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Abstract

The magneto-optical properties of simple hexagonal graphite exhibit rich beating

oscillations, which are dominated by the field strength and photon energy. The

former has a strong effect on the intensity, the energy range of the beating and the

number of groups, and the latter modulates the total group numbers of the oscillation

structures. The single-particle and collective excitations are simultaneously presented

in the magnetoreflectance spectra and can be precisely distinguished. For the loss

function and reflectance, the beating pattern of the first group displays stronger

intensities and broader energy range than other groups. Simple hexagonal graphite

possesses unique magneto-optical characteristics that can serve to identify other bulk

graphites.
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1. Introduction

Graphene-based materials have attracted many researchers to investigate their physical

properties due to their potential for novel applications. The material properties demon-

strate their strong dependence on the stacking configurations [1–6], layer numbers [7–12],

and interlayer atomic interactions [13–15]. Graphite is composed of van der Waals cou-

pled graphene layers [16,17]. Three prototypes of periodical stacking along the z-direction

exist: AA-stacked simple hexagonal graphite (SHG), AB-stacked Bernal graphite (BG),

and ABC-stacked rhombohedral graphite (RHG). The graphites discovered in nature are

mainly composed of BG and RHG. Recently, SHG has been successfully synthesized in the

laboratory [18]. The interlayer couplings play an important role in determining the low-

energy electronic properties; thus, different periodic stacking configurations exhibit their

own unique characteristics. It is known that the neighboring electronic states congregate

and form the Landau subbands (LSs) along k̂z in a perpendicular uniform magnetic field

B=B0ẑ. The magneto-electronic properties demonstrate very interesting phenomena, e.g.,

the anisotropy of low-energy electronic structures [16, 19–21], the de Haas-van Alphen

effect [22,23], quantum Hall effect [24–27]. In this work, we mainly focus on obtaining the

magneto-optical properties of SHG by means of evaluating the dielectric function ε(ω,B0).

Comparisons with BG and RHG are also made.

The LSs of graphites present many important features. SHG possesses very strong

kz-dependent energy dispersions with a broad band width about 1 eV, and each LS can

be described by a simple relationship with kz [19, 25]. Many LSs cross the Fermi level

(EF = 0) [19,28]. Moreover, the excitations related to the densely low-lying LSs own wide

energy ranges which can overlap for different optical transition channels. On the contrary,
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RHG exhibits weak kz-dependent dispersions with a narrow band width (∼10 meV) [21].

Only one LS crosses EF , and there is no coexisting energies for different optical excitations.

The LS can be characterized by the approximate solution [29]. The energy dispersion of

BG has a band width of ∼0.2 eV, which lies between that of SHG and RHG, and two LSs

cross EF [30, 31]. The low-lying LSs are complex and cannot be easily described by kz.

The characteristics of LSs would be reflected in the magneto-optical spectra.

The magneto-optical properties are closely associated with the stacking configurations

of graphites [28, 31–33]. The low-energy magneto-optical absorption spectrum of SHG is

dominated by intraband and interband optical excitations which induce a multi-channel

threshold peak, several two-channel peaks, and many double-peak structures [28]. In the

magneto-optical absorption spectra of BG, the prominent peaks originate from the in-

terband excitations at both the K and H points. The peaks associated with the K point

display double-peak structures [20,30]. Moreover, the field evolution of the absorption lines

for the K-point type shows an approximately linear dependence, while the dependence of

the H point is square-root like [20,30,34]. The magnetoreflectance R(ω,B0) spectra of BG

displays irregular oscillations [35, 36]. Up to now, no theoretical calculations and experi-

mental measurements for the magneto-optical absorption or reflection of RHG have been

performed .

The magneto-optical properties are evaluated based on the Peierls tight-binding model,

which can be exactly diagonalized even with the inclusions of field-induced Peierls phases

and important atomic interactions in the Hamiltonian [28,31,37]. This study shows that the

beating patterns of the dielectric function can be formed mainly owing to the strong overlap

of different optical transition channels in a wide frequency range. Such beating patterns are
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also exhibited in the higher-frequency absorption spectrum, loss function, and reflectance.

The single-particle and collective excitations can be precisely identified, respectively, based

on the shoulders (peaks) and dips of specific structures in the magnetoreflectance spectra.

The regular beating magneto-optical spectra can be controlled by the field strength and

the photon energy, which provide a theoretical basis for future experiments to clarify the

optical responses of the graphite configurations.

The generalized tight-binding model deserves a closer examination in numerical calcu-

lations. We developed this model to study the magneto-electronic and -optical properties

by the exact diagonalization method. In studying the magneto-electronic properties, the

earlier work can only cope with eigenvalues and eigenfunctions at strong magnetic field

strength [38] because the Hamiltonian matrix gets too large as the field strength decreases.

For example, this matrix is 40000 × 40000 for monolayer graphene at 7.9 T. By means of

rearranging the tight-binding functions, it is possible to transform the huge matrix into a

band-like one. Therefore, the eigenvalues and the wave functions can be efficiently solved

at weaker field strength (∼ 1T) [37]. In this work, the magneto-optical absorption spectra,

which are determined by three large matrices due to the Hamiltonian, the initial state and

the final state, can be obtained by using the localized features of the magnetic wave func-

tions. The PC clusters are sufficient in calculating numerical data. The acquired features

of LS spectra and the reliable characterization of the LS wave functions provide a guideline

for other physical properties, such as Coulomb excitations and transport properties. As for

the discussion of the optical properties in our previously published works, the generalized

tight-binding method has been successfully applied to investigate the magneto-optical ab-

sorption spectra of few-layer graphenes. The optical selection rules are well defined through

4



the detailed analysis on the wave functions. It is also applicable to bulk graphite with layers

stacked in any sequence. Furthermore, the generalized tight-binding model can be used in

the cases of spatially modulated fields and combined magnetic and electric fields.

2. Methods

For calculation purposes, the geometric structure of simple hexagonal graphite is re-

garded as a stacking sequence of infinite layers of graphene with an AA-stacked configu-

ration along ẑ. All honeycomb structures in SHG have the same projections on the x-y

plane. The interlayer distance is Ic = 3.50 Å [18] and the C-C bond length is b′ = 1.42

Å. A primitive unit cell consists of two atoms. The associated hopping integrals γi’s taken

into account are the one intralayer atomic interaction (γ0 = 2.519 eV) and three interlayer

atomic interactions (γ1 = 0.361 eV; γ2 = 0.013 eV; γ3 = −0.032 eV) [15].

When SHG is subjected to a B0ẑ, the path integral of the vector potential induces a

periodical Peierls phase (details in Ref. [19]). The phase term of the associated period is

inversely proportional to the magnetic flux (Φ = 3
√
3b′2B0/2) through a hexagon. To satisfy

the integrity of the primitive cell, the ratio RB = Φ0/Φ (Φ0 = hc/e flux quantum) has to be

a positive integer. As a result, the extended rectangular unit cell has 4RB carbon atoms.

The π-electronic Hamiltonian built from the 4RB tight-binding functions is a 4RB × 4RB

Hermitian matrix. To solve this huge matrix problem, one can convert the Hamiltonian

matrix into a band-like form by rearranging the tight-binding functions [19, 29, 31]. Both

eigenvalue Ec,vand eigenfunction Ψc,vare efficiently obtained, even for a small magnetic

field. The superscripts c and v, respectively, represent the conduction and valence bands.

The main features of the electronic properties can be directly manifested by optical
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excitations. As materials absorb photons, electrons are excited from occupied states to

unoccupied states. Within the relaxation-time approximation [39], the transverse dielectric

function at zero temperature is expressed as

ε(ω,B0) = ǫ0 −
e2

π2

∑

n,n′

∑

h,h′=c,v

∫

1st BZ

d3k

∣∣∣
〈
Ψh

′

n′(k)
∣∣∣ Ê·P

me

∣∣∣Ψh
n(k)

〉∣∣∣
2

ω2
hh′(n, n′;k)

×{ 1

ω − ωhh′(n, n′;k)+iΓ
− 1

ω + ωhh′(n, n′;k)+iΓ
}, (1)

where ǫ0 = 2.4 is the background dielectric constant [40]. ωhh′(n, n′;k) = Eh′

(n′,k) −

Eh(n,k) is the optical excitation energy which comes from the intraband (c → c; v → v)

or interband excitations (v → c); Γ(= 3.5 meV) is the broadening parameter due to the

deexcitation mechanisms. In these optical excitations, the momentum of the photons is

nearly zero and thus the excitations can be regarded as a vertical transition between two

LSs. The initial and final states have the same wavevector, i.e., △kx = 0, △ky = 0, and

△kz = 0 [28]. The velocity matrix element Dm =
〈
Ψh

′

n′(k)
∣∣∣ Ê·P

me

∣∣∣Ψh
n(k)

〉
is evaluated within

the gradient approximation [39, 41]. As |Dm|2 /ω2
hh′ is set to be a constant, the imaginary

part of ε(ω,B0) is simply the joint density of states DJ(ω,B0). The evaluation of ε(ω,B0)

can be employed to study the absorption spectrum, loss function, and reflectance.

3. Results and discussion

The perpendicular magnetic field causes the cyclotron motion in the x-y plane; therefore,

the Landau levels lie on the kx-ky plane and the LSs along k̂z. The energy dispersions of

the LSs along the K − H line (0 ≤ kz(π/Ic) ≤ 1) exhibit a strong dependence on kz, as

shown in Fig. 1. Based on the node structure of the Landau wave functions, the quantum

number nc(nv) for each conduction (valence) LS can be identified by the total number of
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nodes [28]. The LSs with nc and those with nv are asymmetric about EF = 0 because of the

interlayer atomic interactions. In optical excitations, electrons are excited from occupied

LSs into unoccupied LSs. For the sake of convenience, the excitations between two LSs with

quantum numbers nc,v and mc,v are represented as [nc(v), mc(v)] and (nv, mc) for intraband

and interband excitations, respectively. Moreover, the wave functions of occupied and

unoccupied states offer important insights into the possible excitation channels. Since the

LS wave functions of SHG are similar to those of monolayer graphene, the same selection

rule |△n| = |mc,v − nc,v| = 1 applies [28, 42, 43].

To investigate the spectrum structure of SHG, an illustration of optical excitations is

exhibited in Fig. 1 to show the existence of intraband and interband optical excitations.

The two intraband excitations [nc, (n + 1)c] and [(n + 1)v, nv] exhibit a tiny frequency

discrepancy, and similar results are also obtained for the two interband excitations ( nv, (n+

1)c) and ((n + 1)v, nc). The former two and latter two can be simplified as [n, n + 1] and

(n, n + 1), respectively. The intersection point of each LS with the Fermi level is the

Fermi-momentum state, knc,v

F . The effective kz-range is confined by the initial and the final

Fermi-momentum states, i.e., knc,v

F ≤ kz ≤ k
(n±1)c,v

F , as shown in Fig. 1 by the colored

arrows. The intraband excitations with smaller nc(v)’s possess a broader effective kz-range

(Fig. 1(a)). This reflects the fact that a quick decline of the energy spacing between

two adjacent LSs due to increasing the quantum number nc(v)’s. The effective kz-ranges

related to the interband excitations are larger than those of the intraband excitations;

furthermore, they gradually grow in the increment of nc(v). This leads to an increase in the

range of interband excitation frequency or the peak width in DJ(ω,B0). This means that

the effective kz-ranges gradually grow as the frequency increases (Fig. 1(b)–(d)), and so
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do the ranges of the interband excitation energies.

Figure 1: The vertical optical excitations at B0 = 20 T due to the Landau subbands for

(a) the intraband and (b)-(d) interband excitations. The allowed excitations are confined

by two arrows of the same color. The square brackets and the parentheses represent the

intraband and interband excitations, respectively.

The joint density of states is the number of optical excitation channels, which are

directly reflected in the absorption spectra. The spectral function can be expressed by

the imaginary part of ε(ω,B0), i.e., A(ω) = ω2ε2/2π. Each DJ (ω,B0) peak originates from

excitations within a certain kz-range surrounded by the two arrows in Fig. 1. In each diagram,

different colors are used to denote excitation channels corresponding to their own DJ peaks in Fig.

8



2. For the range ω < 0.1 eV, the three higher-frequency DJ peaks of the intraband excitations, i.e.,

[1,2], [2,3], and [3,4], are indicated by blue, green, and magenta curves, respectively (Fig. 2(a)).

These peaks partially overlap each other and such an overlap might cause that the peaks merge

together in the optical spectrum, especially for the weak magnetic field cases. Moreover, each

peak is a composite structure of two intraband excitation channels: [nc, (n+1)c] and [(n+1)v , nv].

The peak strength grows with an increasing frequency because of the enlarged effective kz-range.

Figure 2: The joint density of states corresponding to the Figure 1 for the (a) intraband

(b) interband optical excitations.

In the frequency range ω ≥ 0.1 eV, the DJ peaks are related to the interband excitations

as shown in Fig. 2(b). In the DJ , the three-peak structures associated with each type exhibit
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different characteristics. This is a result of the fact that the kz-dependent curvature variations

between two LSs in a certain kz region are discrepant. The former three peaks associated with the

peaks of absorption spectrum A(ω), are distinguishable. These Type I peaks are located within

the range 0.1 eV < ω < 1 eV for a field strength of B0 = 20 T (indicated by the red curve in Fig.

3(a)). Type II peaks are a combination of two neighboring peaks, such as (14,15) and (15,16) or

(15,16) and (16,17). Their composite peak intensity is twice that of the original peaks. The peaks

correspond to the absorption spectrum with higher-intensity peaks in the frequency range of 1

eV < ω < 1.25 eV (Fig. 3(a)). As to Type III, three neighboring peaks are merged to a single

peak and its intensity is enhanced to almost three times the original one. The DJ peaks show

up in the spectral frequency range of 1.25 eV < ω < 1.45 eV. The higher-intensity absorption

peaks are caused by the merging of yet more DJ peaks as a result of multiple channel excitations.

This clearly indicates that absorption peak height is increased with the frequency following the

sequence specified by the ω-range.

In the absence of a magnetic field, the optical absorption spectrum is indicated by the green

curve in Fig. 3(a) and only a shoulder structure exists at ω ≈ 1.5 eV [41]. The magneto-optical

spectrum demonstrates an abundance of absorption peaks. It is dominated by the intraband and

interband excitations. The former lead to a stronger threshold peak and some weaker peaks (ω <

0.1 eV for B0 = 20 T), while the many groups with a similar beating structure are attributed to

the latter. The beating oscillations are mainly determined by the joint density of states, since the

velocity matrix element is almost independent of the wave vector (Dm ≃ 3γ0 b′/2). The width

of the absorption peak gradually grows as the frequency increases. This leads to a higher degree

of overlap for the neighboring two peaks, thus the Group I beating oscillations are formed within

the range of 0.1 eV < ω < 1 eV. The frequency range associated with the other groups shifts to a

higher frequency following their group numbers. The oscillation is weaker towards the end of each

beating pattern. Moreover, these patterns are reflected in the dielectric function. A(ω) exhibits a
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red shift in the spectrum, more groups and weaker intensity as the field strength decreases. The

main reason is that the LS spacing, effective kz-range of the LS and the state degeneracy are

lowered with a decreasing B0.

Figure 3: (a) The optical absorption spectrum, (b) the real part, and (c) the imaginary

part of the dielectric function are shown for field strengths 20 T, 10 T and zero.

The single-particle excitations and collective plasmon modes can be characterized by the real

part ε1 and the imaginary part ε2 of the dielectric function. Each allowed LS excitation produces

a pair of asymmetric peaks in ε1 and a peak in ε2, as shown in Fig. 3(b) and (c), respectively. If

the zero points in ε1 occur where ε2 vanishes, they are associated with the undamped plasmon
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oscillations. The peak strength presents a beating pattern in the dielectric function. Moreover,

the magnitude of ε(ω,B0) should diminish at higher frequencies, owing to the ω−2 factor in Eq.

(1). It should also be noted that ε1 and ε2, due to the intraband excitations, are quite large,

e.g., their values are more than 103 times higher for ω < 0.05 eV (not shown). Thus, they hardly

contribute to the loss fuction and reflectance spectra, and do not induce prominent structures in

such spectra. Moreover, the temperature only has an effect on the composite threshold peak which

is caused by the intraband excitations [28]. As a result, the temperature effects are negligible in

this work.

The loss fuction, defined as Im[−1/ǫ(ω,B0)], is useful for understanding the collective excita-

tions that can be measured by inelastic light and electron scattering spectroscopy [44–46]. The

loss fuction presents many noticeable peaks, as shown in Fig. 4(a). These peaks are regarded

as the collective excitations, only coming from the interband excitations. The peak structures

belonging to Group I in terms of the energy range are prominent, whereas the other groups be-

longing to different types own weak plasmon peaks. The higher intensity corresponds to a zero

point in ε1 and a small value in ε2 within the gap region between two single-particle excitation

energies, while the lower intensity is subjected to strong Landau damping with a large ε2. The

plasmon peaks first rise, and then decline with increasing LS transition channels. These peaks

are gradually red-shifted and diminished with respect to the decrease of field strength.

The field-dependent plasmon frequency deserves a closer investigation in order to understand

the LS features. The frequency of each plasmon structure grows with increasing field strength, as

shown in Fig. 4(b). Plasmon peaks hardly survive in the loss function for a sufficiently weak field

strength. The low critical field occurs at higher LS transition channels associated with a higher

plasmon energy, while the lower LS transition channels are subjected to the high critical field. It

is relatively easy to observe the plasmon peak for larger B0 and ω. Due to the state degeneracy

and effective kz-range of LS being proportional to B0, the low field strength only presents a few

12



of plasmon peaks from the higher LS transition channels. As for B0 = 0, one prominent plasmon

peak arises at ωp = 0.63 eV (Fig. 4(a)).

Figure 4: (a) The loss function with respect to three different field strengths. (b) Plasmon

frequencies versus field strengths. Each curve corresponds to a specific interband excitation.

The magnetoreflectance calculated from the R(ω,B0) =
∣∣∣1−

√
ǫ(ω,B0)

∣∣∣
2
/
∣∣∣1 +

√
ǫ(ω,B0)

∣∣∣
2

clearly depicts the features of single-particle and collective excitations. The magnetoreflectance

spectrum presents a series of field-dependent oscillations in the beating pattern, compared with

the featureless R(ω,B0) at B0 = 0 (Fig. 5(a)). The strongest beating pattern is located in the

Group I. The magnetoreflectance spectrum contains both shoulders (peaks) and dips, respectively,
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indicating the single-particle and collective excitations. When the electromagnetic wave propa-

gates in SHG, it is attenuated very rapidly for strong single-particle excitations with a very large

ε2, and most of the electromagnetic power is reflected. On the other hand, if the electromagnetic

wave frequency is the same as or higher than ωp, the electromagnetic power is effectively absorbed

by the collective excitations, resulting in the plasmon dip structures of the spectrum. The beating

pattern diminishes its intensity and exhibits a red shift as the field strength decreases.

Figure 5: (a) The magnetoreflectance spectrum and (b) the relative magnetoreflectance

spectrum for different field strengths.

The relative magnetoreflectance, ∆R/R = (R(ω,B0)− R(ω, 0))/R(ω, 0) exhibits rather strong

oscillations in the beating pattern for different frequency ranges, as shown in Fig. 5(b). The
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beating patterns of Group I present stronger intensities and broader energy range than those of

other groups. The strongest ∆R/R of the beating pattern of Group I is close to ±50% for B0 = 20

T, but below ±10% for the other groups. These results could all be verified by experminental

measurements. As the field strength decreases, the energy range of each beat pattern is decreased.

It should be noted that up to now, the estimated variation ranges of ∆R/R are all less than 20% for

other systems at the same field strength 20 T, e.g., Bernal graphite [35,36,47] and YBa2Cu3Oy [48].

SHG is predicted to exhibit the largest variations in its magnetoreflectance spectrum among all

condensed-matter systems.

The ∆R/R with respect to the field strength reveals different groups of oscillation structures

which could be tuned by the photon energies (Fig. 6). The shoulders (peaks) and dips are

attributed to interband excitations. The oscillations still appear in the comparatively weak field

associated with the higher LS transition channels. These results indicate that the oscillations

move more rapidly to higher B0 as the photon energy increases. In the range of ω < 0.5 eV, all

oscillations belong to Group I (Fig. 6(a)). The Group I and Group II oscillations coexist within

the range of 0.5 eV < ω < 0.65 eV (Fig. 6(b)). Thus, when photon energy increases, ∆R/R

exhibits more groups, as shown in Fig. 6(c). Evidentally, there exists a relationship between

the critical photon energies and the group numbers, as these energies are identified to be 0.5 eV,

0.65 eV, 0.85 eV, etc.. This phenomenon is a unique characteristic of SHG and can be used to

distinguish it from other graphene-related systems.

The oscillation structures of SHG are very different from those of the other graphites. SHG

presents a few groups of oscillation structures with very strong ∆R/R. The photon energy can be

used to modulate the total number of groups as a result of the strong kz-dependent LS dispersion

and the wide overlapping ranges of energy for different transition channels. On the contrary,

only low-energy irregular oscillation structures was found in BG [35,36,47,48]. The low-lying LS

dispersions with a narrow energy width of ∼ 0.2 eV are responsible for the absence of beating
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oscillations. Up to now, no theoretical calculations or experiments on the oscillation structures of

RHG have been performed. Based on the very weak LS dispersions and the lack of overlapping

energy ranges of the different transition channels, RHG supposedly will only exhibit irregular

oscillations of low intensities that will not demonstrate a beating pattern.

Figure 6: The relative magnetoreflectance with respect to the field strength reveals distinct

groups of oscillation structures. Panels (a)-(c) represent different photon energies.

4. Conclusion

The magneto-optical properties of SHG demonstrate rich spectra with beating structures,
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owing to the strong kz-dependent LS and the wide overlapping ranges of energy for different

transition channels. The single-particle excitations and collective excitations appear simultane-

ously in the magneto-optical spectra and can be precisely identified. The beating pattern of both

the loss function and reflectance in Group I exhibit stronger intensities and wider energy ranges

than those in other groups. As field strength increases, the plasmon peaks of the loss function

and the dips of the reflectance are intensified, but the number of groups of beating structures

is diminished. Moreover, the photon energy can modulate the total number of groups of the

oscillation structures. The unique magneto-optical properties, the beating oscillations and the

largest variation in reflectance spectrum, could be confirmed by magneto-optical spectroscopy

measurements [35,36,49,50].
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FIGURE CAPTIONS

Fig. 1. The vertical optical excitations at B0 = 20 T due to the Landau subbands for (a) the

intraband and (b)-(d) interband excitations. The allowed excitations are confined by two arrows

of the same color. The square brackets and the parentheses represent the intraband and interband

excitations, respectively.

Fig. 2. The joint density of states corresponding to the Fig. 1 for the (a) intraband (b)

interband optical excitations.

Fig. 3. (a) The optical absorption spectrum, (b) the real part, and (c) the imaginary part of

the dielectric function are shown for field strengths 20 T, 10 T and zero.

Fig. 4. (a) The loss function with respect to three different field strengths. (b) Plasmon

frequencies versus field strengths. Each curve corresponds to a specific interband excitation.

Fig. 5. (a) The magnetoreflectance spectrum and (b) the relative magnetoreflectance spectrum

for different field strengths.

Fig. 6. The relative magnetoreflectance with respect to the field strength reveals distinct

groups of oscillation structures. Panels (a)-(c) represent different photon energies.
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