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Abstract

Particle tracking velocimetry in 3D is becoming an increasingly important imag-
ing tool in the study of fluid dynamics and combustion as well as plasmas. We
introduce a dynamic discrete tomography algorithm for reconstructing particle tra-
jectories from projections. The algorithm is efficient for data from two projection
directions and exact in the sense that it finds a solution consistent with the exper-
imental data. Non-uniqueness of solutions can be detected and solutions can be
tracked individually.

Keywords: PTV, particle tracking velocimetry, 3D PTV, discrete tomography

1. Introduction

Particle tracking velocimetry (PTV) is a diagnostic technique that plays an
important role in studying flows [1, 2, 3, 4, 5, 6, 7, 8] including combustion [9,
10, 11, 12, 13, 14, 15, 16]. It has also been used to study plasma [17, 18, 19,
20, 21, 22, 23, 24]. In PTV the motion of particles is followed in a sequence of
images to measure their instantaneous velocities. In complex plasmas the particles
themselves are the subject of interest [25, 26, 27, 28, 29] whereas in fluids the
particle velocities are nearly the same as the local flow velocities which can hence
be studied by PTV.

PTV is similar to the related particle image velocimetry (PIV) [2]. PTV tracks
the motion of individual particles whereas PIV tracks the motion of groups of
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particles statistically. In PTV measurements the concentration of tracer particles
is therefore significantly lower than in PIV measurements. In traditional two-
dimensional PTV or PIV measurements, the flow field is illuminated by a thin
laser sheet. Light is scattered from the tracer particles in this laser sheet and im-
aged on a CCD camera. From a series of images we can then obtain 2D flow
velocities in the plane of the laser sheet [30, 31]. In stereo PIV measurements
the laser sheet is observed with two cameras, and velocities in the plane of the
laser sheet can be obtained [32]. PIV techniques have been extended to volu-
metric 3D measurement by scanning planar PIV [33], holographic PIV [34], and
tomographic PIV [35]. We study the 3D PTV mode of operation in which individ-
ual particles are tracked to obtain 3D velocity vectors in a measurement volume
[33, 36, 37, 38]. The particles either scatter light from a volumetric illumination
of the measurement volume or they glow by themselves as often in plasma. 3D
PTV [38] is advantageous if the density of particles is intrinsically low or has to
be limited.

Current tomographic particle tracking methods are based on the multiplicative
algebraic reconstruction technique (MART) [39] and its variants [36, 40]. These
are methods for reconstructing the distribution of multiple-pixel sized particles
modeled as graylevel images. The graylevel can take any value and is a continu-
ous quantity. The subsequent binarization is usually performed by comparison of
the graylevel to a threshold. This procedure is not guaranteed to yield solutions
that are consistent with the data. In contrast, our algorithm returns binary solu-
tions that are consistent with the data as this is explicitly included as a constraint in
the imaging model. Information from previously reconstructed frames is incorpo-
rated in the reconstruction procedure that is formulated as a discrete optimization
problem. To our knowledge, discrete optimization methods have not previously
been applied in PTV.

Existing PTV algorithms (such as [41, 42, 43]) rely on the following assump-
tions: (a) Applied reconstruction routines are computationally efficient; (b) The
reconstructions are stable, i.e., reconstruction errors are small whenever measure-
ment errors are small; and (c) The reconstructions are uniquely determined by the
data. The algorithms are therefore generally not able to deal with ambiguities in
the reconstruction and typically require heuristic knowledge for particle tracking.
Many PTV algorithms, including the one presented in this paper, utilize informa-
tion from previously reconstructed frames [44, 45, 46, 47].

Here we discuss efficiency, stability, and uniqueness of the trajectory recon-
structions in 3D PTV by relating them to results from the mathematical field of
discrete tomography, which has originally been developed for reconstructing crys-
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talline objects from high-resolution transmission electron microscopy (HRTEM)
data [48]; see also [49, 50, 51]. Discrete tomography is preferred over con-
ventional computer tomography (CT) in such tasks, because CT algorithms are,
firstly, not well-suitable for reconstructing distributions of pixel-sized objects and,
secondly, well-known to generate severe artefacts in cases where projection data
is available only from a few directions.

We introduce a dynamic discrete tomography algorithm for 3D PTV, which
can efficiently reconstruct trajectories of pixel-size objects from projection data
acquired from two directions. The projections are assumed to be acquired along
lines, i.e., two 1D detectors are required for particles that are confined to a plane
(which could be also called 2D PTV) whereas two 2D detectors are required for
particle tracking in 3D. Performing reconstructions from only a few projections
can be important in experimental set-ups with limited optical access. For example,
in machines for studying high-temperature plasmas the available space for diag-
nostics is usually very limited and possibilities of reducing the amount of in-vessel
equipment are beneficial [23, 24, 52, 53].

Another potential application of the 3D PTV algorithm is a recent experiment
on a gliding arc [54, 55]. A gliding arc is a thin string-like plasma column that
is suspended between two electrodes while it is convected in a turbulent free jet
[56, 57, 58]. The gliding arc can be used in surface treatment (adhesion) [59],
bacterial inactivation [60], and many other applications. It has been found by
PTV [58] and by measurements with a Pitot tube [57] that the jet flow is about 10-
20% faster than the plasma column. Spatial resolution of the slip velocity (i.e., the
velocity of the jet flow measured relatively to the velocity of the plasma column)
is not available in the literature as the seeding density of particles was too low. In
the gliding arc experiment the density of seed particles should not be too high as
the plasma column might otherwise be disturbed. Further, to study the gliding arc,
images at a frame rate of 420 kHz and a resolution of 64× 128 pixels have been
used [54]. The pixel resolution was this low for the benefit of the high frame rate.

We introduce our imaging model in Sect. 2, present our dynamic discrete to-
mography algorithm for 3D PTV in Sect. 3, and discuss stability and uniqueness of
the solutions in Sect. 4. Performance of the algorithm is demonstrated in Sect. 5,
followed by the conclusions in Sect. 6.

2. Imaging Model

We assume that one-dimensional projections of the particles are acquired from
at least two projection directions (i.e., projections, either in 2D or 3D, are acquired

3
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along lines from at least two directions). The number of projection directions is
henceforth denoted by m. In 3D PTV applications, a projection can be under-
stood as a mapping from 3D space to 2D space, i.e. from real space to a photo
image. Similarly, an analogous mapping from 2D space to 1D space can be con-
sidered if the sample is confined to a plane. The projection can be represented by
binary-valued functions where 1 represents detection of a particle and 0 represents
non-detection. We remark that this differs from PIV and computerized tomogra-
phy cases in which intensities are measured that can take any value and that are
therefore continuous quantities. In PTV applications, however, it is challenging to
relate the detected brightness level to the number of particles lying on the corre-
sponding projecting lines. The binary-valued data, on the other hand, are readily
available.

A parallel beam geometry as indicated in some of the figures is not essential
in our case. For m projection directions, m projecting lines pass through every
particle. The intersections of these projecting lines for every projection direction
are called candidate points. The set of candidate points is the so-called (candi-
date) grid; it contains the set of all particle positions and typically many additional
points that are all other intersections of these projecting lines. We assume through-
out the paper that we have n particles. Hence we have at most n projecting lines for
each projection direction, and thus the number of grid points in the corresponding
2D grid does not exceed n2. However, the grid can differ in different time steps
since multiple particles might be lying on a projecting line. Also note that the grid
can be computed efficiently from the data by computing the intersection points of
the corresponding projecting lines.

We consider now the reconstruction problem at time t. To each point g(t)
i of the

candidate grid G(t) containing l(t) points we associate a variable ξ (t)
i . Presence or

absence of a particle at g(t)
i is indicated by the value ξ (t)

i = 1 and ξ (t)
i = 0, respec-

tively; see also Fig. 1. The requirement that any solution~x(t) := (ξ (t)
1

, . . . ,ξ (t)
l(t)

)T ∈
{0,1}l(t) obtained by a reconstruction algorithm should be consistent with the pro-
jection data can be described by a 0-1-system of linear inequalities:

A(t)~x(t) ≥~b(t), ~x(t) ∈ {0,1}l(t), (1)

where~b(t) := (1, . . . ,1)T ∈ {1}k(t) represents the data; k(t) denotes the total num-
ber of measurements, and A(t) ∈ {0,1}k(t)×l(t) collects the individual variables’
contributions to the signal as specified by the acquisition geometry (for the top
horizontal line in Fig. 1, for instance, we would have ξ (t)

1 +ξ (t)
2 +ξ (t)

3 ≥ 1). Note

4
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Figure 1: A two-dimensional example for three projection directions (signal-recording lines in-
dicated by dashed lines). (a) The grid G(t), and (b) a possible solution~x(t) representing a set of
particles that are consistent with the projections (black and white dots corresponding to ξ (t)

i = 1

and ξ (t)
4 = 0, respectively).

that we distinguish in our notation between variables~x(t) and particular solutions
~x(t).

If no projecting line contains two particles, we can reformulate (1) as

A(t)~x(t) =~b(t), ~x(t) ∈ {0,1}l(t). (2)

Integer vectors~b(t) with entries greater than 1 are also possible in this framework
if the brightness level can be related to the number of particles on projecting lines.
We restrict our exposition, however, to the model presented in (1).

For the tracking problem, we need to solve (1) for subsequent time steps and
need to be able to match the particles from ~x(t−1) to the particles from the ~x(t)

solution.

3. A dynamic discrete tomography algorithm for PTV

We introduce a discrete tomography method, which is exact in the sense that
it is guaranteed to yield a solution that matches the data. This method is dynamic
since the algorithm uses the solution from the previous time step. Non-uniqueness
of solutions can be detected via this method, and all solutions can be tracked in-
dividually if their number remains small. The method is hence capable of dealing

5
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with data insufficiency leading to ghost particles, which constitute spurious so-
lutions that are not the real solution but are consistent with the recorded data.
Elimination of ghost particles can often be performed at a later stage based on
physical arguments. Knowledge of the initial particle positions is not required,
but any knowledge of a particle position during the tracking (possibly by rely-
ing on additional measurements) can potentially reduce the number of alternative
reconstructions to be followed.

Let ~w(t) = (ω(t−1,t)
1 , . . . ,ω(t−1,t)

l(t) )T ∈ Rl(t)
+ denote a vector specifying weights

associated to each grid point (possible choices are discussed below). We introduce
the following discrete optimization problem for the tracking step from t−1→ t:

minimize ~w(t) •~x(t),

subject to A(t)~x(t) ≥~b(t), (3)

~x(t) ∈ {0,1}l(t),

where ~w(t) •~x(t) denotes the scalar product between ~w(t) and~x(t). This is a rolling
horizon approach; a full horizon approach is also possible and can potentially
reduce further ambiguities.

One possible choice for ~w(t) is

ω(t−1,t)
i := min

j:ξ (t−1)
j =1

{dist(g(t)
i ,g(t−1)

j )}, (4)

with dist(g(t)
i ,g(t−1)

j ) denoting the distance (possibly but not necessarily Euclidean)

between the two grid points g(t)
i and g(t−1)

j . Note that ξ (t−1)
j = 1 indicates that a

particle is located at grid point g(t−1)
j . The algorithm thus prefers to fill candi-

date points that are (in some sense depending on dist) close to particles from the
previous time step. If the initial distribution of particles is unknown, we can set
~w(0) :=~0 thereby giving no preference to any position. Alternative solutions can
be found as described later.

The Euclidean distance function is a suitable choice for slowly moving parti-
cles, i.e.,

dist(g(t)
i ,g(t−1)

j ) := ||g(t)
i −g(t−1)

j ||2,
where the concept of slow motion has to be understood relative to the frame rate.
Using modern high-speed cameras with frame rates of MHz, such a choice of the
weighting function can be relevant to a large number of fluid dynamics experi-
ments.

6
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The momentum information can also be incorporated into the weights. If the
particles, for instance, are known to move with a certain velocity, then a possible
choice would be

dist(g(t)
i ,g(t−1)

j ) :=





c1, for r1 > ||g(t)
i −g(t−1)

j ||2,
c2, for r1 ≤ ||g(t)

i −g(t−1)
j ||2 ≤ r2,

c3, for r2 < ||g(t)
i −g(t−1)

j ||2,
(5)

where r1, r2, c1, c2, c3 are prescribed non-negative numbers with c2 < min{c1,c3}.
A particle at g(t−1)

j thus most likely moves a distance between r1 and r2; no dis-
placement direction is preferred in this example. The distance r1 can also be set
to zero, which implies that the particle moves most likely a distance smaller than
r2 in any direction. This particular case could be a model for the random walk of
a particle in a turbulent flow. Knowledge about displacement direction ranges can
also be incorporated.

It should be noted, however, that in case of multiple solutions to (1) it may
happen that optimal solutions to (4) contain ghost particles. Nevertheless, non-
uniqueness can be detected in this framework. The solution~x(t) is non-unique if
and only if the minimal value of~x(t) •~y(t) of the following optimization problem
is smaller than the number of particles n:

minimize ~x(t) •~y(t),

subject to A(t)~y(t) ≥~b(t), (6)

~y(t) ∈ {0,1}l(t),

This is the same type of optimization problem as in (3), now with~y(t) representing
the variables leading to another possible reconstruction.

Moreover, we can check whether there exist solutions that avoid prescribed
sets G′ ⊆ G(t) of candidate positions. The problem

minimize ~w•~y(t),

subject to A(t)~y(t) ≥~b(t),

~y(t) ∈ {0,1}l(t)

with ~w =
(
ω1, . . . ,ωl(t)

)
and

ωi =

{
1, for g(t)

i ∈ G′,
0, otherwise,

7
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has objective function value zero if and only if there is a solution avoiding G′.
Note that combinations with (4) are also possible.

The discrete optimization problem in (3) can be solved efficiently (i.e., in poly-
nomial time rather than in exponential time) for data taken from two projection
directions [49, Chapter 2]. By (6) it is in this case thus also possible to determine
in polynomial time whether the solution is unique. The ambiguity causing struc-
tures (so-called switching components) are well understood [61], [49, Chapter 3]).
In fact, if the number of solutions for each frame is bounded by some constant C,
then it is possible to determine all solutions in the two projection direction case
for a given frame in O(Cn4) time [62] (the running times of naive approaches are
exponential in n).

A worst-case performance of O(n3 log(nmaxi{ω(t−1,t)
i })) for solving (3) with

m = 2 is guaranteed by the cost scaling algorithm [63]. Also by the simplex
method [64] it is possible to find so-called vertex solutions~x(t) of the linear pro-
gram

minimize ~w(t) •~x(t),

subject to A(t)~x(t) ≥~b(t),

0≤ ξ (t)
i ≤ 1, i = 1, . . . , l(t).

For two projection directions, due to the structure of A(t), it is guaranteed that a
vertex solution~x(t) is binary and thus solves (3). Popular and well-known linear
(and integer linear) programming solvers include CPLEX and Xpress. See [65]
for a list of both commercial and non-commercial solvers.

The situation for m ≥ 3 is different. It can be shown that solving the discrete
optimization problem (3) for m ≥ 3 projection directions is at least as hard as
finding solutions to the notoriously hard traveling salesman problem [66]. The
problems are said to be NP-hard (for a general overview see [67]). Note that
NP-hardness is a problem-related property; any PTV method that attempts to re-
construct particles from m ≥ 3 projection directions is affected by this. Small
problem instances, however, can in practice be solved via integer linear program-
ming. Approximation algorithms and guarantees are discussed in [68]; for the
detailed mathematical analysis of PTV problems in the discrete tomography con-
text see [62].

4. Uniqueness and Stability

It cannot be expected in general that the projections determine solutions uniquely.
In fact, for any finite number of projections there is the possibility of non-uniqueness.

8
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This is indicated in Fig. 2 for m ∈ {2,3} and can be demonstrated for any m≥ 2;
see [49, Chapter 3 and 4]. It should be noted that these examples with few pro-
jection directions fit into small bounding boxes, i.e., non-uniqueness can appear
in many PTV applications even if the sample volume is rather confined.

(a) (b)

Figure 2: Non-unique reconstructions from (a) two and (b) three projection directions. Black and
white circles denote two possible solutions with identical projection data; projection directions are
indicated by arrows. Similar examples exist for any prescribed set of projection directions.

Prior information in PTV is often of the form that particle movement be-
tween frames is assumed to be restricted. Our example in Fig. 3 shows that
non-uniqueness can occur even in this case. The top row of Fig. 3 shows two
particles moving into opposite directions; projections are taken along horizontal
and vertical directions; the vertical distance between the two particles can be arbi-
trarily large. The second row shows a different particle movement (i.e., a second
solution) that satisfies the same projection data and the same maximum particle
displacement as in the top row. (More involved and physically realistic examples
are given later.) This also shows that the possibility of non-uniqueness at only two
consecutive frames at times t1 and t2 (even if initial conditions at t0 are known),
can lead to the tracking of ghost particles, which, over time, may lead to the recon-
struction of completely different particle tracks. Note that no second solution in
the respective row at t3 is possible by our assumption of restricted particle move-
ment between frames. The example extends to cases with m > 2 as switching
components exist also in these cases (see, e.g., [49, Chapter 4]).

The upshot of our discussion is that it can be desirable to have an algorithm at
hand that can generate all solutions, such as presented in Sect. 3. Not only phys-
ical assumptions can be verified or falsified in this way, the algorithm can also
form the basis for a subsequent solution elimination step based on more sophis-
ticated types of prior information (as, for instance, employed in [69]). Individual
tracking of non-unique solutions may be implemented within a parallel computing

9
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t0 t1 t2 t3

t0 t1 t2 t3

Figure 3: An example illustrating that PTV may track particle paths that do not exist but which
are consistent with the data.

architecture.
We conclude this section by summarizing several results from the field of dis-

crete tomography that can be applied to PTV reconstructions. The results are
sharp in the sense that there are non-unique solutions if the premisses of the re-
sults are weakened.

A classic result due to Rényi [70] and its generalization due to Heppes [71],
for instance, guarantees uniqueness from m = n + 1 projections if the number of
particles is at most n.

A result independent of n but depending on the grid size, guarantees unique-
ness if some of the angles between the projection directions are small [62]. Unique
reconstructions of particles in a 512× 512 grid spanned by two orthogonal pro-
jection directions, for instance, are guaranteed if the angle between a third and the
first projection direction is at most 0.112 degrees.

Particle configurations with geometric structure, in particular convex sets of
particles, can be uniquely reconstructed from a small number of projections [72].
Other results can be found in [73]; for further references, see [49, Chapter 4].

Reconstruction tasks in discrete tomography can potentially be highly unsta-
ble in the following sense. For any set of m ≥ 3 prescribed projection directions
we can find two sets of arbitrarily large cardinality with the following properties:

10
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(i) the sets are uniquely determined by their projections, (ii) the projections differ
on only 2(m−1) projecting lines, and (iii) the sets are disjoint [74]. An error on
four projecting lines can thus already lead to disjoint reconstructions in the case of
m = 3 projection directions. Stability results are available [75] for projection dif-
ferences smaller than 2(m−1) and in much weaker form for uniquely determined
sets from m = 2 projection directions [76, 77]. Stability thus depends strongly on
the particular reconstruction scenario; generally it is advisable to incorporate prior
knowledge into the reconstruction process (see discussion in Sect. 3).

5. Test tracking

We test the algorithm presented in Sect. 3, and especially its capability to de-
tect and track non-unique solutions, on two test cases based on synthetic data. Test
Case I shows the ability to track non-unique solutions. Test Case II demonstrates
the ability of dealing with 3D motion of particles and shows that the change of
dimensionality does not influence the efficiency of the algorithm. This is only
meant as an initial proof-of-concept. Extended practical tests based on physical
measurements are currently in preparation.

5.1. Test Case I

The 2D data for Test Case I was generated by Vedenyov’s 2D gas simulation
MATLAB package [78]. Six particles (with integer coordinates) were placed into
a 70×70 pixel grid representing the sample area. Motion of the particles, which
resembles diffusion in two dimensions, was followed over 50 frames. The average
particle displacement between consecutive frames was 1 pixel.

For solving (3) we chose ~w(t) as in (4) and the distance function as in (5) with
r1 =

√
2, r2 = 2

√
2, c1 = 1, c2 = 2, and c3 = 60. Preference is thus given to inter-

frame motion within a radius of r1. Projections were taken from two directions,
along lines parallel to the x-axis and y-axis, respectively.

Fig. 4 shows the tracking results from two different viewing angles with the
t-axis extending into the third dimension. The real particle paths are colored, and
the algorithm finds the real particle paths from the projections. It also finds al-
ternative particle paths (ghost particles), and these deviating particle tracks are
colored black and show the non-uniqueness of the problem. (In other situations,
the ghost particles may be the real particles, and vice versa.) The first deviations
appear in Frame 16 for Particle 1 and 5. Deviations in the reconstruction of Parti-
cle 3 and 6 can also be seen. As explained in Sect. 4, these deviations occur since
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two particles cross a common projecting line; see Fig. 3 and the zoomed part of
Fig. 4. The average deviation per particle remains here below 4 pixels.

20
40
60

20 40 60

10

20

30

40

y
x

t

(a) (b)

Figure 4: Tracking of 6 particles in 2D over 50 frames; results are shown from two viewing angles.
Original particle paths are colored according to the color scheme shown in (b). Reconstructions
deviating from the original are depicted in black color. Particle movement was in two dimensions.
The zoomed part shows the deviations of the tracks for Particle 3 and 6 as explained in connection
with Fig. 3.

5.2. Test Case II

For 3D tracking with heterogeneous particle densities, we observed 500 parti-
cles in a 640× 640× 480 measurement volume and calculated the photo images
that would be recorded by two perpendicularly viewing cameras with standard
VGA resolution of 640×480; the imaging planes were the (x,z) and (y,z)-plane,
respectively. We simulated a velocity field with a radial component orthogonal
to a line ` and proportional to 1/r, where r is the distance to the line ` that acts
as a repellor. The line ` is obtained by rotating the line parallel to the z-axis that
passes through the center of the volume by 45 degrees around the x-axis. The ve-
locity field also had an axial component along ` such that the velocity magnitude
is constant; the z = 240 plane rotated by 45 degrees around the x-axis serves as
an attractor. The local particle density in the volume is heterogenous; a higher
concentration of particles is found in the vincinity of `. The average particle
displacement between frames was 7.2 pixels. Whenever new particles enter the
measurement volume, we assume that their positions are known for that particu-
lar (but no subsequent) frame. This is a rather mild restriction reflecting the fact
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that the particle density outside the measurement volume is small (the solution in
Frame 1, for instance, is unique).

For solving (3) we chose ~w(t) as in (4) and the distance function as in (5) with
r1 = 6, r2 = 8, c1 = 1, c2 = 1, and c3 = 9. Preference is thus given to inter-frame
motion within a radius of r2.

We determined the number of different solutions for the reconstruction prob-
lem A(t)~x(t) ≥~b(t), ~x(t) ∈ {0,1}l(t) at each time step (see Sect. 3); the numbers
range from 1 in the first frame to 4.1 ·1062 in the last frame.

The reconstructed velocity field is shown in Fig. 5. Despite of the large num-
ber of ambiguities for most frames, we reconstructed more than 98% of the correct
particle positions (and hence 98% of the correct velocity field). This is possible,
because the objective function in (3) gives preference to solutions that are consis-
tent with our physical assumptions on the particle velocities (modeled via ~w(t)).

5.3. Camera Model

For our simulations we assumed a camera model for which the candidate grid
was precisely determined for each frame. In Test Case II the particle positions
were simulated in real coordinates; the measurements were discretized to detector
resolution.

In real experiments, one might need to compensate for de-focusing, imperfec-
tions in the alignment, and several other effects. The projecting lines can become
cones, and the opening angle may need to be estimated on an empirical basis.
Large opening angles may increase the number of ghost particles. For specific
ghost particle removal techniques see [44, 45, 46, 47, 79].

6. Conclusions

Based on dynamic discrete tomography, we introduced an algorithm for 3D
particle tracking velocimetry diagnostics and demonstrated its efficiency for bi-
nary projection data acquired from two projection directions.

By using more projection directions, we can reduce the ambiguity in the so-
lutions. This typically entails, however, that the computation time increases dras-
tically. Exact reconstructions from two views can be particularly advantageous if
the optical access is limited. Further, small PTV diagnostics are preferred due to
the smaller cost.

Although we considered only binary projection data in this paper, we remark
that the algorithm can also reconstruct trajectories when more experimental data
are available (for instance, in form of brightness levels).
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Another advantage of our approach is that if the sampled data intrinsically con-
tain information that can be realized by several particle patterns, then all possible
reconstruction outcomes can be generated and the correct solution can be selected
post factum based on physical principles or other information. Generation of the
possible reconstruction outcomes also facilitates brief assessments of the chosen
weights ~w.
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[33] C. Brücker, 3D scanning PIV applied to an air flow in a motored engine using
digital high-speed video, Meas. Sci. Technol. 8 (12) (1997) 1480–1492.

[34] J. Katz, J. Sheng, Applications of holography in fluid mechanics and particle
dynamics, Annu. Rev. Fluid Mech. 45 (1) (2010) 531–555.

[35] G. Elsinga, F. Scarano, B. Wieneke, B. Oudheusden, Tomographic particle
image velocimetry, Exp. Fluids 41 (6) (2006) 933–947.
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[41] J. Kitzhofer, C. Brücker, Tomographic particle tracking velocimetry using
telecentric imaging, Exp. Fluids 49 (6) (2010) 1307–1324.

[42] B. Joshi, K. Ohmi, K. Nose, Novel algorithms of 3D particle tracking ve-
locimetry using a tomographic reconstruction technique, J. Fluid Sci. Tech.
7 (3) (2012) 242–258.

[43] Y. Guezennec, R. Brodkey, N. Trigui, J. Kent, Algorithms for fully auto-
mated three-dimensional particle tracking velocimetry, Exp. Fluids 17 (4).

[44] M. Novara, F. Scarano, Performances of motion tracking enhanced Tomo-
PIV on turbulent shear flows, Exp. Fluids 52 (4) (2011) 1027–1041.
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2003, pp. 441–459.

[51] G. Herman, A. Kuba, Advances in Discrete Tomography and its Applica-
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Figure 5: Reconstructed velocity field obtained by tracking 500 particles in 3D over 50 frames.
The arrows indicate the velocity vectors at the corresponding positions in the volume. More than
98% of the velocity vectors are correctly reconstructed.
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