
ar
X

iv
:1

31
1.

12
29

v3
 [

ph
ys

ic
s.

co
m

p-
ph

]
 3

 A
pr

 2
01

4

ProMC: Input-output data format for HEP applications

using varint encoding

S.V. Chekanova,∗, E. Maya, K. Strandb, P. Van Gemmerena

aHEP Division, Argonne National Laboratory, 9700 S.Cass Avenue, Argonne, IL 60439 USA
b Department of Physics, Winona State University, 175 West Mark St., Winona, MN 55987,

USA

Abstract

A new data format for Monte Carlo (MC) events, or any structural data, in-
cluding experimental data, is discussed. The format is designed to store data
in a compact binary form using variable-size integer encoding as implemented
in the Google’s Protocol Buffers package. This approach is implemented in the
ProMC library which produces smaller file sizes for MC records compared to
the existing input-output libraries used in high-energy physics (HEP). Other im-
portant features of the proposed format are a separation of abstract data layouts
from concrete programming implementations, self-description and random access.
Data stored in ProMC files can be written, read and manipulated in a number
of programming languages, such C++, JAVA, FORTRAN and PYTHON.

Keywords: data, format, IO, input-output, LHC
PACS: 29.85.-c, 29.85.Ca, 29.85.Fj

1. Introduction

A crucial requirement for many scientific applications is to store, retrieve and
process large-scale numeric data with a small signal and large background (or
“noise”). Information on background objects is not required to be stored with
the same relative numeric precision as that for signal objects. An input/output
library which dynamically streams data depending on the content of information
becomes important for effective data storage and analysis.

A typical example is the Large Hadron Collider (LHC) experiments designed
to investigate proton-proton and heavy-ion collisions in order to understand the
basic structure of matter. The LHC experiments are currently involved in event
processing and physics analysis of petabytes of data. A single analysis requires a
processing of tens of terabytes of data located on the grid storage across the globe.
The number of collisions recorded by the ATLAS experiment since 2009 exceeds

∗Corresponding author
Email address: chekanov@anl.gov (S.V. Chekanov)

Preprint submitted to Comp. Phys. Communication October 2, 2018

http://arxiv.org/abs/1311.1229v3

20 billion. The number of particles in a single collision will increase by a factor
5-10 for future high-luminosity LHC runs. Currently, the LHC experiments store
more than 100 petabytes of data and this number will increase by a factor 10 over
the next 10 years. Most stored data has a small fraction of “signal” particles,
while most of low-energetic particles from other events are less interesting and
represent “pileup” background. It is important to store pileup particles to derive
corrections, but to store such particles with the same numeric precision as signal
particles is not justified and inefficient.

This paper discusses an input-output library which has a content-dependent
compression of data for files. It stores less energetic particles with reduced rela-
tive numeric precision and smaller numbers of bytes compared to to high-energetic
particles. The library is designed for Monte Carlo (MC) simulation events, but it
can naturally be extended to store any information. The library was created dur-
ing the Snowmass Community Studies [1] with the goal to store MC simulations
in a compact form on public web pages.

2. The proposal

This paper discusses an input/output persistent framework which:

• streams data into a binary form and dynamically writes less interesting,
low-energetic particles with a reduced numeric precision compared to more
energetic “signal” particles. For example, it is expected that such content-
dependent compression may decrease the LHC data volume by 30% or more
[2]. Although we use the word “compression”, it should be noted that no
standard compression algorithms (gzip, zip, bunzip2) are used since the
file-size reduction is achieved using a highly efficient binary format.

• is multiplatform. Data records can be manipulated in C++, JAVA and
PYTHON. This opens the possibility to use a number of “opportunistic”
platforms for data analysis, such as Windows or Android, which have not
been used widely in HEP.

• is a self-describing data format based on a template approach to encode
complex data structures. One can generate C++, JAVA and PYTHON
analysis codes from the file itself.

• has random access capabilities. Events can be read starting at any index.
Individual events can be accessed via the network without downloading the
entire files. Metadata information can be encoded for each record, allowing
for a fast access to interesting events.

• is implemented as a simple, self-containing library which can easily be de-
ployed on a number of architectures including supercomputers, such as IBM
Blue Gene/Q system.

2

The proposed input-output framework is expected to be used in many sci-
entific areas. In particular, it is useful for (a) data reduction for large general-
purpose detectors at colliders and other experiments; (b) effective data preserva-
tion due to small file sizes, backward compatibility and self-descriptive property;
(c) effective data analysis without CPU overhead due to the standard decompres-
sion algorithms.

3. Existing approaches

The LHC experiments store data and experiment-specific MC events in com-
pressed ROOT format [3]. To store events generated by MC models in a more
generic and exchangeable way, HEPMC [4], STDHEP [5], HepML [6] and the Les
Houches event format (LHEF) [7] file formats have been developed. For exam-
ple, the HEPMC library is interfaced with all major Monte Carlo models and
is widely used by the HEP community due to its simplicity, platform indepen-
dence, exchangeability and reusability. However, the HEPMC format stores data
in uncompressed ASCII files, which are typically ten times larger than ROOT
files with the default compression.

The ROOT IO is an integrated part of the C++ ROOT analysis framework [3]
developed at CERN. This framework is heavily integrated in the Linux platform.
It uses the “gzip” compression which is a CPU intensive and lacks flexibility for
storing particles depending on their importance. As discussed before, the current
and future LHC experiments will collect events with only a small fraction of signal
particles that are important for analyzers, while most of low-energetic particles
from other (overlayed) events represent “pileup” background. For high-luminosity
LHC runs, one “signal” event (for example, event with a Higgs particle) will con-
tain 50-140 pileup events, with up to 10,000 low-energy particles that are not
important for analysis of signal signatures. Still, such particles (or a fraction of
such particles) should be kept to derive corrections to signals. Therefore, to store
low-energetic particles with a smaller numeric precision becomes crucial in effec-
tive data storage and analysis. The fixed-number of bytes to represent numeric
data used by ROOT and by other data formats does not allow implementation of
a compression that depends on particle properties (particle energy, mass, origin,
etc.).

4. Varint data encoding

A possible solution for data reduction is to use “varints” [8] which can encode
integer (int32, int64, etc.) values using variable number of bytes1. Such algo-
rithm is implemented in the Google’s Protocol Buffers library [8]. This library

1 In the case of 4-momentum, one can convert a float variable to varint using a predefined
conversion factor

3

encodes complex data in the form of platform-neutral “messages”. A message is
a logical record of information containing a series of name-value pairs. Smaller
integer numbers represented by varints in such messages use a smaller number
of bytes compared to large numbers. For HEP applications, this implies that
four-momenta of low-energetic particles encoded using the integer values can be
represented with a smaller number of bytes. In addition, many particle character-
istics (such as particle status, particle ID, etc.) should be represented by integer
values anyway and this is well suited to the varint representation.

Historically, the approach to store HEP data using Google’s Protocol Buffers
was first attempted in the JHepWork2 data-analysis framework [10] in 2008,
which offered the CBook C++ package to keep Monte Carlo records and other
structural data using varints. Later, the Protocol Buffers library became
the core of another HEP library, the so-called A4 project [11], that had the goal
of providing fast I/O for structured data.

Although the varint data encoding is available in the Protocol Buffers

library publicly released by Google, this library alone is not sufficient to pursuit
the goal of creating large files with multiple logically-separated records. The Pro-
tocol Buffers approach is most effective if each separate Protocol Buffers message
has a size of less than 1 MB (as recommended by Google). The major problems
that need to be addressed are: 1) to design Protocol Buffers message to store par-
ticles in a single event to allow for the varint representation; 2) to find a method
of serialization of multiple messages (“events”) into a file which can keep many
events; 3) how to implement metadata model for fast access of interesting events
and particles. While (1) is rather specific to HEP, (2) and (3) are very general
issues that have to be solved in any research area where logically-separated event
records with varint-based information is an attractive option for data storage and
processing. Because of such problems, the usage of Google’s Protocol Buffers to
keep large numeric data is still limited in science and technology.

5. Current implementation

The following sections will discuss the current implementation of the library,
called ProMC, which implements all the features discussed above. In the fol-
lowing, we will use small-caps typeface fonts to indicate the ProMC library
implemented in C++, while files generated using this library, “ProMC” files, will
be shown using the normal fonts. A similar convention is applied for other library
names, such as the Protocol Buffers library that is used to write and read
Protocol Buffers messages.

The ProMC C++ library [2] is designed to store HEP collision events using
the Google’s Protocol Buffers library as a backend. The data are stored in a
file with the file headers and multiple logically-separated messages. Each separate

2JHepWork was renamed to SCaVis [9] in 2013.

4

message leverages the varint encoding for representing a single MC event. Figure 1
shows a schematic representation of a ProMC file. All Protocol Buffers messages
are stored as ZIP entries inside the ProMC file using the Zipios++ package [12]
for reading and writing ZIP files through the standard C++ iostreams. The ZIP
method for archiving supports lossless data compression, as implemented in the
ZLIB library [13]. However, this library is only used to organize binary Protocol
Buffers’s messages (which do not require compression) in the ProMC files. In
this sense, ZIP is a method of archiving binary records, rather than the actual
method of compressing event records. The ZIP compression, however, is used for
some metafile records, such as text templates describing file layouts and logfiles
which can be embedded inside the ProMC files.

The Protocol Buffers library (version 2.5) is included in the ProMC

package to avoid clashes with the already installed Protocol Buffers library
(which can be version 2.42 for many Linux distributions), to provide better self-
containment and to simplify the deployment of examples and conversion tools
which use a predefined location of the Protocol Buffers library. However,
ProMC can also be installed using the existing Protocol Buffers library, as
described in the ProMC web page [2]. In this form, all ProMC Makefiles of the
conversion tools should be redesigned.

To work with the ProMC files, the ProMC C++ library does not need to be
installed. This C++ library has to be installed if events will be written or read
in C++. ProMC files can also be read and created using JAVA or PYTHON,
without the platform-dependent ProMC library.

The current ProMC library is built on the assumption that the new data
format should be self-describing and can generate analysis source codes (in C++,
JAVA, PYTHON) from a ProMC file itself without knowing how it was originally
created. Additional notable features of ProMC are random access to any given
event and a possibility to stream individual events through the network without
reading or downloading entire files.

Several benchmarks have shown that ProMC files are rather compact, typi-
cally 40% smaller than ROOT files assuming Double32 t types for float values
and the default ROOT compression. Table 1 shows the file sizes for 10,000 tt̄

events generated with PYTHIA 8 [14] for a pp collider at 14 TeV. The ProMC
files are 38% smaller than files with the same information using ROOT, and sig-
nificantly smaller than LHEF [7] and HEPMC (production release: 2.03.11) [4]
files, including those with the compression based on the gzip, bzip2 and lzma
algorithms. In case of events with large pileup (i.e. a large fraction of soft par-
ticles), ProMC files can lead to almost a factor two smaller files compared to
ROOT files with the same information stored using Double32 t data types.

The same table shows benchmark tests for the read speed. For these tests, the
files were opened, and all entries with 4-momenta of particles were extracted, but
no calculations are performed. The read speed of the ProMC files is 30% faster
than for the ROOT files based on the default gzip compression, and is substan-

5

Figure 1: A schematic representation of the ProMC file format. All records are encoded using
the Protocol Buffers messages. In addition, some metadata information is stored as text files
inside the ZIP file for easy access on platforms without the installed ProMC library.

tially faster compared to the other formats. It can be seen that this difference
in the read speed is roughly proportional to file sizes. Files in the LHEF and
HEPMC formats after compression were not tested, given that such, technically
challenging tests, can hardly show much improvement in the read speed since a
typical time for file decompression is 1-2 min. No significant difference in the file
creation speed was detected (this test was dominated by event generation).

In addition to the C++ compiled programs, benchmark tests were also per-
formed using programs implemented in JAVA and JYTHON (the PYTHON lan-
guage implemented in JAVA) using the SCaVis [9, 10] framework. The JAVA
Virtual Machine (JVM) processes the ProMC files faster than the programs imple-
mented in C++. This indicates that JVM creates a more optimized binary code
to deliver a better performance. In the case of LHEF ASCII files and JVM, the
benchmark program parses all lines and tokenizes the strings, without attempting
to build complete particle record, therefore, such test may not be accurate when
comparing with the ROOT and ProMC approaches.

Benchmarks tests using PYTHON implemented in C have also been per-
formed. The read speed of ROOT files (67 sec) was found to be substantially
faster than for the ProMC files (980 sec). This was explained by the fact that the
PYTHON benchmark program for the ProMC file tests was implemented in pure
PYTHON and does not use a C++ binding (unlike PyROOT that uses C++
libraries). In order to perform a fair comparison for the PYTHON benchmark
programs, a C++ backend for the Protocol Buffers should be enabled. This

6

has not been implemented yet for the ProMC library.
The ProMC file size depends on many factors, but there are three major

factors that should be mentioned: 1) energy distributions of stored particles; 2)
what information is stored; 3) how the information is represented using integer
values and a typical range of integer values. In the first case, events with large
fraction of low-energy (“soft”) particles will use smaller file size than those that
contain particles with large values of 4-momenta of particles. The file size depends
on a conversion factor which converts float values to integer representation.

The default ProMC mapping between the energy units used in HEP and
integer values is given in Table 2 for a typical pp collision experiment at centre-
of-mass (CM) energies up to 20 TeV. This mapping between integer type in
C++/JAVA and the varint type was obtained by multiplying energies, masses
and 4-momentum components expressed in GeV by the factor 105, and rounding
the resulting value to nearest integer. For a collider at

√
s = 100 TeV, this

mapping can fail for storing particles (jets) with energies above 21 TeV, therefore,
a multiplication factor should be reduced to 104 in order to be store possible
particles or jets close to this CM energy range. On the other hand, the conversion
factor can be increased for low-energy experiments. To avoid overflows for large
energies, the primary rule to remember when using the multiplicative conversion
factor is that

√
s times the multiplicative factor should not be larger than 231−1

assuming integer data type is in the 32-bit representation. Another consideration
is the required relative numeric precision, since large numbers may lead to less
effective storage for varints.

Table 3 shows the default mapping between energy (or masses,4-momentum
etc.) values and the 32-bit integer representation using the varint encoding. The
last column shows the rounding errors which should be noted when restoring the
data. This table corresponds to the default conversion factor 105 as discussed
above and which is suitable for the current LHC experiments. Table 4 shows a
suggested conversion and relative rounding errors using the conversion factor 104

for post-LHC era colliders.
The varint conversion factor for float values is included in the metadata section

of the ProMC file format. It should be restored while processing ProMC files.
This approach provides a certain flexibility: For example, instead of using a single
constant conversion factor that leads to relative numerical precision that changes
with the stored energy, one can use an energy-dependent conversion factor that
leads to roughly constant, energy-independent, relative rounding error. It should
also be pointed out that the ProMC library can store particle’s 4-momenta using
float or double precision types, while keeping varints only for information that
requires integer values. In this case, the ProMC data-size reduction will be less
effective.

Another factor that determines data reduction depends on the fraction of
information which can be represented using integer types, such as int32 and
int64. For a typical MC truth event record, several particle characteristics can be

7

written using varints without loosing numeric precision. Such examples include
particle ID, status code, 1st and 2th daughter and mother particles. In many
cases, their values are small and thus can be represented by only a few bytes
using int32.

The current approach to the data reduction by particle experiments is of-
ten based on removing particles (or tracks, calorimeter cells, etc.) below some
transverse-momentum cut, which is typically 0.2-0.5 GeV for the LHC experi-
ments. Such rejection of the information on final-state particle collisions may
not be required for the ProMC files that use a smaller number of bytes to store
low-energetic particles.

5.1. Working with ProMC files

The ProMC package can be downloaded from the HepForge web page [2].
The only required external library is ZLIB [13] which is used to organize indi-
vidual binary messages with separate MC events as discussed in Sect. 5.

After installation as discussed in the online manual, an environmental variable
“PROMC” pointing to the installation directory should be defined. The installed
package contains the directory “$PROMC/examples” with a number of examples,
converters from other formats, as well as with several tools to work with the
ProMC files.

Table 5 lists the tools included in the ProMC package to work with ProMC
files. These programs are implemented in PYTHON and stored in the directory
“$PROMC/bin”.

As discussed before, the ProMC files are simple ZIP archives, thus they can
be unzipped to view the file structure. This can be observed without unpack-
ing individual records as “unzip -l <ProMC file>”. A proper unpacking the
ProMC file can be done with the same command but without the option ”-l”.
Each file represents an event record written as the binary file that can be read
using the Protocol Buffers library.

The ZIP program can also be used to extract any given event. For example,
extracting an event 100 and saving it to a file ”100.event” will require to run:

unzip -p <ProMC file> 100 > 100.event

unzip -p <ProMC file> ProMC.proto > ProMC.proto

The last example creates a text file that describes the Protocol Buffers platform-
neutral layout of the event. Similarly, one can look at the attached logfile and
print the number of stored events as:

unzip -p <ProMC file> logfile.txt

unzip -p <ProMC file> promc_nevent

In these examples, we send the contents of the files ”logfile.txt” and ”promc nevent”
via pipe into a Linux shell console.

8

Table 6 lists the converters from/to ProMC format included with the ProMC

package. These programs are located in the directory “$PROMC/examples” and
should be compiled for final deployment.

The ProMC files can also be written from FORTRAN programs using an
external package called FortranProMC. This package should be downloaded and
compiled separately, as long as the original ProMC package is installed. The
FortranProMC includes an example that shows how to fill ProMC files using the
PYTHIA6 [15] generator. This example can be used to create ProMC files using
any FORTRAN-based generator.

5.2. Reading ProMC files

Since ProMC files are self-describing, one can generate analysis codes in C++,
JAVA, PYTHON from the available file, even without knowing how data are
organized inside the file. For this example, the C++ ProMC library should be
installed.

promc_info <name>.promc # check information

promc_proto <name>.promc # extracts Protocol Buffers files

promc_code # create analysis code in C++, JAVA, PYTHON

make # compiles the C++ code

This example shows how to access the information about the existing file using the
command promc info. Next, the command promc proto extracts the platform
neutral description of data layout in the Protocol Buffers format. Such description
files will be located in the directory “proto” and can be used to generate analysis
code for reading or writing ProMC files. Finally, the command promc code gen-
erates the analysis codes in C++, PYTHON and JAVA. Such files will be located
in the corresponding directories where this command is executed. The execution
of the “make” compiles the C++ analysis code.

5.3. ProMC browser

ProMC files can be accessed without any external C++ library using a browser
implemented in JAVA. The browser, together with the complete source code, is
included in the directory “examples/browser” of the ProMC package which can
be downloaded separately from the ProMC web page [2].

Figure 2 shows the browser window with particle records for a specific event.
The browser also displays general information about the ProMC file as well as
the metadata file included in the ProMC header. The browser can be accessed
by either of the following commands:

java -jar browser_promc.jar <name>.promc (or)

promc_browser <name>.promc

9

Figure 2: A JAVA browser for ProMC files with events from a MC generator. The upper field
is a search for a given particle name.

where <name>.promc is a ProMC file with the extension .promc.
A ProMC file can also be accessed via URL links without the need to download

the file on the hard drive. This can be done by revising the above commands to
the following:

java -jar browser_promc.jar <file URL> (or)

promc_browser <file_URL>

The above example can be used to view event records from leading-order
parton-shower MC simulations. Next-to-leading order event generators typically
have a few particles from hard interactions, but the event records contain addi-
tional information on event weights. In this case, one should use the following
syntax:

java -cp browser_promc.jar probrowser.NLO <file URL> (or)

promc_browser_nlo <name>.promc

Unlike leading-order parton-shower Monte Carlo models, this brings up a window
which can be used to view an array of weights representing uncertainties on
predictions. More information about how to store events in the ProMC files from
NLO event generators is given in Ref. [16].

The ProMC browser can also display information on separate events, platform-
independent data layout files and logfiles (if such files are embedded into the
ProMC file structure).

10

6. ProMC usage and documentation

The ProMC library was used for the Snowmass 2013 community studies in
order to store truth and DELPHES [17, 18] MC events in a compact binary form
on the web servers for HEP community The DELPHES version 3.10 fast simu-
lation [18] can read the ProMC files with the truth records and convert such files
to reconstructed events. Due to its compactness and fast read speed, ProMC

is used for the HepSim repository [16] with data from theoretical computations.
This file repository includes MC events from leading-order parton-shower gener-
ators as well as weighted events from next-to-leading order QCD calculations.

Since ProMC is implemented as a simple, self-containing library, it was de-
ployed on a number of platforms including high-performance computers, such as
IBM BlueGene/Q, located at the Argonne Leadership Computing Facility, the
description of which is beyond the scope of this paper. The ProMC library is
installed on CERN AFS and, at this moment, under tests within the ATLAS
collaboration.

A number of examples illustrating how to read and write the ProMC files is
given on the ProMC web page [2]. The web page includes several examples of
how to read, write and manipulate with ProMC files using several programming
languages: C++, JAVA and PYTHON. Some basic information on stored data
can also be extracted using PHP and other languages that can use the Protocol
Buffers library.

For C++ and PYTHON examples of reading and writing data, ROOT/PyROOT
can be used for graphical visualization. There are also examples which illustrate
how to read data using JYTHON, the PYTHON language implemented in JAVA.
In this case, no platform specific libraries are used to read and display the data.
In case of JAVA or JYTHON, SCaVis [9, 10] and Jas [19] JAVA-based analysis
environments can be used for visual representation of data (histograms, scatter
plots etc.). There is also an example which shows the random access capability
of the ProMC format and how to access certain events from a network without
reading the entire ProMC file. In addition, a few examples are given which illus-
trate how to fill ProMC files directly from the PYTHIA 8 [14] MC generator or
from HEPMC files.

6.1. Current limitations

The current prototype version of the ProMC library is 1.3. The file-size
limitation of this version for both the ProMC 1.3 files and Protocol Buffers mes-
sages is given by the ZLIB archive library, which is 232−1 bytes (or 4 GB minus
1 byte). In order to handle larger files, other libraries supporting ZIP archives
should be implemented. It should be pointed out that the 4 GB restriction does
not limit the usage of the current ProMC prototype library for production: The
information stored in a 4 GB ProMC file is equivalent to that stored in a 32 GB
of uncompressed LHEF, and such large LHEF files are unpractical for real usage.

11

Generally, there is no limit on the number of files stored in the ProMC files.
The ProMC files can hold any number of events that can be read by PYTHON
or JAVA. However, it was observed that the Zipios++ [12] package used for
the standard C++ iostreams has a limit of 65520 entries. This limitation is
a consequence of the chosen Zipios++ library to read ProMC entries in C++
programs, rather than a principle limitation of the ProMC format. This problem
will be corrected in future.

7. Conclusion

The ProMC C++ library [2] is available for download and testing. The
current version of this library is 1.31. Although it is an early-stage prototype,
the ProMC library has already been used in a number of projects as discussed
in this paper. ProMC has a potential to be an important file format for current
and future experiments since it leads to small file sizes which are suitable for
effective data storage, has fast data access, and supports multiple programming
languages.

Acknowledgements

One of us (S.C.) would like to thank J. Proudfoot for a discussion. The
submitted manuscript has been created by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

12

[1] HEP Community Summer Study (Snowmass),
http://www.snowmass2013.org/ (2013).

[2] S. Chekanov, Next generation input-output data format for HEP using
Google’s protocol buffers, contributed Papers Submitted to the Snowmass
2013 Study. SNOW13-00090. Project URL: http://promc.hepforge.org/
(2013). arXiv:1306.6675.

[3] I. Antcheva, et al., ROOT: A C++ framework for petabyte data storage,
statistical analysis and visualization, Comput. Phys. Commun. 180 (2009)
2499–2512. doi:10.1016/j.cpc.2009.08.005.

[4] M. Dobbs, J. Hansen, L. Garren, L. Sonnenschein, HEPMC User Manual,
http://lcgapp.cern.ch/project/simu/HepMC/.

[5] L. Garren, P. Lebrun, StdHep. A common output format for Monte Carlo
events, http://cepa.fnal.gov/psm/stdhep/.

[6] S. Belov, L. Dudko, D. Kekelidze, A. Sherstnev, HepML, an XML-
based format for describing simulated data in high energy physic,
Comput. Phys. Commun. 181 (2010) 1758. arXiv:1001.2576,
doi:10.1016/j.cpc.2010.06.026.

[7] J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos, et al., A Standard
format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300.
arXiv:hep-ph/0609017, doi:10.1016/j.cpc.2006.11.010.

[8] Google, Protocol buffers. google’s data interchange format,
http://code.google.com/apis/protocolbuffers/ (2008).

[9] S. Chekanov, SCaVis. Scientific Computation and Visualization Environ-
ment, http://jwork.org/scavis/ (2013).

[10] S. Chekanov, Scientific data analysis using Jython Scripting and Java,
Springer-Verlag, London, 2010, iSBN 978-1-84996-286-5, e-ISBN 978-1-
84996-287-2.

[11] J. Ebke, P. Waller, The A4 project: physics data processing using the Google
protocol buffer library, Journal of Physics Conference Series 396 (2) (2012)
022012. arXiv:1208.1600, doi:10.1088/1742-6596/396/2/022012.

[12] Zipios++. A library for reading and writing Zip files using standard C++
iostreams, http://zipios.sourceforge.net/ (2013).

[13] G. Roelofs, M. Adler, ZLIB 1.2.8. A compressing file-I/O Library),
http://www.zlib.net/ (1996).

13

http://www.snowmass2013.org/
http://promc.hepforge.org/
http://arxiv.org/abs/1306.6675
http://dx.doi.org/10.1016/j.cpc.2009.08.005
http://lcgapp.cern.ch/project/simu/HepMC/
http://cepa.fnal.gov/psm/stdhep/
http://arxiv.org/abs/1001.2576
http://dx.doi.org/10.1016/j.cpc.2010.06.026
http://arxiv.org/abs/hep-ph/0609017
http://dx.doi.org/10.1016/j.cpc.2006.11.010
http://code.google.com/apis/protocolbuffers/
http://jwork.org/scavis/
http://arxiv.org/abs/1208.1600
http://dx.doi.org/10.1088/1742-6596/396/2/022012
http://zipios.sourceforge.net/
http://www.zlib.net/

[14] T. Sjostrand, S. Mrenna, P. Z. Skands, A Brief Introduction to PYTHIA
8.1, Comput. Phys. Commun. 178 (2008) 852. arXiv:0710.3820,
doi:10.1016/j.cpc.2008.01.036.

[15] T. Sjostrand, S. Mrenna, P. Z. Skands, PYTHIA 6.4 Physics and Manual,
JHEP 05 (2006) 026. arXiv:hep-ph/0603175.

[16] S. Chekanov, HepSim: a repository with predictions for high-energy physics
experiments, project URL: http://atlaswww.hep.anl.gov/asc/hepmc/

(2014). arXiv:1403.1886.

[17] S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation
of a generic collider experiment, Tech. rep. (2009). arXiv:0903.2225.

[18] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, et al.,
DELPHES 3, A modular framework for fast simulation of a generic collider
experiment (2013). arXiv:1307.6346.

[19] A. Johnson, A java based analysis environment JAS,
http://jas.freehep.org/jas3/ (1996).

14

http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/hep-ph/0603175
http://atlaswww.hep.anl.gov/asc/hepmc/
http://arxiv.org/abs/1403.1886
http://arxiv.org/abs/0903.2225
http://arxiv.org/abs/1307.6346
http://jas.freehep.org/jas3/

Tables

File format File size (in MB) Read speed (in seconds)
C++ JAVA VM JYTHON

ProMC 307 15.8 11.7,12.1* 33.3, 34.6*
ROOT 423 20.4 – –
LHEF 2472 84.7 9.0, 9.6* –
HEPMC 2740 175.1 – –
LHEF (gzip) 712 – – –
HEPMC(gzip) 1021 – – –
LHEF (bzip2) 552 – – –
HEPMC(bzip2) 837 – – –
LHEF (lzma) 513 – – –
HEPMC(lzma) 802 – – –

Table 1: Typical file sizes for 10,000 tt̄ events generated for a pp colliders at
√
s = 14 TeV.

The table also shows the read speed using a C++, JAVA and JYTHON (the Python language
implemented in JAVA and running inside the JVM). The ROOT uses Double32 t for float
values and the default compression. For all tests, the memory cache on Linux was cleared to
avoid the data caching. The programs were tested on Intel(R) Xeon(R) CPU X5660 @ 2.80GHz.
In case of C++, the benchmark program reads complete particle records using the appropriate
ROOT or ProMC file libraries. The numbers indicated with asterisks give the read speed for
tests that take into accoung the intialization of the JVM before file processing. In the case of
LHEF file format and JAVA benchmark, the program parses all lines and tokenizes the strings,
without attempting to build MC particle records, therefore, this test may not be accurate. The
read speed for the test programs implemented in PYTHON (written in C) is discussed in the
text.

15

Energy integer representation Nr of bytes
0.01 MeV 1 1
0.1 MeV 10 1
1 MeV 100 2
1 GeV 100 000 4
1 TeV 100 000 000 8
20 TeV 2000 000 000 8

Table 2: The default ProMC mapping between energy units and C++/JAVA integer represen-
tation when using the int64 varint type of the Protocol Buffers library, together with the
number of bytes used for the encoding.

Energy (Gev) int representation Rounding error (in %)
0.0001 10 10
0.001 100 1
0.01 1,000 0.1
0.1 10,000 0.01
1 100,000 0.001
10 1,000,000 0.0001
100 10,000,000 0.00001
1,000 100,000,000 0.000001
10,000 1,000,000,000 0.0000001
21,474 2,147,483,647 0.00000005

Table 3: The mapping between energy values (in GeV) and C++/JAVA integer representation
using the int64 varint type of the Protocol Buffers library and the multiplicative factor
105 in the default ProMC varint conversion. The last column shows the relative rounding errors
for the varint conversion.

Energy (Gev) int representation Rounding error (in %)
0.001 10 10
0.01 100 1
0.1 1,000 0.1
1 10,000 0.01
10 100,000 0.001
100 1,000,000 0.0001
1,000 10,000,000 0.00001
10,000 100,000,000 0.000001
100,000 1,000,000,000 0.0000001
214,744 2,147,483,647 0.00000005

Table 4: Suggested mapping between energy values (in GeV) and C++/JAVA integer repre-
sentation using the int64 varint type of the Protocol Buffers library and the multiplicative
factor 104 for colliders with the center-of-mass energies above

√
s = 20 but below

√
s = 200−400

TeV. The last column lists the relative rounding errors for the varint conversion.

16

ProMC Tools
promc browser <file> a JAVA browser to open ProMC files in

order to study data layout of data, as
well as the stored data. Currently, the
latter feature supports only truth MC
records. Files can be streamed using
the network.

promc browser nlo <file> a similar browser to open ProMC files
with NLO predictions.

promc code Generates analysis code in C++,
JAVA, and PYTHON.

promc dump <file> Prints event numbers, file description,
statistics, and meta data to screen.

promc extract <file> <out> N Extracts a desired number (N) of se-
quential events and saves them to an-
other file.

promc info <file> Displays the information of the ProMC
file.

promc log <file> Extracts a log file (if attached).

promc proto <file> Extracts the file layouts in the form of
Protocol Buffers data templates.

promc split <file> N Splits a ProMC file into desired number
(N) of smaller filesa

Table 5: A list of tools and commands available in the ProMC package. The tools are can be
called from any file path upon set up of ProMC.

aTo be compiled separately since depends on the actual data structure.

ProMC conversion tools
hepmc2promc Converts a HEPMC 2.03.11 file [4] to the ProMC file

format.
promc2hepmc Converts a ProMC file to a HEPMC 2.03.11 file [4].
promc2root Converts stores a ProMC file in a ROOT tree [3].
stdhep2promc converts a STDHEP file [5] to the ProMC file.

Table 6: A list of converters from/to different file formats supported by the ProMC library.
The tools should are located in the directory ”examples” of the ProMC packages and should
be compiled.

17

	1 Introduction
	2 The proposal
	3 Existing approaches
	4 Varint data encoding
	5 Current implementation
	5.1 Working with ProMC files
	5.2 Reading ProMC files
	5.3 ProMC browser

	6 ProMC usage and documentation
	6.1 Current limitations

	7 Conclusion

