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Abstract

A mixed basis approach based on density functional theory is employed for low dimensional

systems. The basis functions are taken to be plane waves for the periodic direction multiplied

by B-spline polynomials in the non-periodic direction. B-splines have the following advantages:

(1) the associated matrix elements are sparse, (2) B-splines possess a superior treatment of

derivatives, (3) B-splines are not associated with atomic positions when the geometry structure is

optimized, making the geometry optimization easy to implement. With this mixed basis set we

can directly calculate the total energy of the system instead of using the conventional supercell

model with a slab sandwiched between vacuum regions. A generalized Lanczos-Krylov iterative

method is implemented for the diagonalization of the Hamiltonian matrix. To demonstrate

the present approach, we apply it to study the C(001)-(2×1) surface with the norm-conserving

pseudopotential, the n-type δ-doped graphene, and graphene nanoribbon with Vanderbilt’s

ultra-soft pseudopotentials. All the resulting electronic structures were found to be in good

agreement with those obtained by the VSAP code, but with a reduced number of basis.
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I. INTRODUCTION

The electronic properties of low-dimensional systems are fundamentally different from

those in higher dimensions due to their unusual collective excitations. Nowadays, 1-

dimensional (1D) or 2-dimensional (2D) materials can be easily fabricated due to the emerg-

ing nanotechnology, which leads to intensive exploration of low-dimensional systems for

material innovation.

First-principles methods based on the density functional theory have been used exten-

sively in investigating the electronic structures and properties of solids. In most calculations,

three-dimensional (3D) plane waves are used as basis functions, which are very suitable for

systems that are periodic in three dimensions. Because of its easy implementation and the

fact that the convergence of the calculation can be checked systematically, plane waves are

often employed to expand the wavefunction even along the non-periodic direction in low-

dimensional systems via the use of supercell. In this approach, the physical low-dimensional

system is treated as a fully 3D periodic system by introducing some artificial vacuum space

to separate the periodic replica along the direction, in which the system should be consider as

nonperiodic (Fig. 1(a)). The drawback of this approach is the requirement of large thickness

of the vacuum layer such that the interactions between the adjacent slabs are negligible, and

therefore increases the number of the plane wave along that direction. More seriously, for

charged systems (e.g. charged defects), the rather long-range tail of the Coulomb potential

inevitably requires an extremely large separation of the two slabs and makes the calculation

impractical.

Li and Chang have previously introduced a mixed planar basis which is the product

of 2D plane waves in the periodic directions and 1D Gaussian function along the growth

direction z for the first-principles calculations [1]-[3]. The use of this mixed basis resumes

the layer-like local geometry which appears in surfaces. This mixed basis is suitable for

describing electronic properties of low-dimensional systems including surfaces, interface,

and superlattices. Moreover, because one can calculate the total energy for an isolated slab

instead of using a supercell consisting of alternating slab and vacuum regions, the physical

quantity of a surface, such as the work function can be immediately obtained without any

correction.

However, the Gaussian-type orbital basis falls off too rapidly for large z, i.e., it behaves
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like e−z2 rather than e−z for the hydrogenic orbitals. Increasing the number of the orbitals

makes no guarantee of numerical stability and good convergence. Furthermore, the Gaussian

orbital is an atom-centered basis and will move accordingly in geometry optimization process,

making the coding more difficult and harder to maintain. Inspired by previous works [4]-

[6], in the present work we replace the Gaussian orbitals by B-splines [7]. B-splines are

highly localized and piecewise polynomials within prescribed break points which consist of

a sequence numbers called knot sequence. B-splines have several advantages over Gaussian

basis functions: (1) the relevant matrices are sparse. (2) B-splines are superior to traditional

methods in the treatment of derivatives. (3) B-splines possess good flexibility to represent a

rapidly varying wavefunction accurately with the knots being arbitrarily chosen to have an

optimized basis. (4) Finally, B-splines are independent of atomic positions, so the geometry

optimization can be easily implemented.

We also implement a generalized Lanczos-Krylov iterative method for the diagonalization

of the Kohn-Sham Hamiltonian. It offers a stable and promising way to find the low-lying

eigenvalues of a real matrix with a very large dimension via an iterative scheme.

To test the application of the present approach, we will choose the C(001)-(2×1) surface,

n-type δ-doped graphene, and the graphene nanoribbon as three examples. We perform the

band structure calculation for the former case using the norm-conserving pseudopotential

(NCPP) [8]. For the latter two cases, we adopt Vanderbilt’s ultra-soft pseudopotentials

(USPP) [9] with modest energy cutoff. It is found that the band structures are all in good

agreement with those by the popular VASP code [10, 11], but the number of basis functions

needed is reduced.

II. METHOD OF CALCULATION

A. B-splines

B-splines form a convenient basis set with good flexibility. Here we briefly summarize the

B-spline formalism. More details can be found in Ref. [7]. In general, B-spline of order κ

consists of positive polynomials of degree κ−1, over κ adjacent intervals. These polynomials

vanish everywhere outside the subintervals τi < z < τi+κ. The B-spline basis set given by
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the order κ and the knot sequence {τi} is generated by the following relation :

Bi,κ(z) =
z − τi

τi+κ−1 − τi
Bi,κ−1(z) +

τi+κ − x

τi+κ − τi+1

Bi+1,κ−1(z), (1)

with

Bi,1(z) =







1, τi ≤ x < τi+1

0, otherwise .
(2)

The first derivative of the B-spline of order κ is given by

d

dz
Bi,κ(z) =

κ− 1

τi+κ−1 − τi
Bi,κ−1(z)−

κ− 1

τi+κ − τi+1
Bi+1,κ−1(z). (3)

Since all the lower order B-splines are the simple polynomials, it is obvious that B-splines

are superior to traditional methods in the treatment of derivatives. Figure 2 shows the

B-splines generated from an equal distance and exponential type knot sequence. Clearly, B-

splines possess good flexibility to accurately represent any localized function of z by suitably

increasing the density of the knot sequence where it varies rapidly.

B. Relevant matrix elements within B-spline basis

1. NCPP scheme

In the NCPP scheme, the minimization of total energy subject to the constraint that the

wave functions φi are orthogonal yields

H|φi >= ǫi|φi > (4)

where

H = −∇2 + Vpp + VH + Vxc . (5)

Here, Vpp, VH , and Vxc denote the pseudopotential, Hartree potential, and exchange-

correlation potential, respectively.

The present mixed basis used to expand φi is defined as

< r| k‖ +G‖; j, κ > =
1√
A

ei(k‖+G‖)·r‖ Bj,κ(z) (6)

where G‖ denotes an in-plane reciprocal lattice vector, and r‖ = (x,y) is the projection of

r in the x-y plane. k‖ is the in-plane wave vector. A is the surface area of the system.
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The overlap matrix elements between two basis states are given by

< k‖ +G‖; i, κ | k‖ +G′
‖; i

′, κ > = < Bi,κ| Bi′,κ > δG‖,G
′
‖

(7)

where

< Bi,κ| Bi′,κ > =

∫

dz Bi,κ(z) Bi′,κ(z) (8)

is an integration of local polynomials with bounded support and vanishes unless the condition

|i− i′| ≤ κ is fulfilled.

The kinetic energy matrix elements are given by

< k‖ +G′
‖; i, κ | − ∇2 | k‖ +G‖; i

′, κ >

=[ < Bi,κ| −
∂2

∂z2
| Bi′,κ > + < Bi,κ| Bi′,κ > (k‖ +G‖)

2 ] δG‖,G‖

=[ < B′
i,κ| B′

i′,κ > + < Bi,κ| Bi′,κ > (k‖ +G‖)
2 ] δG‖,G

′
‖
. (9)

B′
i,κ(z), the derivatives of Bi,κ(z), can be expressed as a linear combination of Bi,κ−1(z)

with order κ− 1 and is continuous across the knot sequence.

The local part of Vpp on each atomic site with species σ concerned here can be written as

V σ
loc(r) = − Zσ

r
erf

(

r

Rσ
c

)

+
∑

i

Aσ
i e

−aσ
i
r2. (10)

The first term on the right hand side of the above equation will be referred to as the core

term due to the core charge distribution

ρc(r) =
Zσ

π
3

2Rσ
c
3
e
− r

2

Rσ
c
2 .

The local pseudopotential of the crystal is then given by

VLOC(r) =
∑

σ,Rσ

V σ
loc(r−Rσ) , (11)

where Rσ denotes the position of each atom with species σ. The matrix elements for the

local pseudopotential of the crystal excluding the core term, V ′
LOC, are given by

< k‖ +G‖; i, κ | V ′
LOC | k‖ +G′

‖; i
′, κ > =
∑

σ,Rz∈SUC

I(i, κ; aσi , R
σ
z ; i

′, κ) e−i∆G‖·R
σ

‖ Ṽ σ
loc(∆G‖) (12)
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where ∆G‖ = G‖ −G′
‖ and

Ṽ σ
loc(∆G‖) =

∫∫

d2r‖ e−i(∆G‖·r‖−aσ
i
r2
‖
)

=
∑

i

(

Aσ
i

Ac

)

π

aσi
e
−

∆G
2

‖
4aσ

i . (13)

Ac is the area of the surface unit cell (SUC). I is given by

I(i, κ; aσi , R
σ
z ; i

′, κ) =

∫

dz Bi,κ(z)Bi′,κ(z)e
−aσ

i
(z−Rσ

z )
2

.

The atomic nonlocal pseudopotential associated with species σ used in the present work

is in the Kleinman-Bylander form [12], viz.,

V σ
nl(r) =

∑

nlm

Eσ
nl|βσ

n,lm >< βσ
n,lm| . (14)

The projector βσ
n,lm is a radial function multiplied by an angular momentum eigenfunction

Ylm(Ω). For the norm-conserving pseudopotential by Goedecker, Teter, and Hutter (GTH)

[8], there are two s-channels and one p-channel for the second row element,

βσ
1,00(r) = Cσ

1,0 e−ασ
0 r

2

r0Y00(Ω)

βσ
2,00(r) = Cσ

2,0 e−ασ
0 r

2

r2Y00(Ω) (15)

βσ
1,1m(r) = Cσ

1,1 e−ασ

1
r2 r1Y1m(Ω) .

Since the d-like pseudopotential is chosen as the local pseudopotential, only l = 0 and l = 1

are considered here. The nonlocal pseudopotential of the crystal is

VNL(r) =
∑

σ,Rσ

V σ
nl(r−Rσ) (16)

and the matrix elements of VNL are given by

< k‖ +G‖; i, κ | VNL |k‖ +G′
‖; i

′, κ >

=
∑

σ,Rσ

∑

nlm

< k‖ +G‖; i, κ|βσ,Rσ

n,lm > Eσ
nl < βσ,Rσ

n,lm | k‖ +G′
‖; i

′, κ > (17)

where βσ,Rσ

n,lm ≡ βσ
n,lm(r − Rσ). By the representation of rlYlm(Ω) in Cartesian coordinates

for l = 0 and l = 1,

r0Y00(Ω) =
1√
4π

, r1Y1−1(Ω) =

√

3

8π
(x− iy)

r1Y10(Ω) =

√

3

4π
z, r1Y11(Ω) = −

√

3

8π
(x+ iy)

r2Y00(Ω) =
1√
4π

(x2 + y2 + z2)
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we obtain

< k‖ +G‖; i, κ|VNL | k‖ +G′
‖; i

′, κ > =

1

Ac

∑

σ,Rσ∈SUC

∑

nlm

e−i∆G‖·R
σ

‖Eσ
nl

[

Cσ
n,lS

σ
n,lm(i, κ; k‖ +G‖;R

σ
z , α

σ
l )
]∗

×
[

Cσ
n,lS

σ
n,lm(i

′, κ; k‖ +G′
‖;R

σ
z , α

σ
l )
]

where

Sσ
n,lm(i, κ; k‖ +G‖;Rz, α

σ
l ) =







Z1,lmQ1,lm, n = 1

Z1,00Q2,00 + Z2,00Q1,00, n = 2

with the factors Zn,1m and Qn,lm given explicitly as

Z1,00 =

∫

dz Bi,κ(z) e−ασ
0
(z−Rσ

z )
2

Z1,1±1 =

∫

dz Bi,κ(z) e−ασ
1 (z−Rσ

z )
2

Z1,10 =

∫

dz Bi,κ(z) (z − Rσ
z ) e−ασ

1
(z−Rσ

z )
2

Z2,00 =

∫

dz Bi,κ(z) (z − Rσ
z )

2 e−ασ
0
(z−Rσ

z )
2

Q1,l0 =

∫∫

d2r‖e
i(k‖+G‖)·r‖ e−ασ

l
r‖

2

=
π

ασ
l

e
−

|k‖+G‖|
2

4ασ
l

Q1,1±1 = −
∫∫

d2r‖

(

x± iy√
2

)

ei(k‖+G‖)·r‖ e−ασ
1 r‖

2

=−
(

1√
2

kx +Gx

2ασ
1

± i√
2

ky +Gy

2ασ
1

)

π

ασ
1

e
−

|k‖+G‖|
2

4ασ
1

Q2,00 =

∫∫

d2r‖(x
2 + y2)ei(k‖+G‖)·r‖ e−ασ

0
r‖

2

=

(

1

ασ
0

− |k‖ +G‖|2
4ασ

0
2

)

π

ασ
0

e
−

|k‖+G‖|
2

4ασ
0 .

The total charge distribution ρ is defined as the sum of the core charge distributions for

all atoms in the sample ρc, plus the electronic charge distributions ρe,

ρ(r) = ρc(r) + ρe(r) = ρc(r) +
∑

i

|φi(r)|2 . (18)

The remainder of the crystal potential includes the Hartree potential VH due to the electron

charge distribution, the exchange-correlation potential Vxc, and the core term of the local
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pseudopotential V
(C)
LOC omitted in the above. Let V scf ≡ VH + Vxc + V

(C)
LOC . This potential is

local and periodic in the plane. The exchange-correlation potential used here are deduced

from the Monte Carlo results calculated by Ceperley and Alder[13] and parametrized by

Perdew and Zunger[14]. We write

V scf(r) =
∑

g‖

V scf(z, g‖) e
ig‖·r‖ . (19)

The matrix elements of V scf are given by

< k‖ +G‖; i, κ|V scf |k‖ +G′
‖; i

′, κ > =

∫

dz Bi;κ(z) Bi′;κ(z)V
scf(z,∆G‖) . (20)

With the use of the 2D Fourier transformation of 1/r

1

r
= 4π

∫∫

d2k‖

(2π)2
eik‖·r‖

1

2k‖
e−k‖|z|

the Coulomb potential due to the total charge distribution is given by

V (C) =V
(C)
LOC + VH =

∫∫∫

d3r′
ρ(r′)

|r− r′|

=
∑

g‖

(
∫

dz′ρ(z′, g‖)
2π

|g‖|
e−|g‖| |z−z′|

)

e−ig‖·r‖

≡
∑

g‖

V (C)(z, g‖) e
−ig‖·r‖ (21)

where

ρ(z, g‖) =
1

A

∫∫

d2r‖ ρ(r) eig‖·r‖ .

2. USPP scheme

For Vanderbilt’s ultra-soft pseudopotentials [9, 15], Eq. (4) becomes a secular equation

of the form

H|φi >= ǫiS|φi > (22)

under a generalized orthonormality condition

< φi|S|φj >= δij . (23)

S is a Hermitian overlap operator given by

S = I +
∑

σ,Rσ

∑

nlmn′l′m′

qσnlm,n′l′m′ |βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ | , (24)
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where qσnlm,n′l′m′ =
∫∫∫

d3rQσ
nlm,n′l′m′(r). Here, βσ

n,lm and Qσ
nlm,n′l′m′ vanish outside the core

region.

The individual atomic nonlocal potential in Eq. (16) is modified as

V σ
nl(r−Rσ) =

∑

nlmn′l′m′

Eσ,Rσ

nlm,n′l′m′ |βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ | , (25)

with

Eσ,Rσ

nlm,n′l′m′ = E0,σ
nl,n′l′δl,l′δm,m′ +

∫∫∫

d3rVeff(r)Q
σ
nlm,n′l′m′(r−Rσ) . (26)

Veff is defined as

Veff = VH + Vxc + VLOC = V scf + V
′

LOC . (27)

Following Ref. [15], we define a box, which is large enough to contain the core region. The

USPP βσ
n,lm(z − Rσ

z , r‖) inside the box is transferred to G‖ space using the fast Fourier

transform (FFT), then

βσ,Rσ

n,lm = βσ
n,lm(r−Rσ) =

∑

G‖

βσ
n,lm(z − Rσ

z ,G‖) e
−iG‖·R

σ

‖ eiG‖·r‖ . (28)

So, the projection of βσ
n,lm(r−Rσ) on the basis in Eq. (17) reads as

< k‖ +G‖; i, κ|βσ,Rσ

n,lm >

= e−i(G‖+k‖)·R
σ

‖

∑

G
′

‖

∫

dz Bi;κ(z) β
σ
n,lm(z − Rσ

z ,G
′

‖)

∫∫

d2r‖ ei(G
′

‖
−G‖−k‖)·r‖ . (29)

Presently, we restrict ourselves to

Qσ
nlm,n′l′m′(r) = Qσ

nl,n′l′(r)YLM (30)

with L be the minimum lmin of |l−l′| and |M = m+m′| ≤ lmin . Similarly, bothQσ
nlm,n′l′m′(r−

Rσ) and Veff(r) in Eq. (26) are also transferred by FFT,

Qσ
nlm,n′l′m′(r−Rσ) =

∑

g‖

Qσ
nlm,n′l′m′(z −Rσ

z ,R
σ
‖ ; g‖) e

ig‖·r‖ , (31)

Veff(r) =
∑

g‖

Veff (z, g‖) e
ig‖·r‖ . (32)

Then, we obtain

Eσ,Rσ

nlm,n′l′m′ = E0,σ
nl,n′l′δl,l′δm,m′ + Aσ

b

∑

g‖

∫

dz
[

Veff (z, g‖)
]∗
Qσ

nlm,n′l′m′(z − Rσ
z ,R

σ
‖ ; g‖) . (33)
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Aσ
b is the surface area of the core region box. Note that the FFT grid density for g‖ in the

summation of Eqs. (31) and (32) is not necessarily the same with that for the wavefunction

[15]. Eσ,Rσ

nlm,n′l′m′ in the above should be calculated self-consistently. From Eqs. (29) and (33),

we can evaluate VNL|φi > and S|φi >.

Finally, the charge density from the wave function is augmented inside the core region,

ρe(r) =
∑

i

[ |φi(r)|2 +
∑

σ,Rσ

∑

nlmn′l′m′

Qσ
nlm,n′l′m′(r−Rσ) < φi|βσ,Rσ

n,lm >< βσ,Rσ

n′,l′m′ |φi > ]. (34)

These formula can be easily extended for the 1D case, i.e., using two sets of B-splines to

describe the non-periodic directions and 1D plane waves for the periodic one.

C. Generalized Lanczos-Krylov method for diagonalization

In most cases, the only practical approach to find the lowest eigenvectors of the Hamilto-

nian matrix H with a very large dimension is through iterations. In particular, it is known

[16] that the use of Krylov subspaces provides stability for the iteration process.

We start with a diagonalization in the subspace of the union of all the input trial vectors

with the Lanczos process [17] and the Krylov subspace K generated by repeated operations

of H on one of the trial vectors v:

K = Span{v, Hv, H2v, · · ·Hkv} .

The orthonormality of the vectors is maintained throughout by the standard Gram-Schmidt

orthogonalization procedure. Thus a set of normalized roots arranged according to their

eigenvalues are obtained.

In the next step, these roots are divided into blocks of small sets of the trial vectors. In

each block, the diagonalization is then performed in the subspace of these vectors together

with a Krylov subspace K based on one of the trial vectors in the block. Again the orthonor-

mality of the vectors is maintained throughout by the Gram-Schmidt scheme. Maximum

overlapping with the input trial vectors in each block is used as the criteria for the selection

of the desired roots. This criterion guarantees the stability of the iteration process while

allowing the diagonalization to be carried out on subsets with a small number of vectors.

Additional procedures are inserted to pick up possible additional new roots in each block.

Thus, a set of improved normalized roots in each block are obtained.
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Due to its stability, the Jacobi method is used for the diagonalization in each step.

Modern Jacobi methods can compete in speed with Householder-based algorithms. Also, it

can be easily parallelized. An additional advantage of the Jacobi method is that it takes

full advantage of the progressive iterative approximation property of the input eigenvectors.

This makes it especially suitable for iteration procedures.

These two alternating grand cycles are then iterated. It is found that only a few iterations

are needed.

III. APPLICATIONS OF PRESENT METHOD

To demonstrate the capability of the present method, we apply it to study a few examples,

including the C(001)-(2×1) surface, N δ-doped graphene, and the graphene nanoribbon.

A. C(001)-(2×1) surface

We first calculated the band structure of the C(001)-(2×1) surface simulated by a ten-

layer slab. The relaxed positions of the surface layer are taken from Ref. [18], as displayed

in Fig. 3(a). We did not try to determine the optimum geometry presently, which will

be implemented in the future. A total of 40 B-splines, defined over a range of 4.5 a0

(a0 = 3.52 Å), are used to expand the z-component wavefunction. The energy cutoff Ec

of the 2D plane waves is 50 Ry. The 3 × 6 Monkhorst-Pack grids were taken to sample

the surface Brillouin zone. We used the GTH norm-conserving pseudopotential [8] for the

interactions between the ions and valence electrons. The potential V scf is determined self-

consistently until its change is less than 10−6 Ry. For comparison, we also performed the

calculation by using the VASP code with the projector-augmented-wave method (PAW)

[10, 11].

In practical calculations, the significant charge-density oscillation, the so-called charge

sloshing, was observed. To remedy the very slow convergence by the simple linear mixing

scheme (Fig. 4), we use the Kerker mixing [19] to prevent the charge sloshing and the

residual minimization method in the direct inversion of iterative subspace (RMM-DIIS)

Pulay scheme [20, 21] to accelerate the convergence. The new charge is mixed by

ρnew(z, g‖) = ρin(z, g‖) +W
g‖

2

g‖
2 + g‖,max

2
(ρout(z, g‖)− ρin(z, g‖))
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The weight factor W and the cutoff wavevector g‖,max are two adjustable parameters. The

updated input charge density, as a linear combination of charge density of all 4 previous

steps, is determined such that it minimizes the corresponding residual vector.

Figures 3(b) and (c) display the results. The bands for wave vectors along X ′ −M −X

should be twofold degenerate due to the symmetry of the slab system [22]. In the present

calculation, the corresponding splitting is < 10−5 eV for all k along X ′−M −X . As can be

seen in Fig. 3(b) and (c), our results are almost identical to those by the VASP code. The

filled π band and the empty π∗ band, separated in energy by ∼ 2 eV, are clearly seen in the

bulk band gap, and are also in nice agreement with those in Ref. [23].

B. n-type δ-doped graphene

Before proceeding to the second example, we should keep in mind that, although the

utility of first-principles norm-conserving pseudopotentials has paved the way to accurate

calculations of solid-state properties, the norm-conserving constraint is the main factor re-

sponsible for the hardness of highly localized valence orbitals of 1s, 2p, or 3d, with no core

state of the same angular momentum. Therefore, the all-electron wave function is nodeless

and quite compressed compared to the other valence states, thus requiring a large number of

plane waves to be represented accurately. For the next two graphene-related examples, we

will use the Vanderbilt’s USPP scheme in which such a constraint is relaxed. In this scheme,

the pseudo-wave functions are allowed to be as soft as possible within a given region, yielding

a dramatic reduction of the cutoff energy. For instance, we found that the change in the

band structure of the graphene by the NCPP will be unnoticeable with Ec = 70 Ry but, by

the USPP with Ec = 20 Ry only. This reduction of the cutoff energy in USPP is particularly

important for large systems to avoid the diagonalization bottleneck of the extremely large

matrix H .

First of all, we examined the quality of the C and N USPPs that were generated from

the Vanderbilt’s code [24], by performing the band structure calculation for the graphene

and the assumed N-doped graphene with equal number of C and N atoms. Figure 5 displays

the band structures, along with the VASP-PAW results. Clearly, both are nearly identical

for these two cases. Therefore, we believe that the quality of C and N USPPs used here is

sufficiently good for our band structure calculations.
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The calculations were carried out using a supercell of 8×
√
3, i.e., 16 carbon dimmer lines

between adjacent N chains, where the N chain is the δ dopant. All C and N atoms were

kept at the ideal positions, with the lattice constant a0 set to be 2.641 Å. A mixed basis set

with 13 B-splines distributed over a range of 3.25 a0 and the plane wave cutoff of 20 Ry are

used. The 2× 4 Monkhorst-Pack grids were taken to sample the surface Brillouin zone.

Overall, we found an excellent agreement between the present band structures and the

VASP-PAW results. Figure 6 shows only the results near the Fermi level along Γ−X . We

have also tested various N mole fractions x of 1/2, 1/4, and 1/8, with x defined as the ratio

of the number of N to the total number of atoms per unit cell. Besides all agreeable with the

VASP-PAW results, we found that the trend of the band gap is also in accord with previous

work [25], e.g., the band gap opens only for large x (Fig. 5(c)). Note that the USPP and

PAW methods have proven to be closed related [10]. Therefore, we are confident that the

present program has produced reliable results.

It is worth noting that the ratio of the number of the basis Nd used in VASP and the

present approach is about 1.4 − 1.7 for Ec = 20−30 Ry, with a typical thickness of 10 Å for

the vacuum layer required in VASP. Like in the conjugate gradient technique [11, 26, 27],

the computational effort by the present Lanczos-Krylov method scales as M2Nd for the

orthogonalization and MNdlogNd for the FFT, where M is the number of the bands con-

sidered. Therefore, as compared to the conventional supercell modeling, the computational

time needed for the eigenvalues search due to the planar mixed basis will reduce with a

factor of 2 - 3 if the same algorithm were used. This reduction will be more significant

for the cases, in which the tail of the Coulomb potential extends to a very long distance,

whereas the wave function still decays exponentially in the vacuum.

C. graphene nanoribbon

Finally, we will apply the present method to armchair graphene nanoribbon. In the

spirit of our method, we should use two sets of B-splines describing the two non-periodic

dimensions and only 1D plane waves for the periodic y direction in such a system. Here, we

just adopt the planar mixed basis set to study the nanoribbon by using the surface supercell

modeling for the x− y plane.

Armchair graphene nanoribbons are characterized by the number of dimmer lines Na
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(Fig. 7(a)) across the ribbons. The width of the ribbon chosen is chosen to include Na = 19

carbon dimmer lines, which is 3p + 1 type (p is a integer). We performed the calculation

using a 16×
√
3 surface supercell with the vacuum ’band’ of ∼ 15 Å along the y direction.

The optimized atomic positions in the eight outer dimmer lines of both sides obtained by

the VASP code were used for the calculation. Since graphene nanoribbons are stripes of

graphene, edge atoms are not saturated [28]. For simplicity, we let the edge atoms not

saturated by hydrogen atoms in the present calculation. All other computational conditions

are similar to the case of n-type δ-doped graphene described above.

The band structures of the present USPP result and the VASP-PAW counterpart near

the Fermi level are displayed in Fig. 7(b) and (c), respectively. Again, there is a very

nice agreement between these two approaches. It has been reported [29] that all armchair

graphene nanoribbons with the three typical families, i.e., Na = 3p, 3p+ 1, and 3p+ 2, are

semiconductors with a direct energy gap. The bandgap obtained by our approach is 0.57

eV, and 0.61 eV by the VASP code. These values compare favorably with that in Ref. [29].

To sum up, we are convinced that the present program has been implemented success-

fully for low-dimensional systems and the results obtained are very reliable. Moreover, as

compared to traditional supercell modeling, the use of the present mixed basis will reduce

the number of the basis functions and speed up the calculations of electronic states.

IV. CONCLUSIONS

In conclusion, we have developed an efficient and accurate method to investigate the

electronic structures of low dimensional systems by a mixed basis set with plane waves for

the periodic direction and B-spline polynomials for the non-periodic direction. Contrary to

the existing algorithms based upon the conventional supercell model with alternating slab

and vacuum regions, it is a real space approach along the z-axis and therefore gives the

surface band structures in absolute-energy scale. Furthermore, B-splines are independent of

atomic positions when the atomic structure is optimized; thus, the geometry optimization

can be easily implemented. We have also implemented a generalized Lanczos-Krylov iterative

method for the diagonalization of the Kohn-Sham Hamiltonian. It offers a promising way to

find the lower eigenvalues of a real matrix with a very large dimension through iterations.

Particularly, this algorithm is very stable for low dimensional systems, of which the wave
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functions vary abruptly.

We have calculated the electronic structures of the C(001)-(2×1) surface with GTH norm-

conserving pseudopotentials [8] and the N δ-doped graphene, and graphene nanoribbon with

Vanderbilt’s ultra-soft pseudopotentials [9, 15]. It is found that the band structures are all

in good agreement with those by the popular existing codes, but with a reduced number of

basis functions.
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[23] P. Kröger and J. Pollmann, Phys. Rev. Lett. 74, 1155 (1995).

[24] http://www.physics.rutgers.edu/∼dhv/uspp/.

[25] X.-L Wei, H. Fang, R. -Z. Wang, Y.-P. Chen and J.-X. Zhong , Appl. Phys. Lett. 99, 012107

(2011).

[26] M. P. Teter, M. C. Payne, and D. C. Allan, Phys. Rev. B 40, 12255 (1989).

[27] M. C. Payne, M. P. Teter and D. C. Allan, Rev. Mod. Phys. 64, 1045 (1992).

[28] E. Kan, Z.-Y. Li and J.-L. Yang, Graphene Nanoribbons: Geometric, Electronic, and Magnetic

Properties in Physics and Applications of Graphene - Theory edited by S. Mikhailov, (Intech,

2011).

[29] Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803, (2006).

16

http://www.physics.rutgers.edu/~dhv/uspp/


FIGURE CAPTIONS

Fig. 1: Schematic plot of a real slab, investigated by (a) the conventional supercell model

and by (b) the real space approach with a localized basis set.

Fig. 2: B-splines defined on (a) an equal-distance (b) an exponential-type knot se-

quence (noted as *) of order κ = 5.

Fig. 3: (Color online) (a) Atomic structure of the C(001)-(2×1) surface. Atoms lo-

cated in deeper layer are denoted by smaller circles. (b) and (c) are the corresponding band

structures obtained by the present work with NCPP and VASP with PAW.

Fig. 4: (Color online) Convergence rate for the calculation of the C(001)-(2×1) sur-

face by the Pulay-Kerker mixing and simple linear mixing scheme.

Fig. 5: Band structures of graphene obtained by (a) the present work with USPP

and (b) VASP with PAW. (c) and (d) are the band structures of N δ-doped graphene

obtained by the present work with USPP and VASP with PAW, respectively.

Fig. 6: (Color online) (a) Atomic structure of the N δ-doped graphene. Red circles

denote N atoms. (b) and (c) are the corresponding band structures by the present work

with USPP and VASP with PAW.

Fig. 7: (Color online) (a) Atomic structure of the armchair graphene nanoribbon.

(b) and (c) are the corresponding band structures by the present work with USPP and

VASP with PAW.
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FIG. 2:
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FIG. 3:
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FIG. 4:
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FIG. 5:
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