needed for convergence between different basis sizes and system
types.

Timing tests for self-consistent calculations have shown the OMM to be able to achieve
a greater efficiency than explicit diagonalization even for minimal basis sizes, with the
greatest speedups (up to almost 90%) being found for small periodic systems with multi-
ple k-points; this is mainly due to the possibility of information reuse between subsequent
minimizations within the self-consistency cycle, typically resulting in a single line search
being needed for the last few SCF iterations. Information reuse can also be employed
between different single-point energy calculations, e.g. for MD simulations or geometry
optimizations. Future work on our implementation of the method in SIESTA will focus
on supporting finite-temperature (Fermi level smearing) calculations.
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de Supercomputación for access to altamira. SGIker (UPV/EHU, MICINN, GV/EJ,
ERDF and ESF) support is gratefully acknowledged.

References

References

[1] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964) B864–B871.
[2] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys.

Rev. 140 (1965) A1133–A1138.
[3] J. Hafner, C. Wolverton, G. Ceder, Toward computational materials design: The impact of density

functional theory on materials research, MRS Bull. 31 (2006) 659–668.
[4] N. Marzari, Realistic modeling of nanostructures using density functional theory, MRS Bull. 31

(2006) 681–687.
[5] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a

plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.
[6] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113 (2000) 7756–7764.

20
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iste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker,
D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T.
Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent,
M. J. Verstraete, G. Zerah, J. W. Zwanziger, ABINIT: First-principles approach of materials and
nanosystem properties, Comput. Phys. Commun. 180 (2009) 2582–2615.
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