
Matrix Product State applications for the ALPS project

Michele Dolfia, Bela Bauerb, Sebastian Kellerc, Alexandr Kosenkova, Timothée Ewartd,e, Adrian
Kantiand, Thierry Giamarchid, Matthias Troyera

aTheoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
bStation Q, Microsoft Research, Santa Barbara, California 93106-6105, USA

cLaboratorium für Physikalische Chemie, ETH Zurich, 8093 Zurich, Switzerland
dDPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland

eBlue Brain Project, Brain Mind Institute, EPFL, Switzerland

Abstract

The density-matrix renormalization group method has become a standard computational approach to the
low-energy physics as well as dynamics of low-dimensional quantum systems. In this paper, we present
a new set of applications, available as part of the ALPS package, that provide an efficient and flexible
implementation of these methods based on a matrix-product state (MPS) representation. Our applications
implement, within the same framework, algorithms to variationally find the ground state and low-lying
excited states as well as simulate the time evolution of arbitrary one-dimensional and two-dimensional
models. Implementing the conservation of quantum numbers for generic Abelian symmetries, we achieve
performance competitive with the best codes in the community. Example results are provided for (i) a model
of itinerant fermions in one dimension and (ii) a model of quantum magnetism.

Keywords: MPS, DMRG, ground state, time evolution
PACS: 02.70.-c, 05.10.Cc, 71.27.+a

PROGRAM SUMMARY
Program Title: ALPS MPS

Journal Reference:

Catalogue identifier:

Licensing provisions: Use of ‘mps optim’, ’mps tevol’,

’mps meas’ or ’mps overlap’ requires citation of this

paper. Use of any ALPS program requires citation of

the ALPS [1] paper.

Programming language: C++, OpenMP for paralleliza-

tion.

Computer: PC, HPC cluster

Operating system: Any, tested on Linux, Mac OS X

and Windows

RAM: 100 MB - 100 GB.

Number of processors used: 1 - 24.

Keywords: MPS, DMRG, TEBD.

Classification: 7.7

External routines/libraries: ALPS [1, 2], BLAS/LA-

PACK, HDF5.

Nature of problem: Solution of quantum many-body

systems is generally a hard problem. The many-body

Email address: dolfim@phys.ethz.ch (Michele Dolfi)

Hilbert space grows exponentially with the system

size which limits exact diagonalization results to only

20 40 spins, and the fermionic negative sign problem

limits the Quantum Monte Carlo methods to a few

special cases.

Solution method: The matrix product states ansatz

provides a controllable truncation of the Hilbert space

which makes it currently the method of choice to in-

vestigate low-dimensional systems in condensed matter

physics. Our implementation allows simulation of

arbitrary one-dimensional and two-dimensional models

and achieve performance competitive with the best

codes in the community. We implement conservation

of quantum numbers for generic Abelian symmetries.

Running time: 10s – 8h per sweep.

1. Introduction

The density matrix renormalization group
method (DMRG) [3] is currently the method of
choice to investigate low-dimensional systems in
condensed matter physics. Its applications range

Preprint submitted to Computer Physics Communications October 15, 2014

ar
X

iv
:1

40
7.

08
72

v2
 [

co
nd

-m
at

.s
tr

-e
l]

 1
4

O
ct

 2
01

4

from the study of superconductivity, quantum mag-
netism and exotic phases of matter to simulation of
quantum circuits.

On the theoretical side, a lot of progress has been
made in understanding the success of this method
on the basis of matrix product states (MPS) [4],
which is the class of variational states underlying
the DMRG method. This has facilitated the devel-
opment of new algorithms, e.g. for real-time evo-
lution [5–7], mixed-state (finite temperature) cal-
culations [8, 9] as well as their combination [10–
12]. These have been formulated directly in the
language of MPS, and are now widely being applied
and further developed.

Recently, there has also been a surge of appli-
cations of DMRG to two-dimensional systems [13].
While it was realized early on that DMRG is expo-
nentially hard for systems in more than one dimen-
sion [14], modern DMRG codes have become suffi-
ciently efficient to combat this exponential scaling
and reach system sizes where reliable conclusions
about the thermodynamic limit of the 2d system
become feasible [15–20].

In this paper we report the release into the ALPS
project [1, 2, 21] of a set of MPS codes developed
within the Swiss HP2C initiative [22], whose tar-
get was to develop new efficient and productive ap-
plications for current and future high performance
computers. These applications have been designed
to achieve the high performance required for the
study of two-dimensional systems, and addition-
ally to bind to the generic and well-known ALPS
model and lattice libraries, which makes our MPS
codes appealing for researchers in various fields.
The new code has thus far been employed to study
condensed matter physics problems such as order-
ing in an SU(3) Heisenberg model [17], the analy-
sis of critical points for a system of supersymmetric
fermions [23], the analysis of interacting mesoscopic
structures [24], spin liquid phases in a Kagome-
lattice spin model [20], and recent method develop-
ments such as the applications of DMRG as impu-
rity solver within DMFT [25] and the development
a multigrid DMRG scheme [26],

A number of open-source implementations of
DMRG are currently available [1, 27–31]. With this
release, we add a set of applications that, while im-
plementing a generic framework amenable to many
extensions, offers performance on par with the best
available codes (see Table 1 for a timing example).
Furthermore, it is seamlessly integrated with the
widely used ALPS libraries.

Table 1: Runtime of our code compared with other state-
of-the-art condensed matter DMRG codes. The benchmark
is a run of 6 sweeps with a maximum bond dimension of
M = 200 that increases linearly with every sweep for an
antiferromagnetic Heisenberg chain with L = 100 sites. All
codes are compiled with GCC 4.8.1, optimization option -
O3 and linked against the sequential version of Intel MKL
v11.1.1. Runtime is measured on a 2.2 GHz Intel Ivy Bridge
EP E5-2660v2 processor. While we have done our best to
set the parameters for all codes such as to ensure comparable
executions, these timings should be understood as examples
and results may depend significantly on the parameters for
each code.

Code Time

ALPS MPS (our new code) 16 sec
ALPS DMRG [1, 21] 73 sec
ITensor [27] 24 sec
OSMPS [28] 40 sec

The outline of this paper is as follows: In Sec-
tion 2 we first focus on the characteristics and con-
ventions of the new MPS code. In Section 3 we
explain the main application parameters and show
the results of a tutorial. For the theoretical back-
ground on MPS and DMRG we point the reader to
the review [32] and references therein.

2. Algorithms and implementation

The matrix product state (MPS) is a variational
ansatz wave function which for a chain of N sites
reads

|ψ〉 =
∑
σ
Aσ1

1 Aσ2
2 · · ·AσNN |σ〉 , (1)

where the exponentially growing number of param-
eters of the full quantum state is efficiently trun-
cated to a polynomial number ∝ LM2 contained in
the M ×M matrices Aσii . This introduces an ap-
proximation that can be controlled by the matrix
size M .

Matrix-product states are an example of a tensor
network state. Such states are compactly repre-
sented graphically, as shown in Fig. 1. A tensor
network is represented as a graph where vertices
represent tensors, and edges represent indices that
are contracted. Thus, in the upper panel of Fig. 1,
the blue circles represent the tensors (Aσii)αi−1αi

of

Eqn. (1); the edges connecting the tensors represent
the indices that are summed over to yield matrix
multiplication; and the open vertices pointing down

2

(a)
α2 α3

σ3

(b)

Figure 1: (a) Graphical representation of the MPS. Vertices
(blue dots) represent the trivalent tensor on the i’th site,
(A
σi
i)αi−1αi , where edges indicate indices. Closed edges,

such as the horizontal lines indicate the indices αi−1, αi that
are being contracted; vertical, open edges indicate the phys-
ical indices σi. (b) Contraction of the observable 〈ψ|Ô|ψ〉,
where Ô is represented as a matrix-product operator (red
squares).

represent the physical indices σi. The lower panel of
the figure shows a closed tensor network, i.e. with-
out any open legs, that thus corresponds to a scalar.
The contraction shown yields the calculation of an
expectation value for an operator represented by a
matrix-product operator (see Section 2.1).

It has been shown that ground states of gapped
Hamiltonians in one dimension are accurately rep-
resented by a matrix-product state with a matrix
size that grows only polynomially in the system
size [33, 34]; if only local properties are required,
one can obtain even better scaling [35]. Intuitively,
this result rests on the fact that an area law holds
for these systems [36], i.e. the bipartite entangle-
ment entropy in these states is a function only of
the area of the cut between two regions and not the
total system size. In one dimension, this leads to
constant bipartite entanglement entropy for gapped
states.

The MPS ansatz is inherently a one-dimensional
open chain. To simulate systems on periodic sys-
tems, ladders or even two-dimensional systems, a
mapping from these lattices to a chain has to be
chosen. This will lead to a Hamiltonian with longer-
ranged interactions on the chain, where the range
of interactions is related to the width of the ladder
or 2d system. More importantly, the entanglement
structure of the state is affected. The area of a cut
bipartitioning the system into two halves will gener-
ally grow with the linear size L of the system. Since
the bond dimension required to capture entropy S
in an MPS is exponential, M ∼ eS , this implies
an exponential cost for MPS simulations for two-

dimensional systems. The specific mapping from
the 2d system to the chain therefore may have great
impact on the accuracy and performance of simula-
tions, and should therefore be chosen very carefully
to minimize entanglement across each cut.

2.1. Representation of Matrix Product Operators

To introduce the notion of matrix product op-
erators, it is useful to consider a 1d quantum lat-
tice system with the same Hilbert space H on each
site. Let {Ôβk} be the set of Hermitian operators
that can act on the k’th site; as an example, these
are identity matrix and the three Pauli matrices,
{I, σx, σy, σz} for the case of S = 1/2 spins. We
can then write any Hermitian operator Q̂ acting on
the entire lattice as

Q̂ =
∑

c(β1, . . .) Ô
β1

1 ⊗ Ôβ2

2 ⊗ (2)

This makes use of the fact that the operators them-
selves form a Hilbert space, analogous to quantum
state. The above expression suggests that the co-
efficients c(α1, . . .) can be decomposed into a ma-
trix product, analogous to Eqn. 1. This repre-
sentation is referred to as matrix-product operator
(MPO). Analogous to a matrix-product state, such
a matrix-product operator has an associated ma-
trix size. Local Hamiltonians can generally be rep-
resented as an MPO of low bond dimension; even
for long-range Hamiltonians, an efficient MPO de-
scription is often possible.

Consider now writing a local Hamiltonian, say
for free fermions,

Ĥ = −
∑
〈ij〉

(
ĉ†(i) ĉ(j) + h.c.

)
in this form. For simplicity, let’s consider this
model on three sites but with additional next-
nearest neighbor hopping:

Ĥ = −ĉ†1ĉ2 + ĉ1ĉ
†
2 − ĉ†2ĉ3 + ĉ2ĉ

†
3 − ĉ†1ĉ3 + ĉ1ĉ

†
3 (3)

The most naive way to perform this decomposition
is to assign an independent auxiliary index to each
term in each of the sums:

H =
∑
k,k′

A1kBkk′Ck′1 (4)

A1k =
(
−ĉ†1, ĉ1,−Î, Î,−ĉ†1, ĉ1

)
k

(5)

Bkk′ =
(
ĉ2, ĉ

†
2, ĉ
†
2, ĉ2, Î, Î

)
k
δkk′ (6)

Ck1 =
(
Î, Î, ĉ3, ĉ†3, ĉ3, ĉ

†
3

)
k

(7)

3

(a) Î1 Î2 ĉ†3 ĉ4

Î1 ĉ†2 f̂3 f̂4

Î1 ĉ†2 f̂3 ĉ4

Î1 ĉ†2 ĉ3 Î4

În−1

În−1

În−1

În−1

În

În

În

În

(b) Î1

ĉ†1

Î2

ĉ2

ĉ†2

f̂2

Î3

Î3

ĉ3

ĉ†3

f̂3

f̂3

Î4

Î4

ĉ4

ĉ†4

f̂4

f̂4

În−1

ĉn−1

ĉ†n−1

f̂n−1

f̂n−1

În

ĉn

Figure 2: Internal structure of the MPO representing the
the first part ĉ†(i) ĉ(j) of the Hamiltonian (3) on a 3 × 3
square lattice. (a) trivial graph with an auxiliary bond for
each term. (b) compressed version of the same graph where
common branches are computed only once. For comparison,
we highlight the term ĉ†(2) ĉ(4) in both panels.

This leads to an MPO of bond dimension 6, which
is very inefficient and redundant. A more efficient
version is the following:

Ã1k =
(
Î, ĉ†1, ĉ1

)
k

(8)

B̃kk′ =

 0 ĉ2 −ĉ†2
−ĉ2 0 −Î
ĉ†2 Î 0

kk′

(9)

C̃k1 =
(
Î, ĉ†3, ĉ3

)
k
. (10)

This MPO implements the same Hamiltonian, but
has only bond dimension 3 by making use of the
fact that the operators ĉ†1, ĉ1 as well as ĉ†3, ĉ3 occur
both in the nearest- as well as next-nearest neigh-
bor hopping term. Note that in the notation above,
we have taken the elements of the matrices to be
fermionic operators themselves. The antisymmetry
of the central matrix in this case is a special prop-

erty of the 3-site ring and reflects the anticommu-
tation of fermionic operators. In the actual imple-
mentation, fermionic statistics is implemented via
a Jordan-Wigner transformation.

Our code implements an optimized MPO network
that merges common branches, as illustrated in the
above example, thus reducing the matrix size of the
MPO substantially. This is sketched in the lower
panel of Figure 2 (for a more extensive explana-
tion of similar notation, see Ref. [37]). Note that
in principle, the same compression techniques that
are available for reducing the matrix size of MPSs
can also be applied to MPOs; however, in some
cases constructing the MPO in a naive way and
then compressing is prohibitively time-consuming.
Therefore, the code is written to perform many op-
timizations when the MPO is first constructed.

2.1.1. Fermionic operators

Special treatment is needed to account for the
anti-commutation relations {ĉ(i), ĉ†(j)} = δij char-
acteristic of fermions. All fermionic operators have
to be converted into a string of bosonic opera-
tors according to the Jordan-Wigner transforma-
tion [38]:

ĉ(i) =

(∏
k<i

f̂(k)

)
b̂(i), (11)

where f̂(k) is the fermion sign operator, a diag-
onal matrix with a −1 entry for each local ba-
sis state with an odd number of fermions, and 1
for each local basis state with an even (including

0) number of fermions, and b̂(i) are hard-core bo-
son operators satisfying the commutation relation
[b̂(i), b̂†(j)] = δij and (b̂(i))2 = 0. The fermion

sign matrix f̂(k) can be written as f̂(k) = 1 −
2b̂†(k)b̂(k). To represent spinful fermions, two fla-

vors of bosons b̂1(k), b̂2(k) have to be introduced
and a normal-ordering of operators has to be cho-
sen; in the ALPS libraries, the ordering is chosen as
b̂1(1)b̂2(1)b̂1(2)b̂2(2).... The Jordan-Wigner string
must then include fermion sign operators for both
flavors of bosons, i.e. two per physical site.

Noting that f̂2 = I and [f̂(i), b̂(†)(j)] = 0 for
i 6= j, we find that for a fermionic hopping term
the transformation simplifies to just a sequence of
f̂(k) matrices between the two sites i and j:

ĉ(i)ĉ†(j) = b̂(i)

 ∏
i≤k<j

f̂(k)

 b̂†(j). (12)

4

A similar simplification will apply to other types of
fermionic bond terms; bond terms where each term
is diagonal, such as density-density interactions, do
not require Jordan-Wigner transformation.

2.2. Variational optimization of the MPS

Given the variational nature of the MPS ansatz,
the ground state of a model described by the Hamil-
tonian Ĥ is obtained by an optimization process
of all variational parameters looking for the energy
minimum.

The most common way to optimize an MPS, as
already described by S. White in ’92 [3] is to op-
timize one or two tensors at the time, keeping all
the others constant. For the case of the single site
optimization the equation to solve is

∂

∂A∗i

(
〈ψ|Ĥ|ψ〉 − λ [〈ψ| ψ〉 − 1]

)
= 0, (13)

which maps to solving for the lowest eigenvector of
the generalized eigenvalue problemMAi−λNAi =
0, which is solved iteratively with the Jacobi-
Davison algorithm provided by the IETL package in
ALPS. Note that in the iterative solver the matrix
M is never computed, but we efficiently contract all
tensor legs on the fly in order to keep a complexity
O(M3).

Convergence is reached after sweeping a few
times through the system. One sweep is here de-
fined as optimizing twice all tensors in the chain,
i.e. moving from left to right and then from right
to left.

In our mps_optim application we implement the
so called single-site and two-site optimizations.
The first one optimizes one tensor at the time,
whereas the latter one fuses two sites together
to optimize the bond between them. The user
is free to choose between them by changing the
optimization input parameter to singlesite or
twosite, respectively. It is strongly advised to al-
ways play around with both, in order to find what
fits better the system to be solved.

In the case of the single site optimization we im-
plement the procedure proposed in Ref. [39]. Here,
the two shortcomings of the single-site optimiza-
tion – the possibility of trapping on local minima
and the inability to change the bond dimension dy-
namically – are remedied by enlarging the reduced
density matrix after each optimization using

ρ̃A = TrB |ψ〉〈ψ|+ α
∑
bl

TrBĤ
A
bl
|ψ〉〈ψ|ĤA

bl
.

|ψ1〉

〈ψ0|
=

Figure 3: Construction of the environment tensor used as a
local orthogonality constraint. The orthogonality constraint
shown in the left network corresponds to a mixed MPS tensor
which is used to evaluate 〈ψ0|ψ1〉 in the local optimization.

Assuming a partition of the system into a sub-block
A and sub-block B such that the Hamiltonian is
rewritten as Ĥ =

∑
bl
ĤA
bl
ĤB
bl

, the first term in ρ̃A is
the usual reduced density matrix of the subsystem
A, whereas the second term introduces some reshuf-
fling of the truncated states that protects against
trapping in the optimization into local minima. The
parameter α is a small number – typically 10−4

– which is slowly taken to zero during sweeping.
In our implementation we allow three values for it
alpha initial, alpha main and alpha final (see
the parameters in Table 3 for further details).

2.2.1. Excited states

In traditional DMRG approaches, the calculation
of excited states is implemented through multi-state
targetting, where the reduced density matrix after
each iteration is truncated to describe a number
of low-lying states simultaneously. While this ap-
proach has been shown to work reasonably, a more
controlled approach is to sequentially find low-lying
states by first finding the ground state |ψ0〉, then
finding the lowest-energy state |ψ1〉 that is orthog-
onal to the ground state, 〈ψ0|ψ1〉 = 0, etc. This
approach was first described in Ref. [40].

In the MPS context, the overlap of two states
can be efficiently calculated; furthermore, when
optimizing a local tensor, the orthogonality con-
straint can be expressed as a local constraint of
orthogonalizing the MPS tensor against the envi-
ronment tensor shown in Fig. 3. For higher excited
states, several such constraints need to be taken
into account. In an iterative eigensolver, such as
the Jacobi-Davidson method used here, these con-
straints can be taken into account by projecting
newly generated Krylov vectors (or, in the case of
Jacobi-Davidson, search vectors) into the orthogo-
nal complement of the space spanned by the con-
straints. When sweeping through the state, the en-
vironment of Fig. 3 can be updated at very low
computational cost.

5

2.3. Time evolution

To simulate time evolution, we follow the ap-
proach of Refs. [6, 7, 41]. The key insight to per-
forming time evolution using MPS is that instead of
time evolution, one can also variationally optimize
the difference between an MPS |ψ1〉 and an MPS
with a unitary operator applied, U |ψ0〉; that is, the
optimization problem

min
|ψ1〉

∥∥|ψ1〉 − U |ψ0〉
∥∥ (14)

can be solved efficiently over normalized MPS.
Here, the operator U can either act locally on a
few sites, or be a sum of terms expressed as an
MPO. Another key principle is that the evolution
under a local Hamiltonian, Ĥ =

∑
n ĥn, can be

expressed as a product over local unitaries using
a Trotter-Suzuki decomposition [42, 43]. Here, the
time evolution operator exp(−iĤt) for a small time
step ∆t is decomposed into multiple products of the
non-communing terms in the Hamiltonian. To first
order the Trotter-Suzuki decomposition is

exp(−iĤt) =

t/∆t∏
k=1

∏
n

e−iĥn∆t +O(∆t2), (15)

where ĥn can themselves be sums of terms that do
not overlap and hence commute. In the case of a
simple nearest-neighbor Hamiltonian on a chain, ĥ1

and ĥ2 are the terms acting on even and odd bonds,
respectively. In general better accuracy is obtained
by second and fourth orders which are implemented
in the mps_evolve application (see Appendix A.1).

Naively, the application of the unitary to an MPS
increases the bond dimension to M ′ = M · Dh,
where Dh > 1 depends on the structure of the
Hamiltonian; for details, see below. Therefore, af-
ter each contraction, the MPS matrices are trun-
cated to their original size either with an singular
value decomposition, or with a variational approxi-
mation (see Ref. [32]). Our application implements
two types of tensor contractions for time evolution,
nearest neighbors and mpo.

Nearest neighbors. Nearest neighbors time evolu-
tion algorithm is an optimized version used when
the Hamiltonian contains only nearest neighbors
bond term (in the case of ladders or 2d systems
after having been mapped it to a Hamiltonian on
a chain). The bond gates are contracted with the
MPS tensors and a truncation via singular value
decomposition is applied on the fly, following the
TEBD method described in Ref. [41].

|0〉 : 1
|1〉 : 1

>

|0〉 : 1
|1〉 : 1

>

|0〉 : 1
|1〉 : 1

>

|0〉 : 1
|1〉 : 1

>

>
|0〉 : 1

>

|0〉 : 1
|1〉 : 1

>

|0〉 : 1
|1〉 : 2
|2〉 : 1

>
>

|n〉 : 1

Figure 4: Labels in an MPS with conserved particles number.
In the pair (|k〉, s) we describe a charge block with label |k〉
(k particles) of size s. The MPS always starts with the trivial
block (|0〉, 1) and ends with the total charge sector that the
user wants to target, n particles in this example.

MPO. MPO time evolution is a more generic algo-
rithm where each exp(−iĥn∆t) is transformed into
an MPO, which allows to encode bond terms be-
tween non-neighboring sites. After multiplying the
MPS wave function with the MPO, this is trun-
cated to its original size M with a variational com-
pression. Special care has to be taken for fermionic
long-range operators, this procedure is explained in
Appendix A.2.

2.4. Efficient tensor storage with abelian symme-
tries

Symmetries manifest themselves in many physi-
cal models, i.e. there are global operators Ĝ that
commute with the system Hamiltonian, [Ĥ, Ĝ] = 0.
In such a case, due to the fact that these oper-
ators can be simultaneously diagonalized, Ĥ be-
comes block-diagonal in a basis of eigenstates of
Ĝ. The blocks of the Hamiltonian are labelled by
quantum numbers, corresponding to possible eigen-
values of Ĝ. It is often computationally favorable to
diagonalize the Hamiltonian separately within each
quantum number sector.

In the case of DMRG, this is particularly easy
when the symmetry has local generators, such that
the reduced density matrices for any part of the
system can also be block-diagonalized. Since the
bond indices of the matrix product state essentially
enumerate eigenstates of reduced density matrices,
these can be associated with quantum number sec-
tors. Each matrix of the MPS then obeys the sym-
metry locally, i.e. there are local conservation laws,
and the matrices also become block-diagonal.

For each bond of the tensor network, a gauge
choice has to be made fixing the direction of the
bond. When considering, for example, particle
number conservation, this is a choice of which bonds

6

are considered going into and which coming out of
the node of the network [44]. The choice we make in
our implementation is shown in Fig. 4. The MPS al-
ways starts with a trivial index on the left (e.g. only
one sector with zero particles), new states are then
added on every site from the local Hilbert space σi,
and eventually the last tensor is fixed to the total
quantum number sector chosen by the user.

Given our convention, locally the conservation of
quantum numbers reads

σi ◦ αi = αi+1 and αi = (−σi) ◦ αi+1,

where αi, σi are quantum numbers and ◦ represents
the group product. The most convenient represen-
tation for the MPS tensors is in a matrix-like form
where the physical index σi is fused together with
one of the auxiliary indexes αi or αi+1. We then
profit from the fact that the matrix Aσiαi;αi+1

is
block-diagonal in the quantum number labels, and
we store only the dense blocks. Linear algebra oper-
ations acting on these dense matrices are dispatched
to optimized BLAS and LAPACK libraries avail-
able on the user machine1.

The MPS codes presented in this paper are imple-
mented to make use of Abelian symmetries. Deal-
ing with conserved quantum numbers involves an
intense calculation of indexes labels. We therefore
set the symmetry at compile-time to allow for a
maximum amount of compiler optimization. By
default, the code is compiled for U(1)⊗n symme-
try, where the value n is fixed during compilation
by the macro DMRG_NUMSYMM, as well as Z2 symme-
try2. Other symmetries may easily be added.

2.5. Parallelization

We parallelize our applications for shared mem-
ory architectures using the OpenMP compiler di-
rectives. The parallel for loop directive is em-
ployed, for example, in the contraction of the local
MPS tensor with the local MPO terms. In this rou-
tine several loops over the size of the auxiliary MPO
dimension operate on independent parts. Since the
MPO auxiliary dimension grows linearly with the
width of a 2d system, we profit from more paral-
lelism for large systems. The OpenMP paralleliza-
tion is enabled at compile-time with the CMake op-
tion ALPS_ENABLE_OPENMP, and can be controlled at

1The reader is redirected to the ALPS documentation [1,
2] for the exact configuration options.

2Z2 symmetry is implemented only for some particular
models. Refer to Appendix B for details on how to use it.

run-time via standard environment variables such
as OMP_NUM_THREADS.

Many vendors provide support for multi-threaded
BLAS and LAPACK libraries. For large matrices
sizes our application will profit automatically from
this parallelization, too. However, special care must
be taken when using both the OpenMP paralleliza-
tion and a parallel BLAS/LAPACK library simul-
taneously; this will only lead to improved scaling
when using a compiler that supports such nested
parallelism.

3. Codes and examples

Our set of MPS tools is composed of an applica-
tion for the calculation of ground states and low en-
ergy excitations (mps_optim), a time evolution ap-
plication (mps_evolve) and two utilities (mps_meas
and mps_overlap) to perform measurements on the
wave functions generated with the previous pro-
grams.

The interface of the applications is consistent
with other ALPS applications, i.e. the same simu-
lation can easily be run with exact diagonalization,
the MPS optimization or even Monte Carlo applica-
tions. On the outer level a scheduler reads an XML
input file listing all parameter sets to be computed.
These parameter files can be created with the stan-
dard ALPS tools: (1) converting text files to XML
with the parameter2xml command line tool, (2) us-
ing the convenient Python functions available in the
pyalps package or (3) generating a workflow from
VisTrails [45, 46].

Each simulation generates three output files:
simulation.out.h5 contains the simulation pa-
rameters, the iteration results and the final mea-
surements in HDF5 format (see Appendix C for
the detailed HDF5 schemes); simulation.out.xml
contains the simulation parameters and the final
results in XML format conforming with the ALPS
schemas [1, 2]; simulation.out.chkp is the simu-
lation checkpoint file containing the simulation sta-
tus and the final MPS wave function that can be
used to restore the same simulation or as input for
other calculations.

Together with the applications, in the ancillary
files, we ship full example simulations to illustrate
how to create parameter files, run simulations and
analyze the data. In sections 3.2 and 3.3 we de-
scribe some of these results.

7

3.1. Input parameters

In Table 2, Table 3 and Table 4 we list all pa-
rameters and the default values used by the applica-
tions. They are split between common MPS param-
eters (valid in all codes), optimization parameters
(available only in mps_optim) and time evolution
specific parameters (for mps_evolve). Models, lat-
tice and measurements are parameters of the ALPS
model and lattice libraries, we point the reader to
the ALPS references [1, 2] for further details.

3.1.1. Initial states

The MPS applications can be initialized with four
different types of initial states.

default. The default initial state constructs an
MPS which contains all allowed quantum number
sectors that fulfill the total quantum numbers cho-
sen by the user. In each MPS tensor all sectors will
have a maximum size of 5×5 and they will be filled
with random numbers.

thin. The thin initial state is an extension of the
default option. After constructing the default MPS
the routine performs a compression retaining only
a total 20 truncated states per site. This initial
state reduces considerably the number of sectors
that the code has to tackle in the warm up sweeps.
Sometimes it leads to faster convergence.

basis state. A many body basis state is easily en-
coded in a product state as an MPS with bond di-
mension M = 1. With this option the user can
design its own initial state listing the desired local
quantum numbers in the input file as illustrated in
Table 2.

input file. The checkpoint file generated by a sim-
ulation can easily be reused in a new simulation by
specifying it in the initfile parameter. This op-
tion is often used to start a time evolution from the
ground state of an other model.

3.1.2. Temporary memory

An MPS simulation easily requires more than 100
GB of memory for the storage of boundary objects,
i.e. partial contractions of the MPS network needed
to reduce the complexity of the variational opti-
mization to only O(M3).

Our codes are capable of efficiently move this
temporary memory to disk. This option is en-
abled by giving a non-empty value to the param-
eter storagedir. Since the application will often

write > 100GB of temporary data it is advised to
use fast filesystems, e.g. running on a local hard
disk instead of a network mount. Once a simula-
tion finishes the user can safely erase all temporary
data.

3.2. Example 1: Itinerant fermions in the Hubbard
ladder

As an example for the ground state search we
show results for the pairing properties of the Hub-
bard model on a two-leg open ladder. The Hamil-
tonian of this model is

Ĥ = −t
∑
〈ij〉,σ

[
ĉ†σ(i)ĉσ(j) + h.c.

]
+ U

∑
i

n̂↑(i)n̂↓(i), (16)

where ĉ†↑(i) and ĉ†↓(i) create a fermion at site i
with spin up and down, respectively, and n̂σ(i) =
ĉ†σ(i)ĉσ(i) counts the number of particles with spin
σ ∈ {↑, ↓} on site i. For a relatively strong re-
pulsive interaction U/t = 8 and an average filling
n = 0.875 this model is expected to fall into the
Luther-Emery universality class [47, 48] with a spin
gap and a gapless charge excitation. To leading or-
der both the long-range pairing correlation function
D(|i− j|) = D(l) ∼ l−1/Kρ – defined as

D(i, j) = 〈∆(i) ∆†(j)〉 (17)

with ∆†(i) = [ĉ†↑(i, 1)ĉ†↓(i, 2)− ĉ†↓(i, 1)ĉ†↑(i, 2)] creat-
ing a singlet on the ith-rung – and the long-range
charge density wave correlation function C(|i−j|) =
C(l) ∼ l−Kρ – defined as

C(i, j) = 〈n̂(i) n̂(j)〉 − 〈n̂(i)〉〈n̂(j)〉 (18)

– decay algebraically with an exponent that de-
pends only on the non-universal parameter Kρ,
which we have to determine from the simulation
at the chosen model parameters.

Long-range correlations have to propagate
through the whole system and are therefore easily
suppressed when truncating to only a few DMRG
states. To treat the DMRG truncation correctly
we run several instances of the simulation with in-
creasing bond dimension M , until the observables
converges or we can confidently extrapolate their
value to M →∞.

In this example we simulate a 2× 96 ladder with
bond dimension varying from a computationally

8

2 4 6 8 10 12 14 16

sweep

10−5

10−4

10−3

10−2

10−1

100

101

en
er

gy
d

iff
er

en
ce

10−7

10−6

10−5

10−4

10−3

10−2

tr
u

n
ca

ti
o
n

er
ro

r
Figure 5: Iteration history of the energy convergence
(solid lines) compared to the extrapolated final energy ob-
tained in Figure 6 and the corresponding truncation er-
ror (full points) for a 2 × 96 system with average filling
n = 0.875 and U/t = 8. From top to bottom the data
shown correspond to a maximum bond dimension M =
800, 1200, 1600, 2000, 2800, 3200, 3600.

cheap M = 800 (convergence takes ca. 2.3h on
5 cores) to a computationally expensive M = 3600
(convergence takes 46h on 5 cores). The run script
is:

1 parms = []
2 for M in [800 , 1200 , 1600 , 2000 , 2800 , 3200 ,

3 6 0 0] :
3 p = d i c t ()
4 p ['SWEEPS '] = 16
5 p ['MAXSTATES '] = M
6 p [' i n i t s t a t e '] = ' th in '
7 p ['LATTICE '] = ' open ladder '
8 p ['L '] = 96
9 p ['MODEL LIBRARY '] = 'mymodel . xml '

10 p ['MODEL '] = ' fermion Hubbard '
11 p [' t '] = 1
12 p ['U '] = 8
13 p ['CONSERVED QUANTUMNUMBERS '] = 'Nup , Ndown '
14 p [' Nup total '] = 84
15 p [' Ndown total '] = 84
16 p ['MEASURE[EnergyVariance] '] = 1
17 p ['MEASURE HALF CORRELATIONS[pa i r f i e l d 1] ']

= ' f i e l d d u : f i e l dda g ud '
18 parms . append (p)

20 ## wri t e the input f i l e and run the s imu la t i on
21 i n f i l e s=pyalps . w r i t e I n p u t F i l e s (' sim ' , parms)
22 r e s=pyalps . runAppl i cat ion (' mps optim ' , i n f i l e s)

Results of these simulations are reported in Fig-
ures 5, 6, 7, where we illustrate the convergence
history, the energy extrapolation and the decay of
the pairing correlation function.

The iteration history of the simulation is loaded
from the result file simulation.out.h5 with the
Python code:

1 r e s f i l e s = pyalps . g e t R e s u l t F i l e s (p r e f i x= ' sim ')
2 i t e r s = pyalps . loadIterat ionMeasurements (

r e s f i l e s , what=[' Energy ' , ' TruncatedWeight

0.00 0.05 0.10 0.15 0.20 0.25

Var[Ĥ]

0

5

10

15

20

25

30

en
er

g
y

d
iff

er
en

ce

×10−5

Figure 6: Extrapolation of the energy per particle as a
function of the energy variance Var[Ĥ] = 〈Ĥ2〉 − 〈Ĥ〉2 for
2 × 96 system with average filling n = 0.875 and U/t = 8.
The linear extrapolation returns the ground state energy
e0 = −0.72577 t which has been subtracted from y-axis in
the figure.

'])
3 e n v s i t e r = pyalps . co l lectXY (i t e r s ,
4 x= ' i t e r a t i o n ' , y= ' Energy ' ,
5 f o r each =['MAXSTATES '])
6 pyalps . p l o t . p l o t (e n v s i t e r)

Because of the iterative optimization in DMRG, one
should always check for convergence with the num-
ber of sweeps through the system. In Fig. 5, we see
that both the ground state energy and the trun-
cated weight have converged in our simulations.

Note that in the above parameters we enable
the calculation of the energy variance Var[Ĥ] =
〈Ĥ2〉 − 〈Ĥ〉2. This is a very convenient quantity
for extrapolating observables to M → ∞, corre-
sponding to Var[Ĥ] → 0 for an eigenstate of Ĥ.
As an example the ground state energy depends to
first order linearly on Var[Ĥ]. In Figure 6 we show
the extrapolation of the energy generated with the
following code:

1 ## load data
2 r e s f i l e s = pyalps . g e t R e s u l t F i l e s (p r e f i x= ' sim ')
3 data = pyalps . loadEigenstateMeasurements (

r e s f i l e s , [' Energy ' , ' EnergyVariance '])
4 en vs va r = pyalps . ResultsToXY (data , '

EnergyVariance ' , ' Energy ')

6 ## l i n e a r f i t
7 xgr id = np . l i n s p a c e (0 , max(en vs va r [0] . y))
8 c o e f f = np . p o l y f i t (en vs va r [0] . x , en vs va r

[0] . y , deg=1)

10 ## plo t data and f i t
11 pyalps . p l o t . p l o t (en vs va r)
12 p l t . p l o t (xrgid , np . po lyva l (c o e f f , xgr id))

The evaluation of the pairing cor-
relation function D(i, j) includes

9

100 101 102

l

10−7

10−6

10−5

10−4

10−3

10−2

10−1

D
(l

) M = 3600

M = 3200

M = 2800

M = 2000

M = 1600

M = 1200

M = 800

Figure 7: Rung-rung pairing correlation function D(l) as a
function of the distance between rungs for a 2 × 96 system
with average filling n = 0.875 and U/t = 8. Values at dis-
tance l are obtained by averaging 10 pairs |i− j| = l around
the center of the ladder. The dashed line is a reference alge-
braic decay with exponent 1.

terms like field du : fielddag up =
ĉ↓(i, 1)ĉ↑(i, 2)ĉ†↑(j, 1)ĉ†↓(j, 2) which was listed
as a correlation measurement in the parameters
listed above. Since field_du and fielddag_ud

are defined in the file mymodel.xml 3 as bond
operators, the application applies the four op-
erators to all pairs of nearest neighbors sites,
i.e. i, i + 1, j, j + i for all i = 1, . . . , N − 4 and
j = i+ 2, . . . , N , effectively scaling as O(N2).

Form the measured D(i, j) we compute D(l) =
D(|i− j|) by averaging over a few rungs at distance
l = |i−j| around the center of the ladder. This tech-
nique averages out oscillations induced by the open
boundaries. Results are shown in Figure 7, where
one notes a very slow convergence of the pairing
correlation function D(l) with the retained DMRG
states; for M = 800 pairing at large distances is
underestimated. Large enough MPS matrices, like
the M = 3600 data, are needed to correctly analyze
the system.

From this example simulation we observe that
D(l) decays with an exponent consistent with Kρ >
1, which is the condition for a dominant super-
conducting phase in the Luther-Emery universality
class.

3The model description file mymodel.xml is available in
the auxiliary files of this paper.

0 5 10 15 20

t

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

M
(n
,t

)

Figure 8: Magnetization M(n, t) = 〈ψ(t)|Ŝz(L/2 − n)|ψ(t)〉
at time t and distance n from the middle of the chain. Points
are simulation results with n = 1−10 (from top to bottom),
solid lines are the corresponding exact solutions computed
from Eqn. 20.

3.3. Example 2: Evolution of a domain wall

As a second example we run a simple time evolu-
tion simulation of the Heisenberg spin XX model,
described by the Hamiltonian

Ĥ = J
∑
i

[Sx(i)Sx(i+ 1) + Sy(i)Sy(i+ 1)] ,

(19)
with Sx(i), Sy(i) the x, y component of the

spin−1/2 operator ~S(i).
The time evolution of an initial domain wall

|ψ(t = 0)〉 = |↓↓ . . . ↓↑ . . . ↑↑〉 – a state with all up
spins on the right side of the chain and the down
spins on the left – under the spin XX Hamiltonian
was solved exactly by a Jordan-Wigner transforma-
tion to free fermions in Ref. [49]. In particular, the
local magnetization at distance n from the center
after time t is described by a sum of Bessel functions
as

M(n, t) = −1

2

n−1∑
i=1−n

j2
i (t), (20)

with ji(t) is the Bessel function of order i.
The setup script is very similar to the one pre-

viously used for the ground state calculations, for
a simulation of 500 time steps up to a total time
τ = 20~/J it reads:

1 t o t a l t i m e = 20
2 nsweeps = 500
3 p ['MAXSTATES '] = 40
4 p ['TIMESTEPS '] = nsteps

10

5 p ['DT '] = nsteps / t o t a l t i m e
6 p [' measure each '] = 5
7 p [' i n i t s t a t e '] = ' local quantumnumbers '
8 p [' i n i t i a l l o c a l S z '] = ' , ' . j o i n (['−0.5 ']∗25
9 + [' 0 .5 ']∗25)

10 p ['ALWAYS MEASURE '] = ' Local Magnet izat ion '
11 p ['LATTICE '] = ' open chain l a t t i c e '
12 p ['L '] = 50
13 p ['MODEL '] = ' sp in '
14 p [' Jxy '] = 1
15 p ['CONSERVED QUANTUMNUMBERS '] = ' Sz '
16 p [' S z t o t a l '] = 0
17 p ['MEASURE LOCAL[Local Magnet izat ion] '] = ' Sz '

19 ## wri t e the input f i l e and run the s imu la t i on
20 i n f i l e s=pyalps . w r i t e I n p u t F i l e s (' sim ' , parms)
21 r e s=pyalps . runAppl i cat ion (' mps evolve ' , i n f i l e s

)

Note the definition of the initial state
initial local Sz listing the value of the Sz

quantum number on each sites.

In Figure 8 the local magnetization calculated
with the above simulation is compared with the
exact solution from Eqn. 20 showing very good
agreement. To produce a similar figure one simply
has to load the results for each time step with the
loadIterationMeasurements function and select
the magnetization at distance n from the center, as
shown in the following snippet.

1 ## simula t i on r e s u l t s
2 r e s f i l e s = pyalps . g e t R e s u l t F i l e s (p r e f i x= ' sim ')
3 data = pyalps . loadIterat ionMeasurements (

r e s f i l e s , what=[' Local Magnet izat ion '])
4 ## s e l e c t the Local Magnet izat ion at d i s t ance

` loc ` from the cente r
5 numeric mag = []
6 for d in pyalps . f l a t t e n (data) :
7 L = d . props ['L ']
8 for l o c in range (1 , 11) :
9 q = pyalps . DataSet ()

10 q . props = deepcopy (d . props)
11 q . props [' l o c '] = l o c
12 q . y = [q . y [0] [L/2− l o c]]
13 numeric mag . append (q)
14 ## plo t Magnet izat ion as a func t i on o f time
15 mag vs time = pyalps . co l lectXY (numeric mag ,
16 x= 'Time ' , y= ' Local Magnet izat ion ' ,
17 f o r each =[' l o c '])
18 pyalps . p l o t . p l o t (mag vs time)

A slightly more complex version generating a
movie of the local magnetization per site is also
provided in the source code of the example.

4. Acknowledgments

We gratefully acknowledge support by the wider
ALPS community. We are indebted to Philippe
Corboz and Ulrich Schollwöck for useful discussions
in the design process, and to U. Schollwöck for pro-
viding a draft of his Python code. We also thank
Jan Gukelberger, Hiroshi Shinaoka and Lei Wang

for being early users of the framework and applica-
tions. Miles Stoudenmire provided an ad-hoc ITen-
sor [27] application for our benchmarks. Simula-
tions were performed on the PASC Mönch cluster
at ETH Zurich.

Appendix A. Algorithms for time evolution

Appendix A.1. Higher order Suzuki-Trotter de-
composition

The time evolution unitary operator for a small
time step exp(−iĤ∆t) is conveniently transformed
according to the Suzuki-Trotter decomposition. In
the mps_evolve application the user can choose be-
tween a second or fourth order expansion with the
parameter te_order=second or te_order=fourth,
respectively.

The second order expands the unitary time evo-
lution operator up to an error O(∆t3), namely

exp(−iĤ∆t) = S

(
∆t

2

)
+O(∆t3), (A.1)

with S(t) defined as

S(∆t) =

(
N∏
n=1

e−iĥn∆t

)
·
(

1∏
n=N

e−iĥn∆t

)
,

where the Hamiltonian operator Ĥ has been split
into N non-commuting terms ĥn.

Fourth order expansion provides a more accurate
time step O(∆t5) at the expense of applying more
operators to the MPS wave function. The decom-
position reads

exp(−iĤ∆t) =

5∏
j=1

S

(
pj

∆t

2

)
+O(∆t5) (A.2)

with p1 = p2 = p4 = p5 = p = 1
4−41/3 and p3 =

1− 4p.

Appendix A.2. Exponential of fermionic bond
terms

According to the Jordan-Wigner transformation
an operator Ô(i, j) = ĉi⊗ ĉj acting on the bond be-
tween site i and j with the local operators ĉi and ĉj ,
respectively, is decomposed into a chain of bosonic
operators b̂i and b̂j with filling sign matrices f̂k act-
ing on sites i < k < j.

11

The exponential of this operator can be split into
tensor product of exponential as

eαÔ(i,j) =
∑
n

αn

n!
b̂ni ⊗ f̂ni+1 ⊗ · · · ⊗ b̂ni

=
∑

n∈even

αn

n!
b̂ni ⊗ Îi+1 ⊗ · · · ⊗ b̂ni

+
∑
n∈odd

αn

n!
b̂ni ⊗ f̂i+1 ⊗ · · · ⊗ b̂ni

=
1

2
(B(α) + F (α)) +

1

2
(B(−α)− F (−α)) ,

(A.3)

with

B(α) =eαb̂i ⊗ eαÎi+1 ⊗ · · · ⊗ eαb̂j

F (α) =eαb̂i ⊗ eαf̂i+1 ⊗ · · · ⊗ eαb̂j .

Appendix B. Extensions for Z2 symmetry

The additional Z2 symmetry, which is useful in
the simulation of systems such as superconduc-
tors, can be enabled at compile-time using the
CMake option DMRG_BUILD_SYMMETRIES, and set-
ting symmetry = "Z2" in the parameter file. In
Listing 1, we provide the skeleton of a model defini-
tion for a superconductor, where the Z2 symmetry
is fermion parity, i.e. particle number modulo 2.
The full example, along with a script that shows
how to detect the topological phase transition in
the Kitaev wire model [50], is included in the aux-
iliary files to this manuscript.

Appendix C. HDF5 schema

Simulation results are stored in the widely used
Hierarchical Data Format (HDF). In this section
we list the schemes used to store the simulation pa-
rameters, the measurement results and the iteration
information. The ALPS Python module pyalps

provides helper functions which load the data au-
tomatically.

Parameters

/parameters/PARAMETERNAME

Value of the parameter PARAMETERNAME .

Helper function:
pyalps.loadProperties(files)

Measurements

/spectrum/results/OBSNAME/mean/value

Vector of expectation values of the observable
OBSNAME , each entry in the vector is a different
eigenstate.

/spectrum/results/OBSNAME/labels

Labels for the x-coordinate of the observable.

Helper function:
pyalps.loadEigenstateMeasurements(files)

Iterations

/spectrum/iteration/NUM/parameters/

PARAMETERNAME

Value of the parameter PARAMETERNAME spe-
cific to the iteration NUM . Only modified pa-
rameters appear in this group.

/spectrum/iteration/NUM/results/OBSNAME/

mean/value

Expectation values of the observable OBSNAME

at the iteration NUM .

/spectrum/iteration/NUM/results/OBSNAME/

labels

Labels for the x-coordinate of the observable.

Helper function:
pyalps.loadIterations(files)

References

References

[1] B. Bauer, et al. (ALPS Collaboration), The ALPS
project release 2.0: open source software for strongly
correlated systems, J. Stat. Mech. 2011 (05) (2011)
P05001. doi:10.1088/1742-5468/2011/05/P05001.

[2] http://alps.comp-phys.org.
[3] S. R. White, Density matrix formulation for quantum

renormalization groups, Phys. Rev. Lett. 69 (19) (1992)
2863–2866. doi:10.1103/PhysRevLett.69.2863.

[4] S. Östlund, S. Rommer, Thermodynamic Limit of Den-
sity Matrix Renormalization, Phys. Rev. Lett. 75 (1995)
3537. doi:10.1103/PhysRevLett.75.3537.

[5] G. Vidal, Efficient simulation of one-dimensional quan-
tum many-body systems, Phys. Rev. Lett. 93 (4) (2004)
040502. doi:10.1103/PhysRevLett.93.040502.

[6] S. R. White, A. E. Feiguin, Real-time evolution using
the density matrix renormalization group, Phys. Rev.
Lett. 93 (7) (2004) 076401. doi:10.1103/PhysRevLett.
93.076401.

[7] A. J. Daley, C. Kollath, U. Schollwöck, G. Vidal, Time-
dependent density-matrix renormalization-group using
adaptive effective hilbert spaces, J. Stat. Mech.-Theory
E. 2004 (04) (2004) P04005. doi:10.1088/1742-5468/

2004/04/P04005.

12

http://dx.doi.org/10.1088/1742-5468/2011/05/P05001
http://alps.comp-phys.org
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.75.3537
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1103/PhysRevLett.93.076401
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005
http://dx.doi.org/10.1088/1742-5468/2004/04/P04005

Listing 1: Superconductor with Z2 symmetry.

<MODELS>
<SITEBASIS name=”spinless fermion”>

<QUANTUMNUMBER name=”P” min=”0” max=”1” type=”fermionic”/>
<OPERATOR name=”c” matrixelement=”1”>

<CHANGE quantumnumber=”P” change=”1”/>
</OPERATOR>
<!−− analogously define cdag −−>

</SITEBASIS>

<!−− define BASIS −−>
<!−− define bond operators −−>

<HAMILTONIAN name=”tsc”>
<BASIS ref=”spinless fermion”/>
<BONDTERM source=”i” target=”j”>
−t∗fermion hop(i,j) + D∗pairing(i,j)

</BONDTERM>
</HAMILTONIAN>

</MODELS>

[8] F. Verstraete, J. J. Garćıa-Ripoll, J. I. Cirac, Ma-
trix product density operators: Simulation of finite-
temperature and dissipative systems, Phys. Rev. Lett.
93 (2004) 207204. doi:10.1103/PhysRevLett.93.

207204.
[9] A. E. Feiguin, S. R. White, Finite-temperature den-

sity matrix renormalization using an enlarged hilbert
space, Phys. Rev. B 72 (2005) 220401. doi:10.1103/

PhysRevB.72.220401.
[10] M. Zwolak, G. Vidal, Mixed-state dynamics in

one-dimensional quantum lattice systems: A time-
dependent superoperator renormalization algorithm,
Phys. Rev. Lett. 93 (2004) 207205. doi:10.1103/

PhysRevLett.93.207205.
[11] T. Barthel, U. Schollwöck, S. R. White, Spectral func-

tions in one-dimensional quantum systems at finite
temperature using the density matrix renormalization
group, Phys. Rev. B 79 (2009) 245101. doi:10.1103/

PhysRevB.79.245101.
[12] I. Pizorn, V. Eisler, S. Andergassen, M. Troyer, Real

time evolution at finite temperatures with operator
space matrix product states, ArXiv e-prints arXiv:

1305.0504.
[13] E. Stoudenmire, S. R. White, Studying two-dimensional

systems with the density matrix renormalization group,
Ann. Rev. Cond. Mat. Phys. 3 (1) (2012) 111–128. doi:
10.1146/annurev-conmatphys-020911-125018.

[14] S. Liang, H. Pang, Approximate diagonalization us-
ing the density-matrix renormalization-group method:
A two-dimensional perspective, Phys. Rev. B 49 (13)
(1994) 9214. doi:10.1103/PhysRevB.49.9214.

[15] S. R. White, A. L. Chernyshev, Neél Order in
Square and Triangular Lattice Heisenberg Models,
Phys. Rev. Lett. 99 (12) (2007) 127004. doi:10.1103/

PhysRevLett.99.127004.
[16] S. Yan, D. A. Huse, S. R. White, Spin-liquid ground

state of the s = 1/2 kagome heisenberg antiferromagnet,
Science 332 (6034) (2011) 1173–1176. doi:10.1126/

science.1201080.

[17] B. Bauer, P. Corboz, A. M. Läuchli, L. Messio, K. Penc,
M. Troyer, F. Mila, Three-sublattice order in the su(3)
heisenberg model on the square and triangular lat-
tice, Phys. Rev. B 85 (2012) 125116. doi:10.1103/

PhysRevB.85.125116.
[18] S. Depenbrock, I. P. McCulloch, U. Schollwöck, Nature

of the spin-liquid ground state of the s = 1/2 heisen-
berg model on the kagome lattice, Phys. Rev. Lett. 109
(2012) 067201. doi:10.1103/PhysRevLett.109.067201.

[19] H.-C. Jiang, Z. Wang, L. Balents, Identifying topolog-
ical order by entanglement entropy, Nat Phys 8 (12)
(2012) 902–905. doi:10.1038/nphys2465.

[20] B. Bauer, L. Cincio, B. P. Keller, M. Dolfi, G. Vidal,
S. Trebst, A. W. W. Ludwig, Chiral spin liquid and
emergent anyons in a Kagome lattice Mott insulator,
ArXiv e-prints arXiv:1401.3017.

[21] a. Albuquerque, F. Alet, P. Corboz, P. Dayal,
a. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gurtler,
a. Honecker, The ALPS project release 1.3: Open-
source software for strongly correlated systems, J.
Magn. Magn. Mater. 310 (2) (2007) 1187–1193. doi:

10.1016/j.jmmm.2006.10.304.
[22] http://www.hp2c.ch.
[23] B. Bauer, L. Huijse, E. Berg, M. Troyer, K. Schoutens,

Supersymmetric multicritical point in a model of lattice
fermions, Phys. Rev. B 87 (2013) 165145. doi:10.1103/
PhysRevB.87.165145.

[24] M. Cheng, M. Becker, B. Bauer, R. M. Lutchyn, In-
terplay between Kondo and Majorana interactions in
quantum dots, ArXiv e-prints arXiv:1308.4156.

[25] H. Shinaoka, M. Dolfi, M. Troyer, P. Werner, Hybridiza-
tion expansion monte carlo simulation of multi-orbital
quantum impurity problems: matrix product formal-
ism and improved sampling, J. Stat. Mech.-Theory
E. 2014 (6) (2014) P06012. doi:10.1088/1742-5468/

2014/06/P06012.
[26] M. Dolfi, B. Bauer, M. Troyer, Z. Ristivojevic,

Multigrid algorithms for tensor network states, Phys.

13

http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevLett.93.207204
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevB.72.220401
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevLett.93.207205
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://dx.doi.org/10.1103/PhysRevB.79.245101
http://arxiv.org/abs/1305.0504
http://arxiv.org/abs/1305.0504
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125018
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125018
http://dx.doi.org/10.1103/PhysRevB.49.9214
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1103/PhysRevB.85.125116
http://dx.doi.org/10.1103/PhysRevB.85.125116
http://dx.doi.org/10.1103/PhysRevLett.109.067201
http://dx.doi.org/10.1038/nphys2465
http://arxiv.org/abs/1401.3017
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://dx.doi.org/10.1016/j.jmmm.2006.10.304
http://www.hp2c.ch
http://dx.doi.org/10.1103/PhysRevB.87.165145
http://dx.doi.org/10.1103/PhysRevB.87.165145
http://arxiv.org/abs/1308.4156
http://dx.doi.org/10.1088/1742-5468/2014/06/P06012
http://dx.doi.org/10.1088/1742-5468/2014/06/P06012

Rev. Lett. 109 (2) (2012) 020604. doi:10.1103/

PhysRevLett.109.020604.
[27] ITensor, http://itensor.org.
[28] Open Source MPS, http://sourceforge.net/

projects/openmps.
[29] G. Alvarez, The density matrix renormalization group

for strongly correlated electron systems: A generic im-
plementation, Comput. Phys. Commun. 180 (9) (2009)
1572 – 1578. doi:10.1016/j.cpc.2009.02.016.

[30] BLOCK, http://www.princeton.edu/chemistry/

chan/software/dmrg.
[31] S. Wouters, W. Poelmans, P. W. Ayers, D. Van Neck,

CheMPS2: A free open-source spin-adapted implemen-
tation of the density matrix renormalization group for
ab initio quantum chemistry, Comput. Phys. Commun.
185 (6) (2014) 1501–1514. doi:10.1016/j.cpc.2014.

01.019.
[32] U. Schollwöck, The density-matrix renormalization

group in the age of matrix product states, Ann. Phys.
(N.Y.) 326 (1) (2011) 96–192. doi:10.1016/j.aop.

2010.09.012.
[33] M. B. Hastings, An area law for one-dimensional quan-

tum systems, J. Stat. Mech.-Theory E. 2007 (08) (2007)
P08024. doi:10.1088/1742-5468/2007/08/P08024.

[34] N. Schuch, M. M. Wolf, F. Verstraete, J. I. Cirac,
Entropy Scaling and Simulability by Matrix Product
States, Phys. Rev. Lett. 100 (3) (2008) 030504. doi:

10.1103/PhysRevLett.100.030504.
[35] F. Verstraete, J. I. Cirac, Matrix product states rep-

resent ground states faithfully, Phys. Rev. B 73 (2006)
094423. doi:10.1103/PhysRevB.73.094423.

[36] J. Eisert, M. Cramer, M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82
(2010) 277–306. doi:10.1103/RevModPhys.82.277.

[37] G. M. Crosswhite, D. Bacon, Finite automata for
caching in matrix product algorithms, Phys. Rev. A 78
(2008) 012356. doi:10.1103/PhysRevA.78.012356.

[38] P. Jordan, E. Wigner, Über das Paulische
Äquivalenzverbot, Z. Phys. 47 (9-10) (1928) 631–
651. doi:10.1007/BF01331938.

[39] S. R. White, Density matrix renormalization group al-
gorithms with a single center site, Phys. Rev. B 72
(2005) 180403. doi:10.1103/PhysRevB.72.180403.

[40] I. P. McCulloch, From density-matrix renormalization
group to matrix product states, J. Stat. Mech.-Theory
E. 2007 (10) (2007) P10014. doi:10.1088/1742-5468/

2007/10/P10014.
[41] G. Vidal, Efficient classical simulation of slightly entan-

gled quantum computations, Phys. Rev. Lett. 91 (14)
(2003) 147902. doi:10.1103/PhysRevLett.91.147902.

[42] H. F. Trotter, On the product of semi-groups of op-
erators, Proc. Amer. Math. Soc. 10 (1959) 545. doi:

10.1090/S0002-9939-1959-0108732-6.
[43] M. Suzuki, Generalized trotter’s formula and system-

atic approximants of exponential operators and inner
derivations with applications to many-body problems,
Commun. Math. Phys. 51 (2) (1976) 183–190. doi:

10.1007/BF01609348.
[44] B. Bauer, P. Corboz, R. Orús, M. Troyer, Implementing

global abelian symmetries in projected entangled-pair
state algorithms, Phys. Rev. B 83 (2011) 125106. doi:

10.1103/PhysRevB.83.125106.
[45] C. T. Silva, J. Freire, S. P. Callahan, Provenance for

visualizations: Reproducibility and beyond, Comput.

Sci. Eng. 9 (5) (2007) 82–89. doi:10.1109/MCSE.2007.

106.
[46] http://vistrails.org.
[47] R. Noack, S. White, D. Scalapino, The ground state of

the two-leg hubbard ladder a density-matrix renormal-
ization group study, Physica C 270 (3–4) (1996) 281 –
296. doi:10.1016/S0921-4534(96)00515-1.

[48] A. Luther, V. Emery, Backward scattering in the one-
dimensional electron gas, Phys. Rev. Lett. 33 (10)
(1974) 589–592, cited By (since 1996)247. doi:10.1103/
PhysRevLett.33.589.

[49] T. Antal, Z. Rácz, A. Rákos, G. M. Schütz, Transport
in the xx chain at zero temperature: Emergence of flat
magnetization profiles, Phys. Rev. E 59 (1999) 4912–
4918. doi:10.1103/PhysRevE.59.4912.

[50] A. Y. Kitaev, Unpaired majorana fermions in quantum
wires, Physics-Uspekhi 44 (10S) (2001) 131. doi:10.

1070/1063-7869/44/10S/S29.

14

http://dx.doi.org/10.1103/PhysRevLett.109.020604
http://dx.doi.org/10.1103/PhysRevLett.109.020604
http://itensor.org
http://sourceforge.net/projects/openmps
http://sourceforge.net/projects/openmps
http://dx.doi.org/10.1016/j.cpc.2009.02.016
http://www.princeton.edu/chemistry/chan/software/dmrg
http://www.princeton.edu/chemistry/chan/software/dmrg
http://dx.doi.org/10.1016/j.cpc.2014.01.019
http://dx.doi.org/10.1016/j.cpc.2014.01.019
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/PhysRevA.78.012356
http://dx.doi.org/10.1007/BF01331938
http://dx.doi.org/10.1103/PhysRevB.72.180403
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1090/S0002-9939-1959-0108732-6
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.1007/BF01609348
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1103/PhysRevB.83.125106
http://dx.doi.org/10.1109/MCSE.2007.106
http://dx.doi.org/10.1109/MCSE.2007.106
http://vistrails.org
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1103/PhysRevLett.33.589
http://dx.doi.org/10.1103/PhysRevLett.33.589
http://dx.doi.org/10.1103/PhysRevE.59.4912
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29

Table 2: Common simulation parameters

Parameter Default Description

MAXSTATES Maximum size of the matrices Mσi

TRUNCATION 1e-8 Smallest singular value to be kept
seed 42 Seed of the internal random number generator
CONSERVED QUANTUMNUMBERS Comma-separated list of the quantum numbers to be con-

served
QN total Total value of the quantum number QN. QN is one

of the quantum numbers defined in the parameter
CONSERVED QUANTUMNUMBERS. Example: N total = 8 fixes
the total number of particles to 8.

initfile Path to an existing checkpoint MPS to use it as initial
MPS

init state default Initial state of the simulation (in case initfile is not set).
Possible values: ‘default’, ‘thin’, ‘local quantumnumbers’.

initial local QN Comma-separated list with the value of the local quantum
number QN at every site

MEASURE LOCAL[NAME] Defines a new local measurement called NAME. Its
value specifies the operator to be measured. Example:
MEASURE LOCAL[Local density] = "n"

MEASURE AVERAGE[NAME] Defines a new average measurement called NAME. Its
value specifies the operator to be measured. Example:
MEASURE AVERAGE[Density] = "n"

MEASURE CORRELATIONS[NAME] Defines a new correlation measurement called NAME.
Its value specifies the operators to be correlated sepa-
rated by ”:” (colon) If the operators define two or more
BONDOPERATORS, e.g., Op_A and Op_B the correlation mea-
surement compute all observables 〈ψ| OpA(i, i+1) OpB(j, j+
1) |ψ〉. Example: MEASURE CORRELATIONS[Onebody

Density Matrix] = "bdag:b"

MEASURE HALF CORRELATIONS[NAME] Same as MEASURE CORRELATIONS but it does not exchange
the order of operators. If the input is, e.g., bdag:b, the
first operator will be evaluated at all locatios i ∈ [0, L− 2]
but the second operator only at locations j ∈ [i, L− 1].

MEASURE LOCAL AT[NAME] Syntax for the value: "op 1:...:op n | (i1 1, . . . , i1n),
(i2 1, . . . , i2n), ...". Defines a new measurement called
NAME where the sequence of operators op 1:...:op n is
applied to all tuples of indices (of length n like the number
of operators) listed after the vertical bar symbol ”—”.

MEASURE[EnergyVariance] False Measure the energy variance
MEASURE[Entropy] False Measure the von Neumann entropy
MEASURE[Renyi2] False Measure n = 2 Renyi entropy
ALWAYS MEASURE Comma-separated list of measurements to evaluate at the

end of every sweep
COMPLEX False Use complex numbers. For time evolution simulations the

default value is changed to True.
storagedir Path to the directory to be used for temporary storage. If

empty, temporary storage is disabled.

15

Table 3: Additional parameters for ‘mps optim’

Parameter Default Description

SWEEPS Number of sweeps
NUMBER EIGENVALUES 1 Number of eigenstate to target
optimization twosite Optimisation algorithm. Possible values are ‘single-

site’, ‘twosite’.
ngrowsweeps Single site only. Number of initial sweeps where the

correction factor has the value alpha initial.
nmainsweeps Single site only. Number of sweeps after ngrowsweeps

where the correction factor has the value alpha main.
alpha initial 1e-2 Correction factor for single site optimization [39] in

the initial part
alpha main 1e-4 Correction factor for single site optimization [39] in

the main part
alpha final 1e-8 Correction factor for single site optimization [39] in

the final part
ietl jcd toll 1e-8 Convergence tolerance of the Jacobi-Davidson solver
ietl jcd gmres 0 Convergence tolerance of the Jacobi-Davidson solver
ietl jcd maxiter 8 Maximum number of iterations in the Jacobi-Davidson

solver

Table 4: Additional parameters for ’mps evolve’

Parameter Default Description

DT Time step
IMG TIMESTEPS 0 Number of imaginary time sweeps to perform before

the proceeding with the real time evolution
TIMESTEPS Total number of sweeps
te order fourth Order of the trotter decomposition. Possible values:

‘second’, ‘fourth’.
te type nearest neighbors Type of time evolution algorithm. Possible values:

‘nearest neighbors’, ‘mpo’.
chkp each 1 A checkpoint is created every chkp each time steps.
measure each 1 Measurements are performed every measure each

time steps.
update each -1 Update the Hamiltonian parameters every

update each time steps. Used while quenching
Hamiltonian parameters. A negative value will never
change the Hamiltonian.

P [Time] Values assigned to the parameter P at each time step

16

	1 Introduction
	2 Algorithms and implementation
	2.1 Representation of Matrix Product Operators
	2.1.1 Fermionic operators

	2.2 Variational optimization of the MPS
	2.2.1 Excited states

	2.3 Time evolution
	2.4 Efficient tensor storage with abelian symmetries
	2.5 Parallelization

	3 Codes and examples
	3.1 Input parameters
	3.1.1 Initial states
	3.1.2 Temporary memory

	3.2 Example 1: Itinerant fermions in the Hubbard ladder
	3.3 Example 2: Evolution of a domain wall

	4 Acknowledgments
	Appendix A Algorithms for time evolution
	Appendix A.1 Higher order Suzuki-Trotter decomposition
	Appendix A.2 Exponential of fermionic bond terms

	Appendix B Extensions for Z2 symmetry
	Appendix C HDF5 schema

