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Abstract

The kinetic Monte Carlo (kMC) method is used in many scientific fields in applications involving rare-event transitions. Due to
its discrete stochastic nature, efforts to parallelize kMC approaches often produce unbalanced time evolutions requiring complex
implementations to ensure correct statistics. In the context of parallel kMC, the sequential update technique has shown promise by
generating high quality distributions with high relative efficiencies for short-range systems. In this work, we provide an extension
of the sequential update method in a parallel context that rigorously obeys detailed balance, which guarantees exact equilibrium
statistics for all parallelization settings. Our approach also preserves nonequilibrium dynamics with minimal error for many paral-
lelization settings, and can be used to achieve highly precise sampling.
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1. Introduction

Since its development in the 1970s, the kinetic Monte Carlo
(kMC) method [1, 2, 3] has enjoyed wide popularity, and has
been applied to problems far beyond what it was initially de-
signed to model. The kMC approach belongs to a general class
of methods known as stochastic discrete event simulators [4],
which have also attracted much attention and have been used
in numerous applications. These simulation techniques are
mesoscale by design, as the inputs are often propensities –or
probabilities per unit time– that are extracted from either sim-
ulations, measurements, or both, at microscopic scales. Due
to the fact that it is an event driven algorithm, kMC has the
potential of vastly extending the accessible timescales of its
continuous-time counterparts.

As the demand for simulations of larger system sizes in-
creases, many questions about how best to parallelize these
methods remain. The main difficulty arises from the fact that
standard discrete timestep approaches to parallelization of de-
terministic differential equations [5] and molecular dynamics
integrators [6] are not directly applicable due to the discrete
and stochastic nature of time evolution. Significant progress
towards the formulation of a Trotter decomposition has been
achieved, however [7], and the subject remains an active area
of research.

By far, the dominant paradigm in parallel kMC is the asyn-
chronous approach, working from the idea that parallel pro-
cesses are run simulataneously, with intermittent bookkeepping
to recover either exact or nearly exact statistics. The classic
set of rigorous and semirigorous approaches proposed by Amar
and Shim [8, 9], and other derivative algorithms [10], remain as
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the reference for parallel kMC simulators. These designs can
be highly efficient, but the asynchronous strategy gives rise to
rough virtual time horizons, since each process advances by an
independent, stochastically varying time clock. This effect was
first noted and addressed by Korniss et al [11, 12, 13]. Martinez
et al [14, 15] proposed an elegant solution to the time horizon
problem, resulting in a synchronous approach. They build on
a null event formulation and that is found in the discrete event
community, while also developing a controlled approximation
to the master equation for the parallelized process.

In recent years, a number of researchers have developed the
notion of sequential updates in the context of single process
simulations [16, 17, 18, 19]. This formulation has been rigor-
ously shown to produce equilibrium distributions by obeying
a balance condition, but has not been applied to parallelization
contexts. One advantage to the sequential approach in a parallel
simulation is that the time steps advance sequentially with each
process, and there is no need to worry about time synchrony
across all processes. A recent sequential approach for parallel
simulations has been proposed by Arampatzis, et al [7]. Since
the sequential method can limit parallel efficiency, considerable
care is given as to how to treat noninteracting processes simul-
taneously, making a convincing case that this approach can also
be efficient. In the SPPARKS simulation suite of Plimpton et
al [20], an efficient implementation that simultaneously updates
noninteracting processes is also used.

In this work, we propose to further develop the sequential up-
date paradigm as a parallelization strategy. Here, however, we
propose a procedure that obeys detailed balance, and also show
that we can recover a very good approximation to the time re-
sponse, laying the foundation for more detailed treatments in
the future. The basis of our approach lies in defining a proce-
dure for generating sequential update schedules in such a way
that detailed balance is assured for the endpoints of the sched-
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ules. We also discuss how to use the statistics of the endpoints
of each process within the schedule. For the present work, we
discuss only the theoretical and algorithmic aspects of the par-
allel protocol, and will cover implementation and performance
related issues in a future work.

This paper is organized as follows. We begin with a theoret-
ical overview of the kMC method and sequential updates. We
then formulate the sequential update strategy that preserves de-
tailed balance in the context of parallel simulations. We include
a discussion on collecting statistics after each parallel process
has run during a schedule sweep. The method is then tested and
applied to Ising systems of increasing complexity in Section 3.
We conclude with a brief discussion of the results obtained and
the conclusions.

2. Theory: Sequential Updates with kinetic Monte Carlo

2.1. The master equation and kinetic Monte Carlo

To begin the discussion, we express our propagation strategy
as a master equation. For kinetic Monte Carlo, it is sometimes
more convenient to work with the Chapman-Kolmogorov form,
as it contains the transition kernel explicitly in the expression.
The Chapman-Kolmogorov form [21] of the master equation
for a Markov system is

T N p(σ; s) = p(σ; s + N), (1)

where the transition kernel T is expressed in left stochastic form
[21], and p(σ; s) is the time dependent probability vector for
the configuration vector σ at integer time state s. The system
is a Markov process, and we advance the system by N steps by
applying the T matrix to p an integer number N times. For the
present work, the vector of configurations σ is the vector of all
2NS possible spin states where NS is the number of spins in the
system, as is described in Appendix A. The standard detailed
balance for a single step can be expressed as πiT ji = π jTi j,
where πi is the equilibrium probability of occupying the i-th
configuration (spin) state, such that p(σi; s = ∞) = πi. For the
cases presented in this work, each time step follows Glauber
dynamics [22], as defined in Equation (A.3).

The timestep in Equation (1) can be advanced by using a
Poisson variate for a procedure consisting of N steps, or

pp(∆t(N)) =
1
τS

∆tN−1

(N − 1)!
e−∆t/τS . (2)

The expectation value of a variate drawn from the distribution
in Equation (2) is 〈∆t(N)〉 = NτS , where τS is the time scale of
the system. For purposes of this work, the timestep is advanced
only by the average value in order to simplify the analysis. Both
approaches give equivalent statistics, however. For n-fold way
simulations [1, 2], the timescale is computed as the residence
time, or the inverse frequency line τS = 1/R, where R is the sum
of all possible transition rates. For the present work, we regard
the τS as the intrinsic timescale of the simulation. The Poisson
variate for an N step process is readily obtained by comput-
ing the negative logarithm of N uniform variates and summing

them. Using either the Poisson variate or the expectation value,
we can advance the time clock as

T N p(σ; t) = p(σ; t + ∆t(N)), (3)

to generate the time dependent solution to the master equation.
For all cases in this work, the time step is advanced by the ex-
pectation value.

2.2. Construction of Sequential Strategy that Obeys Detailed
Balance

Here we develop a procedure based on the work of Deem et
al [23], and also Orkoulas et al [17, 19, 18], who developed a
theory for sequential updates and showed that exact equilib-
rium distributions can be obtained. The primary motivation
for using sequential updates in these works was to accelerate
convergence of equilibrium simulations. For the present work,
we wish to develop the sequential update procedure as a par-
allelization strategy, following ideas introduced by Shim and
Amar [8] and Arampatzis et al [7]. Since we wish to have a par-
allelization strategy suitable for studying nonequilibrium and
dynamical properties, the goal here is to develop a procedure
that preserves the dynamic character of native, unparallelized
simulations, rather than to have rapid convergence properties.
Our procedure can be regarded as an advance in that it intro-
duces a sequential update strategy obeying detailed balance in
a parallelization context.

Consider a configuration space that is partitioned into do-
mains, such as that shown in Figure 1. Each domain is of equal
size, and the domain partitioning is held fixed for the duration
of the simulation. The general procedure of sequential updating
requires the simulation of a single domain process for a num-
ber NI of independent time steps while holding the neighboring
domains at a fixed coordinate state. For each process of length
NI , data is first collected from the fixed state of the neighboring
processes. For distributed data parallelizations, this data from
neighboring processes is sometimes referred to as a halo. For
the Ising system, the halo consists only of the spins from ad-
jacent domains that are in direct contact with the domain that
is being simulated. Once this is complete, another domain is
selected according to a schedule

Λ =
{
λ1, ..., λd, .., λND

}
, (4)

where ND is the number of domains, and λd is the d-th domain
in the schedule. Each d-th process collects halo data prior to
running for NI steps. An example schedule is given in Figure
1. The update schedule can thus be in any order, so that all
domains are visited in one schedule sweep. A new schedule is
generated for the next round of updates. Under this definition,
there are ND! possible update schedules.

The sequential requirement can limit efficiency in parallel
simulations. For systems whose interaction ranges extend only
to neighboring domains, however, the order of updates is not
important, and can be carried out simultaneously, as has been
noted previously [7, 20]. We note here that the procedure that
we present is also valid for systems whose halos, or interaction
ranges, could extend beyond neighboring domains, which can
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λ1=A λ2=B λ4=C 

λ3=D λ9=E λ5=F 

λ8=G λ7=H λ6=I 

Figure 1: Example 2D configuration partitioned into ND = 9 domains with a
’checkerboard’ pattern and schedule Λ = {A, B,D,C, F, I,H,G, E}. Each do-
main runs for a fixed number of NI independent steps with neighboring (or
interacting) domain processes held fixed. At the end of each sweep, a new
schedule is generated randomly. A vertically striped partitioning would treat
the combined domains (A, B,C), (B, E,H), and (C, F, I) each as a single pro-
cess, resulting in ND = 3.

affect the choice of domains to be run simultaneously. In a fu-
ture work, we will discuss ways of decomposing short and long
range interactions in an efficient way. For clarity, we develop
this procedure for the Ising model, which is given in detail in
Appendix A, although the procedure is perfectly general for
both discrete and continuous systems. For the present discus-
sion, the unpartitioned Ising model results in a vector of 2NS dis-
crete states, which uses a transition kernel T of size 2NS × 2NS .
After applying a partitioning procedure, we require that each
domain process obeys detailed balance

[T(λd)]nm =
πn

πm
[T(λd)]mn, (5)

which also implies that the domain process run for NI indepen-
dent steps obeys detailed balance [21]

[T NI
(λd)]nm =

πn

πm
[T NI

(λd)]mn. (6)

Equation 6 can be readily derived for a discrete system by com-
puting the transition matrix product NI times and taking the
(m, n)th element of the product. To derive the detailed balance
condition, we first develop a two domain procedure (ND = 2).
From the two domain procedure, a three domain procedure is
derived, followed by an arbitrary ND number of domains. For
the current procedure, the partitions are of equal size, and NI is
the same for all domains.

Consider first the procedure where the full configuration
space is partitioned into two domains A and B. For the Ising
model, this means that only spins assigned to each domain are

allowed to fluctuate during the process. The resulting parti-
tioned transition matrices are expressed as T(A) and T(B). Al-
though the partitioning allows for these matrices to be rewritten
as 2NS /ND × 2NS /ND matrices, we consider the partitioned forms
as 2NS ×2NS matrices, such that the full reference transition ma-
trix is he superposition TREF = 1/2 · (T(A) + T(B)). A full sweep
across domains with the schedule Λ = {A, B}, where each do-
main process runs independently for NI steps, would therefore
be expressed as T NI

(B)T
NI
(A) p(σ; s). The matrix product can be ex-

pressed as[
T NI

(B)T
NI
(A)

]
JI

=
∑

k

[
T NI

(B)

]
Jk

[
T NI

(A)

]
kI

=
∑

k

[
πJ

πk
T NI

(B)

]
kJ

[
πk

πI
T NI

(A)

]
Ik

=
πJ

πI

[
T NI

(A)T
NI
(B)

]
IJ
, (7)

which indicates that the forward schedule Λ = {A, B} obeys de-
tailed balance with respect to the reverse schedule, Λ̃ = {B, A}.
Since Equation (7) is for a full full schedule sweep, the end-
points I and J are given in capital letters for clarity. The d-th
domain process in the forward schedule is related to the reverse
domain process as λd = λ̃ND+1−d. Consider next the ND = 3
schedule Λ = {A, B,C}. The transition matrix for this forward
sequence is given as[

T NI
(C)T

NI
(B)T

NI
(A)

]
JI

=
∑

k

[
T NI

(C)

]
Jk

[
T NI

(B)T
NI
(A)

]
kI

=
∑

k

πJ

πk

[
T NI

(C)

]
kJ

πk

πI

[
T NI

(A)T
NI
(B)

]
Ik

=
πJ

πI

[
T NI

(A)T
NI
(B)T

NI
(C)

]
IJ
, (8)

where the result of Equation (7) was used in the second line of
Equation (8). For a sequence with ND domains, it is straightfor-
ward to generalize Equation 8 to

TS EQ(Λ; NI ,ND) =

ND∏
d=1

T NI
(λd)

TS EQ(Λ̃; NI ,ND) =

ND∏
d=1

T NI
˜(λd)

=

1∏
d=ND

T NI
(λd),

(9)

where the number of domains ND and number of steps NI run on
each domain are parameters of the simulation, while the sched-
ule Λ can vary with each sweep.

Using the notation introduced in Equation (9), the detailed
balance condition for the entire sweep in terms of a particular
schedule is[

TS EQ(Λ)
]

JI =
πJ

πI

[
TS EQ(Λ̃)

]
IJ
. (10)

For a system where the schedules are selected with some
weighted probability w(Λ), we simply require that w(Λi) =

w(Λ̃i) in order to maintain detailed balance. The easiest way to
meet this requirement is to select a schedule randomly at each
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sweep, so that w(Λi) = 1/ND!. The resulting transition matrix
is a weighted superposition of these transition matrices over all
ND! possibilities

TPAR =

ND!∑
i=1

w(Λi)TS EQ(Λi), (11)

The resulting master equation for this system will contain a
transition matrix with the correct weighted sum of all ND!
schedules. If only a subset of schedules is chosen, detailed bal-
ance can be maintained as long as the corresponding reverse
schedule is included. For all cases studied here, we selected
schedules uniformly. It should be noted that TPAR(NI ,ND) ,
T (NI ·ND)

REF in general, but they are often sufficiently similar that
simple scaling of dynamics can reproduce the nonequilibrium
response, as is shown in section 3.

Equation (1) can be rewritten for a parallel system as

TPAR · p(σ; s) = p(σ; s + NI · ND), (12)

where we note that the intermediate timesteps are also ac-
counted for in the integer timestep.

2.3. Collecting Statistics and Time Scaling
Equation (10) demonstrates that only the endpoints of the

sweep obey detailed balance, and makes no claim as to whether
the intermediate steps can be used to gather statistics. In gen-
eral, the intermediate steps of a general Metropolis-Hastings
procedure cannot be used [24, 25, 26], unless a reweighting
scheme is applied. For the procedure presented here, this limi-
tation holds for the independent steps on each process.

We can, however, use the statistics generated at the end-
point of each domain process run for NI steps. Con-
sider a sequence of three randomly generated schedules
... {C, A, B} {b, a, c} {A, B,C} ..., focusing on the middle sched-
ule, {b, a, c}. According to strict interpretation of the present
protocol, only the data after domain process c could be
collected. We can relax our definition of schedule to in-
clude duplicates. Since the entire schedule is rejection
free, we can treat the register shifted sequences as valid
sources of statistics. The same sequence can be seen to
consist of the schedules {...,C} {A, B, b} {a, c, A} {B,C, ...}, and
{...C, A} {B, b, a} {c, A, B} {C, ...}. While the original schedule
has c as the endpoint, the second and third sequences contain
b and a as the endpoints, respectively. It should be noted, how-
ever, that we cannot make a similar assertion about the interme-
diate statistics generated during the domain process. This can
be clearly seen in Figure 2, and is discussed in detail in section
3.2.

To add the time scale, we assert that each simulation pro-
cedure has a single decay constant that can be measured by
computing the equilibrium autocorrelation function CA(∆s) =

〈A(s)A(s + ∆s)〉 of some observation A and finding a func-
tion CA(∆s; τPAR) = CA(0)e−∆s/τPAR . For all cases studied
here, A(s) = H(s)m(s), where H(s) and m(s) are the energy
and magnetization as defined in Appendix A. The autocor-
relation function is computed for each trajectory, and the av-
erage of these functions over NTRAJ realizations is used to

compute the autocorrelation function from which τPAR is ex-
tracted. The timestep of any parallelized simulation can then
be rescaled to the timescale of the standard simulation by using
t = s · τREF/τPAR.

3. Results and Discussion

3.1. 1 dimensional Ising model
A 1D Ising model with no external field and toroidal bound-

ary conditions was studied using the potential given in Equation
(A.1). As is the case with all simulations studied, Glauber dy-
namics are used, as is given in A.3. The number of spins is
NS = 8, resulting in a 2NS = 256 states. We prepare the sys-
tem in the 8 initial conditions corresponding to two consecutive
up spins, with the remaining spins in the down state, given as
σIC = {(↓↓↓↓↓↓↑↑), (↓↓↓↓↓↑↑↓), ...(↑↑↓↓↓↓↓↓), (↑↓↓↓↓↓↓↑)}.
These initial conditions are identical for the unpartitioned case,
since the boundaries are symmetric. The location of the par-
titions break this symmetry however, which is why we chose
to study different locations of the paired spin up condition.
Using the first initial condition as an example, the partitions
ND = {1, 2, 4, 8} can be shown as

ND = 1 : (↓↓↓↓↓↓↑↑)
ND = 2 : (↓↓↓↓)(↓↓↑↑)
ND = 4 : (↓↓)(↓↓)(↓↓)(↑↑)
ND = 8 : (↓)(↓)(↓)(↓)(↓)(↓)(↑)(↑), (13)

where each set of spins in parentheses are treated as a separate
domain, and is run for NI independent steps. We use four differ-
ent settings for NI , chosen to be NI = {1, 2, 5, 10}. Note that the
introduction of a partitioning scheme in general is expected to
produce dynamic artifacts which are studied here empirically.
In order to gather good statistics in both the nonequilibrium
and equilibrium regimes, multiple trajectories NTRAJ = 6000
are collected (see Table 1) for each setting of (σIC ,NI ,ND). A
new trajectory for each setting is generated by generating a new
random seed prior to running the simulation. The dimension-
less temperature is set to βJ = 0.5, and each each trajectory is
run for a total of S = 800 steps, regardless of parallelization
settings. Statistics are gathered after each number of NI steps
are run. Time dependent observations are computed as

〈A(s)〉 =
1

NTRAJ

NTRAJ∑
i=1

Ai(s) (14)

where Ai(s) is value of observation A at timestep s for the i-th
trajectory. For the 1D cases, these trajectories can include either
a set of trajectories from a particular initial condition, or as a
sum over multiple realizations of multiple initial conditions.

The intrinsic time constant τPAR is extracted from the auto-
correlation function as mentioned in Section 2.3. The product
of energy and magnetization was chosen to break the degener-
acy of energies that can result from computing configurations
that are equal in energy but not easily interchangeable through
simulation steps. This effect is particularly important for very
small systems, whose energies equilibrate very rapidly, which
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Figure 2: Timeseries examples from 1×8 spin Ising model, ND = 4, σIC =

(↓↓)(↑↑)(↓↓)(↓↓). Data is also shown in Figure 3. a) Time series for average
of spin 1, with NI = 5 and b) NI = 10. Data points in black are collected for
statistics, while the intermediate steps are discarded. Inset panels on right hand
side of figures are the first 40 steps of the same dataset.

will be discussed in Section 3.3. Once the τPAR(NI ,ND) values
are computed, all observations for all parallelization schemes
can be plotted on the same axis scaled by s/τPAR.

As can be seen from Fig. 2, the statistics for the intermedi-
ate steps show a distinct response behavior, and are discarded.
This effect becomes more pronounced with fewer spins per do-
main, as well as increased NI . The decay behavior can be seen
as a rapid equilibration of each domain to the nonequilibrium
boundary conditions of the adjacent domains. In general, this
intermediate effect propagates to an overall distortion of the
time responses. For those responses whose time constants are
much larger than NI · ND, this effect is less noticeable, as in
Figure 2a.

The 1D systems were chosen so that details of the configura-
tion evolution could be studied. In Figure 3, the spin averages〈
σ(i)(s)

〉
where i is the spin index, are computed as time depen-

dent averages using Equation (14). Spins 1, 2, and 3 are plotted
for an unpartitioned system starting from the same configura-
tion and different partitioning schemes. The unpartitioned sys-
tem (ND = 1) shows artifacts resulting only from taking only
the NI-th data point. Some of the fast time response behavior
for this system happens faster than NI , and this artifact can in
fact introduce a numerical error for such a small system. For
example, the energy 〈H(s)〉 passes through a local maximum at
s ≈ 5, causing difficulties in systems of NI = 5 and NI = 10,
regardless of partitioning scheme. See Section 3.3 for more dis-
cussion. For the ND = 4 partitioning of Figure 3, notable dis-
tortions can be seen. It is also noteworthy that the distortions in
the time response are not homogeneous. The timeseries for spin
1, for example, appears to scale very well, while spins 2 and 3
show a response which rapidly approaches a point that over-

shoots the actual response, and gradually relaxes to the longer
time decay. This happens at an interface between spins, and
also a domain boundary. Each domain process is experiencing
a frozen boundary condition for NI steps, which distorts the re-
sponse during that sweep. This effect can be particular to the lo-
cation of each spin relative to the partition, and a single scaling
constant may not always capture this more complex behavior.

The equilibrium behavior of these systems is guaranteed by
Equations (10) and (11). In fact, the equilibrated data are far
better, because we can invoke the ergodic principle and obtain
multiple estimates of the equilibrated state from a single trajec-
tory in the equilibrium regime, in addition to those data from
the multiple trajectories. We report only the simulated estimate
and compare to the generated by evolving the probability dis-
tribution to equilibrium according to Equation (12) in Table 1.
All other settings match this to within the precision reported for
the unpartitioned case.

10 40s
τREF

τP AR

 

 

NI = 1

NI = 2

NI = 5

NI = 10

−0.75

−0.25
〈

(σ(1)(s)
〉

s
 

 

−0.75

−0.25
〈

(σ(2)(s)
〉

10 40
−0.25

0.75

〈

(σ(3)(s)
〉

s
τREF

τP AR

a)

b) e)

d)

f)c)

ND = 1

ND = 1

ND = 1 ND = 4

ND = 4

ND = 4

Figure 3: Typical response behavior for partitioned 1D Ising models. σIC =

(↓↓↑↑↓↓↓↓), at different number of independent steps NI = {1, 2, 5, 10}. a), b),
and c) show spin average time series for spins 1,2, and 3 with ND = 1 (no
partition, but interval statistics are used). d), e) and f) show spin averages for
spins 1, 2, and 3 with ND = 4.

3.2. 2-dimensional Ising model
A 2D Ising model was used, following Equations (A.1) and

(A.3). We studied two square lattices with NS = 122 and NS =

1002. Only one initial condition was used for each system size.
The initial condition was a filled circle. The radius of the circle
was set as 0.7975

√
NS , and spins inside this radius are assigned

spin up, while the remaining grid points are set as spin down.
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Table 1: Settings and statistics for unpartitioned simulations.
Settings Simulation Estimate Analytic

Spins 1/βJ S NTRAJ τREF 〈H〉 /NS 〈H〉 /NS

1×8 2 800 6000 31.80 −0.237(0.138) −0.238(0.138)
12×12 2.4 1.6 × 105 500 1.13 × 103 −1.286(0.235) −1.239(0.221)

100×100 2.4 1.6 × 107 50 1.49 × 106 −1.205(0.021) −1.204(0.026)

The resulting initial conditions have a magnetization of 0.0056
and 0 for the NS = 122 and NS = 1002, respectively. Domains
were generated in either a checkerboard pattern or a vertically
striped pattern. For the 12×12 system, we studied ND = {2, 4}
for the striped configuration and ND = 4 for the checkerboard
configuration. For the 100×100 system, we studied the same
partitions as in the 12×12 set, and added another checkerboard
configuration with ND = 16. As in the 1D case, we studied
NI = {1, 2, 5, 10} for both 2D systems. Additional simulation
settings are listed in Table 1. A comparative discussion of the
timeseries behavior is given in the next Section.

Equilibrium statistics for the 2D systems were also obtained.
The unpartitioned simulation data are listed in Table 1, along
with the analytical result using the formula given by Fisher [27].
The equilibrium histograms are not reported here, but were ver-
ified against the 100×100 dataset given in Ref. [16], where we
note that the histograms match so well that it is difficult to see
any difference at all. The long time behavior shown in Figure 4
also shows this to be the case.

3.3. Time Response Behavior
Figure 4 shows example time series from each of the 1×8,

12×12, and 100×100 datasets. These timeseries were used to
compute the χ2 metric, given in Equation (B.2). The 1D data
set has a fast decay phase, where 〈H(s)〉 goes through a max-
imum near s = 5, which introduces considerable error, while
the magnetization function decays very slowly and homoge-
neously. The product of these observations was thus selected,
in order to capture both the fast and slow responses. The 12×12
data also go through a local maximum. This maximum occurs
at s ≈ 1400, which is far greater than the largest NI under study.
The correlation time of 1.13×104 is also much greater than any
interval effect. As a result, even though there are multiple decay
modes apparent in the timeseries, a single scaling of the time-
series appears to be adequate to reconstitute the timeseries of
parallelized systems. In this regard, the performance only im-
proves when increasing the system size. We obtain the added
benefit of more monotonic decay as system displays more su-
percritical behavior, and note that many larger values of NI

could easily be used for this system.
The performance of each system studied is given in Figures

5 and B.6. The ideal efficiency η, as defined in Equation (B.1),
gives a rough idea as to the convergence rates of the parallelized
systems versus the unparallelized systems. Here, the ideal effi-
ciency measures ratios of convergence rates for parallel systems
that use the same number of timesteps, or energy function calls.

While it is true that increased convergence may be a desir-
able property of a parallelized system, Figure 5 shows that that
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Figure 4: Typical timeseries for over S = 5τPAR used for χ2 calculations.
a) shows 〈A(s)〉 = 〈H(s)m(s)〉 for σIC = (↓↓↓↑)(↑↓↓↓) (ND = 2). b) and c)
show time response for initial condition as described in text, with ND = 4, and
checkerboard partitioning. Data shown for NI = {1, 2, 5, 10}.

deviations from unity in either direction are strongly correlated
with larger response errors. As a result, an ideal parallel effi-
ciency of η ≈ 1 is most indicative of a faithful reconstitution
of the unpartitioned dynamics. As might be expected, increas-
ing NI tends to also increase the error. Figure 5 also shows that
most cases studied are well behaved, with η ≈ 1 and χ2 ≈ 2.

In Figure B.6, we see that the 1×8 system shows both up-
ward and downward trends in efficiency with increasing ND for
NI = 1 and NI = 2, which may be indicative of the quality of
the estimate of the correlation times. A trend is noticeable for
NI = 5 and NI = 10, which can be interpreted. The extreme
case of ND = 8 has one spin per domain, which converges to
a local equilibrium within NI = 1 iteration. While the domain
is in equilibrium with the neighboring boundary conditions, the
system is not globally equilibrated. Therefore, the progress of
each domain process is not improved with increasing NI be-
yond 1, and so the remaining independent steps are not produc-
tive. The same effect is observed for ND = 4. For these overly
parallelized systems, we also observe significant error in the
timeseries, for reasons that were also described in Section 3.2.
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to Ising Model size and ND as shown in legend. In general, ideal efficiencies near one correspond to low errors in nonequilibrium response.

The error is most notable in the fast decay region, where the en-
ergy portion of the observation goes through a rapid maximum,
while the longer decay behavior seems to be better preserved.

For the 2D data, most of the error and efficiency measures
are stable and well behaved. The only noticeable trend is the
slight increase in efficiency of the vertical stripe partitions with
ND, along with an increase in error. The vertical partition was
chosen because it breaks the symmetry of the circular initial
condition, and it was believed that this may lead to artifacts that
are not as apparent when using a more symmetric (checker-
board) partition. Indeed, this appears to be the case, and the
intuition that symmetric parallelization will lead to better statis-
tics is supported for the cases studied here.

4. Conclusions

We have presented a sequential parallelization protocol that
is rejection free and guarantees equilibrium statistics for all
parallelization settings. Additionally, we have applied a sim-
ple scaling law that allows the dynamics of one parallelization
scheme to be directly compared to an unpartitioned simulation.

Some limitations to the method include the requirement to
compute the time constant from the autocorrelation time. The
need to account for multiple decay modes in the autocorrela-
tion function while still using a single decay constant as the
time scale can introduce error. Another limiting feature of the
autocorrelation time approach is that it requires an equilibrium

timeseries. For systems that are subjected to frequent external
time varying fields, this can be cumbersome, and an approach
where the intrinsic scaling is computed in situ would be more
useful. We intend to build on the previously described approach
that uses the frequency line formulation to compute time con-
stants. Additionally, a method that more properly accounts for
the distortion of the fast time dynamics would be most useful
for a robust algorithm. We hope to address these issues in a
future work, along with more careful estimates of the error and
methods for accounting for long range interactions.

The current method works very well for reasonably large ho-
mogenous systems, however, and we found that that symmet-
ric domain partitioning can better maintain the integrity of the
parallel simulations. Many of the artifacts observed in the 1D
systems will be completely avoided, given that partitioning is
usually driven by memory requirements, rather than some other
motivation that will drive ND to be unduly large. The dynamics
will also be preserved as long as NI << τPAR, which is a rea-
sonable limitation, given that one would wish to print out and
observe dynamics with similar considerations. Since writing
data takes much longer than parallel communication, choosing
NI to coincide with a practical printing frequency will minimize
most artifacts of parallelization seen with the present scaling
approach.
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Appendix A. Ising Model: Energy Function and Glauber
Dynamics

For the present work, we study only the 1D and 2D Ising
models. The 1D model has toroidal periodicity, and the 2D
model is periodic in both dimensions, as is standard practice.
The total energy for these systems is given explicitly for both
1D and 2D systems as

βH(σ j; 1D) = −βJ
∑NS

n=1 σ
(n)
j σ

(n+1)
j

βH(σ j; 2D) = −βJ
∑√NS

m=1
∑√NS

n=1 σ(m,n)
j σ(m,n+1)

i

+σ(m,n)
j σ(m+1,n)

i , (A.1)

where J is the coupling constant, β = 1/kBT , and σ is a vec-
tor of configurations defining the state of the system. For both
systems, σ is a vector of length 2NS , where NS is the number of
spins in the system. For the 1D system, the n-th spin of the j-th
configuration is notated as σ(n)

j . For the 2D sum, array notation
is used, where the (m, n)th row and column of the jth configura-
tion indicated as σ(m,n)

j . For both cases, each spin value can take
on values of either 1 or −1. The boundary conditions are peri-
odic, so that the last summand includes the last and first spins
of each row. J is the coupling constant, and β = 1/kBT is the
inverse temperature, such that βJ is dimensionless. The mag-
netization is defined as the average of all spins for a given time
configuration. The (unnormalized) equilibrium distribution is

π j = e−βH(σ j), (A.2)

and the Glauber dynamic [22] is computed as

T (G)
ji =

ND

NS

π j

(πi + π j)

T (G)
ii = 1 −

∑
i, j

T (G)
i j . (A.3)

where the ND/NS is the selection probability for a single spin
within a system partitioned into ND domains. The Glauber dy-
namic is usually expressed in a form more amenable to closed
form solutions, and includes hyperbolic tangent terms. Here,
we present it an exactly equivalent form, sometimes referred to
as the Barker acceptance criterion [28].
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Figure B.6: Summary of Parallel Performance for all Ising systems studied. a)
Ideal efficiency calculation as defined by Equation (B.1). b) Response error, as
computed in Equation (B.2), with example timeseries shown in Figure 4.

Appendix B. Fitness Metrics

The two fitness metrics used are an efficiency measure η and
an error measure χ2. The first measure is the ideal scaling effi-
ciency, given as

η(NI ,ND) =
τREF

τPAR(NI ,ND) · NI
, (B.1)

and is similar to what is typically referred to as strong scaling
efficiency. Since we are not carrying out a truly parallelized
simulation, with interprocessor overhead, we use the ’ideal’
measure only to compare convergence rates of parallel simu-
lations.

The second metric is the error in the nonequilibrium re-
sponse. We know from Equation (10), that the equilibrium
properties are exact. The time dependent properties, however,
are not guaranteed with the present strategy, and we must de-
velop a measure of the error in the nonequilibrium portion of
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the trajectory. The error metric is given as

χ2 =
1
S

S∑
s=0

[〈
A(REF)(s)

〉
−

〈
A(PAR)(s′)

〉]2〈[
δA(REF)(s)

]2
〉 , (B.2)

where s′ = s · τREF/τPAR, and takes on spline interpolated val-
ues to coincide with the integer values of the reference time
increment s. For the 1D Ising system A(s) = H(σ(s))m(s), and
A(s) = H(σ(s)) for the 2D systems. For all cases presented
S = 5 · τREF .
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