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Abstract

The Phasego package extracts the Helmholtz free energy from the phonon

density of states obtained by the first-principles calculations. With the help

of equation of states fitting, it reduces the Gibbs free energy as a function

of pressure/temperature at fixed temperature/pressure. Based on the quasi-

harmonic approximation (QHA), it calculates the possible phase boundaries

among all the structures of interest and finally plots the phase diagram au-

tomatically. For the single phase analysis, Phasego can numerically derive

many properties, such as the thermal expansion coefficients, the bulk moduli,

the heat capacities, the thermal pressures, the Hugoniot pressure-volume-

temperature relations, the Grüneisen parameters, and the Debye tempera-

tures. In order to check its ability of phase transition analysis, I present

here two examples: semiconductor GaN and metallic Fe. In the case of

GaN, Phasego automatically determined and plotted the phase boundaries

among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) struc-

tures. In the case of Fe, the results indicate that at high temperature the

∗Corresponding author.
E-mail address: zl.liu@163.com

Preprint submitted to Computer Physics Communications October 15, 2018

ar
X

iv
:1

41
0.

82
31

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  3

0 
O

ct
 2

01
4



electronic thermal excitation free energy corrections considerably alter the

phase boundaries among the body-centered cubic (bcc), face-centered cubic

(fcc) and hexagonal close-packed (hcp) structures.

Keywords: Quasi-harmonic approximation; Gibbs free energy; Phase

diagram; Thermodynamic properties

Program summary

Manuscript Title: Phasego: A toolkit for automatic calculation and plot of phase

diagram

Authors: Zhong-Li Liu

Program Title: Phasego

Journal Reference:

Catalogue identifier:

Licensing provisions: GNU GPL version 3

Programming language: Python (versions 2.4 and later)

Computer: Any computer that can run Python (versions 2.4 and later)

Operating system: Any operating system that can run Python

RAM: 10 M bytes

Number of processors used:

Supplementary material:

Keywords: Quasi-harmonic approximation, Gibbs free energy, Phase diagram,

Thermodynamic properties.

Classification: 7.8 Structure and Lattice Dynamics

External libraries: Numpy [1], Scipy [2], Matplotlib [3]

Subprograms used:

Nature of problem: Materials usually undergo structural phase transitions when

the environmental pressure and temperature are elevated to enough high values.
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The phase transition process obeys the principle of lowest Gibbs free energy. In

addition to the static energy, current density functional theory (DFT) calculations

can easily give the phonon density of states of lattice vibrations, from which the

Helmholtz free energy of phonons are reduced. Then Gibbs free energy can be

achieved for the analysis of phase stability and phase transition at high pressure

and temperature within the framework of QHA. The problem is to extract the

Gibbs free energies from the DFT calculations and automatically analyze the high

pressure and temperature phase boundaries among a number of structures.

Solution method: With the help of numerical interpolation techniques, the Gibbs

free energy as a function of pressure/temperature at fixed temperature/pressure

can be obtained. Then the QHA based phase boundaries can be automatically

determined and plotted by scanning the pressure/temperature at fixed tempera-

ture/pressure according to the principle of lowest Gibbs free energy.

Restrictions: The restriction is from the QHA which takes partially into account

the anharmonic effects.

Unusual features: The phase boundaries among a number of structures can be

automatically determined and plotted, which largely improves the efficiency of

phase transition analysis. In addition to some basic thermodynamic properties of

each single structure, the Hugoniot pressure-volume-temperature relations are also

automatically reduced.

Additional comments: This package can treat the phonon density of states data

from many packages, such as PHON [4], PHONOPY [5], Quantum ESPRESSO

[6], and ABINIT [7].
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Running time: The examples provided in the distribution take less than a minute

to run.
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1. Introduction

The accurate determinations of phase diagrams, equations of state (EOS),

and thermodynamic properties of materials are of primary importance to the

materials science, the high pressure science, and the geophysics. The high-

pressure experimental techniques, including the diamond-anvil cell (DAC)

and shock wave (SW) experiments, are main ways to yield such properties

precisely. However, except for high costs there are more or less limitations

in these experimental techniques, such as pressure or temperature limit and

the very short duration time of the compression process in SW experiment

during which it is hard to detect phase transitions in real time. So it very

urgently needed that accurate theoretical methods are developed to expand

the pressure and temperature regime where experiments can not reach.

Current density of functional theory (DFT) has been developed to a pow-

erful tool widely used to calculate and predict all kinds of new properties of

materials, and even design new materials theoretically before experimenta-

tion [1, 2]. Especially, the DFT has been applied frequently to calculate the

high pressure and high temperature (HPHT) dependent properties including

the equation of states, thermodynamic properties and phase diagrams un-

der high pressure [3, 4, 5, 6]. As for the HPHT dependent properties, the

hydrostatic pressure changes subject to the volume changes of the crystal

cell provided that the atoms positions are fully relaxed therein. And the

inclusion of temperature effects can be realized either by the quasi-harmonic
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approximations (QHA) or molecular dynamics simulations. The ab intio

molecular dynamics simulations are computationally expensive. While the

QHA is relatively cheap and a good solution to count the temperature ef-

fects in materials simulations. Nevertheless, one has to gather the necessary

information to extract Gibbs free energies for all volumes considered before

the calculations of HPHT properties . And then the related properties and

even the phase diagrams can be calculated by numerical techniques. This

whole process is complex and time-consuming to finish manually. Especially

in the construction of phase diagrams for many structures (more than two),

the comparison of their Gibbs free energies and the judgment of stable field

for each structure are tough work. This motivates us to design a package

named Phasego to accomplish all the complicated steps and plot the phase

diagrams automatically.

Phasego is designed for the easy implementation of phase transition

analysis and plot of phase diagrams. It can also calculate the thermody-

namic properties of materials, including the thermal expansion coefficients,

the bulk moduli, the heat capacities, the thermal pressures, the Grüneisen pa-

rameters, and the Debye temperatures. For the dynamic response properties

of materials, Phasego can automatically find the Hugoniot pressure-volume

and pressure-temperature relations according to the Rankine-Hugoniot con-

ditions [7, 8]. All these qualities can be obtained based on the QHA by

simply preparing a controlling file. More interestingly, based on the QHA

the possible phase boundaries of all the structures provided are analyzed and

plotted automatically. So the high pressure and temperature phase diagram

can be constructed and plotted easily by Phasego.
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2. Theoretical backgroud

2.1. Quasi harmonic approximation

The QHA is a phonon-based model of crystal lattice vibrations used to

describe volume-dependent thermal effects, such as the thermal expansion. It

starts from the assumption that the harmonic approximation holds for every

value of the crystal volume, and then takes into account part of anharmonic

effects by varying crystal volume.

In the framework of QHA, the Helmholtz free energy of a crystal is written

as

F (V, T ) = Estatic(V ) + Fzp(V, T ) + Fph(V, T ), (1)

where Estatic(V ) is the first-principles zero-temperature energy of a static

lattice at volume V , and Fzp is the zero-point motion energy of the lattice

given by

Fzp =
1

2

∑
q,j

~ωj(q, V ). (2)

The last term is the phonon free energy due to lattice vibrations, and can be

obtained from

Fph(V, T ) = kBT
∑
q,j

ln {1− exp [−~ωj(q, V )/kBT ]} , (3)

where ωj(q, V ) is the phonon frequency of the jth mode of wavevector q in

the first Brillouin zone.

For a metallic material, the Helmholtz free energy at high temperature

includes the electronic thermal excitation free energy,

F (V, T ) = Estatic(V ) + Fel(V, T ) + Fzp(V, T ) + Fph(V, T ), (4)
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Fel can be evaluated by the finite temperature DFT with the help of the

Fermi-Dirac smearing [9]. At low temperature, Fel is very small and can

be neglected, but at high temperature it is large and probably changes final

conclusions.

If we write Flatt as

Flatt = Fzp + Fph, (5)

it can also be calculated from the phonon density of states g(ω) via [10]

Flatt =

∫ [
1

2
~ω + kBT ln(2sinh

~ω
2kBT

)

]
dωg(ω), (6)

where kB is the Boltzmann constants. The phonon density of states is written

as

gj(ω) =
V

(2π)3

∫
dqδ [ω − ωj(q)] . (7)

And the total densities of states are normalized to,∫
g(ω)dω = 3nN, (8)

where n is the number of atoms in the unit cell and N is the number of the

unit cells.

2.2. Fitting equation of state

For a crystal structure, when obtained the Helmholtz free energies at

different volumes and fixed temperature, one can derive the analytical func-

tion of F (V ) at certain temperature by fitting EOS. The types of the EOS

in Phasego package are: Murnaghan [11], Birch [12], 3rd-order Birch-

Murnaghan [13], 4rd-order Birch-Murnaghan [13], Vinet [14], Vinet Univer-

sal [15], 3rd-order Natural strain [16], 4rd-order Natural strain [16], and the
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3rd and 4rd Polynomial. Then the pressure P is obtained by

P = −
(
∂F

∂V

)
T

. (9)

One can calculate Gibbs free energy G as a function of temperature (T ) and

pressure (P ) via,

G(T, P ) = F (V, T ) + PV. (10)

Once the Gibbs free energy is known, the phase stabilities and transi-

tions can be determined by comparing the Gibbs free energies of different

structures at fixed pressure or temperature.

2.3. The derivation of thermodynamic properties

Other thermodynamic properties can be reduced numerically according

to the thermodynamics relations [17]. The thermal pressure Pth at fixed

volume is

Pth = P (V, T )− P (V, 0). (11)

The enthalpy H does not include thermal effects and can be written as

H = Estatic(V ) + PV. (12)

The volume thermal expansion coefficient α can be derived via

α =
1

V

(
∂V

∂T

)
P

, (13)

and the constant temperature bulk modulus is calculated from

BT = −V
(
∂P

∂V

)
T

. (14)

The entropy at constant volume is

S = −
(
∂F

∂T

)
V

. (15)
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Then the constant volume heat capacity can be calculated from

CV = T

(
∂S

∂T

)
V

= −T
(
∂2F

∂T 2

)
V

. (16)

Hence, the thermodynamic Grüneisen parameter γth is derived via

γth =
αBTV

CV

. (17)

The adiabatic bulk modulus is written as

BS = BT (1 + γthαT ) , (18)

and the constant pressure heat capacity is calculated from

CP = CV (1 + γthαT ) = CV + α2BTV T. (19)

The Hugoniot pressure-volume and pressure-temperature relations are

reduced according to the Rankine-Hugoniot conditions [7, 8],

1

2
PH (V0 − VH) = (EH − E0) , (20)

where EH is the molar internal energy along the Hugoniot, and E0 and V0 are

the molar internal energy and volume at zero pressure and room temperature,

respectively. Because PH and EH are both the functions of temperature,

temperature T can be found by numerically solving Eq.20 at fixed volume

VH .

The internal energy, entropy, and constant volume heat capacity of lat-

tice vibrations can be directly achieved from the phonon density of states

(normalized to 3nN) via [10],

E =
~
2

∫ ωmax

0

ωcoth
~ω

2kBT
g(ω)dω, (21)
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S = kB

∫ ωmax

0

[
~ω

2kBT
coth

~ω
2kBT

− ln

(
2sinh

~ω
2kBT

)]
g(ω)dω, (22)

and

CV = kB

∫ ωmax

0

(
~ω

2kBT

)2

csch2

(
~ω

2kBT

)
g(ω)dω, (23)

respectively.

According to the Debye approximation, the specific heat can be expressed

as,

CV = 9NAkB

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx (24)

where ΘD is Debye temperature and NA is the Avogadro constant. So, at

a fixed volume the Debye temperature ΘD at each temperature T can be

obtained from Eqs. 23 and 24.

3. Description of the package and Input/output files

3.1. Installation requirements

The installation of Phasego package is very easy. Phasego is based

on Python, but to increase the computation speed and realize the numer-

ical interpolation and extrapolation, it also uses Numpy and Scipy python

libraries.

The following packages are required:

• Python 2.6 or later.

• NumPy.

• Scipy.

• Matplotlib.
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Matplotlib is used for the automatic plot of the HPHT phase diagram.

In the Ubuntu system, just simply execute sudo apt-get install python

python-numpy python-scipy python-matplotlib. In the Windows sys-

tems, one can install pythonxy package for all the necessary libraries.

3.2. Installation

There are two methods to install Phasego. When one has the python

setuptools module installed, the first method is to execute python setup.py

install in the Phasego root directory as the administrator. As a common

user, one can also specify a directory to install using additional “--prefix=/

path/to/install/”. If one has no python setuptools, then the second

method to install is: first put the following PATH and PYTHONPATH environ-

ment variable in user’s ∼/.bashrc file:

export PATH=$PATH:/path/to/phasego/src

export PYTHONPATH=$PYTHONPATH:/path/to/phasego/src

or in ∼/.cshrc file:

setenv PYTHONPATH /path/to/phasego/src:$PYTHONPATH

setenv PATH /path/to/phasego/src:$PATH

Then, execute chmod +x /path/to/phasego/src/phasego. Finally exe-

cute source ∼/.bashrc or source ∼/.cshrc.
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3.3. Run

Just type phasego to run the phase analysis in your work directory con-

tained a controlling file phasego.in. All the controlling arguments are de-

tailed below.

3.4. Input files

The input files needed by Phasego package are the static volume-energy

data files and the phonon density of states files for each volume. The structure

information can be obtained from the crystal structure prediction codes, such

as our recently developed Muse package [18] and the calypso package [19].

All the files are placed in the inp-phasename directory for each single struc-

ture, where phasename is the name of this structure named by the user in the

controlling file phasego.in. The common prefix name of the static volume-

energy data files for all structures are specified in the phasego.in file, e.g.,

ve-. The full file names of volume-energy data files are this prefix name

plus “T”, where T is the temperature at which the volume-energy data are

calculated. To include the electronic thermal excitation effects (especially for

metallic materials), the energies can be calculated within the framework of

finite temperature DFT. There should be a number of volume-energy data

files, e.g., ve-0, ve-50, ve-100, ve-150, and so on. For nonmetallic mate-

rials, T equals to 0 and there is only one file, e.g., ve-0. The phonon dos

file is named as ph.dos-volume, where volume is exactly the same value

in the volume-energy file. ph.dos- is the common prefix name specified in

phasego.in for all the structures. The density of states is normalized to

3nN , where n is the number of atoms in the unit cell and N is the number

of the unit cells. The frequencies are in cm−1 and dos are in states/cm−1.
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The following input file example is for the phase transition analysis of

GaN at HPHT. The main input file is named as phasego.in, in which the

lines started with ‘#’ are neglected. Each argument and its value(s) are

placed in the same line, in any order and with any number of blank lines.

The values of each argument are separated by whitespace and placed after

‘=’. The arguments are all self-explained in their comment line(s).

###=========================================================###

###=================== Phasego input file ==================###

###=========================================================###

### Lines started with "#" are neglected.

### Parameter and value(s) are placed in the same line, in any

### order with any number of blank lines.

###

# Note:

###

# A. volumes in Bohr3, energies in Ry.

# B. Num atoms is the number of atoms in the unit cell for

# energy and phonon dos calculations.

# C. dos files: normalized to 3*N, and frequencies in cm-1

# and dos in states/cm-1.

#

# EOS Names (number):

# 1. Murnaghan: Murnaghan EOS (F. D. Murnaghan, Am. J. Math.

# 49, 235 (1937))
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# 2. Birch: Birch EOS (From Intermetallic compounds:

# Principles and Practice , Vol I: Principles. pages

# 195-210)

# 3. BirchMurnaghan: Birch-Murnaghan 3rd-order EOS (F. Birch,

# Phys. Rev. 71, p809 (1947))

# 4. BirchMurnaghan: Birch-Murnaghan 4rd-order EOS (F. Birch,

# Phys. Rev. 71, p809 (1947))

# 5. Vinet: Vinet EOS (Vinet equation from PRB 70, 224107)

# 6. Universal: Universal EOS (P. Vinet et al., J. Phys.:

# Condens. Matter 1, p1941 (1989))

# 7. Natural strain 3rd-order EOS (Poirier J-P and Tarantola

# A,Phys. Earth Planet Int. 109, p1 (1998))

# 8. Natural strain 4rd-order EOS (Poirier J-P and Tarantola

# A,Phys. Earth Planet Int. 109, p1 (1998))

# 9. Cubic polynomial

#10. 4th polynomial

###===========================================================###

# The name of EOS used for fitting

Eos Name = 1

# The user-defined name for each corresponding structure. The

# ve and phonon dos files are placed in each inp-name dir. The

# output files are placed in each out-name dir.

Names of Strs = rocksalt wurtzite zencblende
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# Number of atoms used for ve and phonon dos data of each str.

Num atoms = 2 4 2

# The prefix name of volume-energy data files for each str.

# The full name is the prefix name plus "T", where T is

# temperature to take into account the electronic thermal

# excitation by finite temperature DFT. If including the

# electronic thermal excitation free energy, the temperature

# start, end, and interval should be the same as Tdata below.

VE data File Name = ve-

# Phonon dos file prefix name, i.e., it plus the volume value

# in ve file is the full name.

Ph Dos File Base Name = ph.dos-

# Temperature data (K): start, end, interval

Tdata = 0 6000 100

# Pressure data (GPa): start, end, interval

Pdata = 0 40 1

# If calculate thermal properties, yes or no

If Incl Phonon = yes
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# If include electronic thermal excitation free energy by

# finite temperature DFT, for metals

If Incl Electronic Excitation = no

# If analyze the potential phase transition P-T points between

# these strs, yes or no

If Analysize Phase Transition = yes

# If plot phase diagram using mathplotlib, yes or no

If Plot = yes

# If analyze Hugoniot PTV, yes or no

If Hugoniot = yes

# If calculate Debye Temperature, yes or no

If Calc Debye Temp = yes

3.5. Output files

The output files for single phase analysis are placed in the out-phasename

directory of each structure. The Alpha.dat file contains the thermal expan-

sion coefficients data as the function of temperature at fixed pressures. The

B S.dat file has the adiabatic bulk modulus data as the function of tem-

perature at fixed pressures. The B T P.dat and B T T.dat files contain the

isothermal bulk moduli at fixed pressures and temperatures, respectively.

The C P.dat file contains the outcomes of heat capacities at fixed pres-

sures. The C V P.dat and C V V.dat files have the constant volume heat
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capacities at fixed pressures and volumes, respectively. The DebyeT.dat file

has the Debye temperatures as the function of temperature at fixed vol-

umes. The Enthalpy.dat is the data file of the enthalpy as a function

of pressure. The Entropy V.dat and Entropy P.dat collect the total en-

tropies at fixed volumes and pressures, respectively. The fittedC V V.dat

includes the fitted CV at fixed volumes. The fittedE V.dat is the data

file of the fitted internal energy and pressure. The FittedHelmFreeE T.dat

file contains the fitted Helmholtz free energies at fixed temperatures. The

gamma P.dat has the thermodynamic Grüneisen parameters as the function

of temperature at fixed pressures. The G P.dat and G T.dat files include

the Gibbs free energies as functions of temperature and pressure, respec-

tively. The HugoniotPTV.dat is the output file of the Hugoniot P-T-V data.

The PV T.dat file contains the pressure-volume data at fixed temperatures.

The ThermalP T.dat and ThermalP V.dat have the thermal pressure data

at fixed pressures and volumes, respectively. The VT P.dat is the output file

of the volume-temperature data at fixed pressures. The C V-ph-direct.dat,

Entropy-ph V.dat and E-ph V.dat are the constant volume heat capacities,

entropy and internal energy of lattice vibrations directly from the phonon

density of states, respectively.

The phase transition data and the automatically plotted phase diagram

figures are placed in the Phase-PT directory. The P-T.dat file contains the

transition pressures at fixed temperatures, which are obtained by canning

pressure at each fixed temperature. Similarly, the T-P.dat file contains the

transition temperatures at fixed pressures obtained by scanning temperature

at each fixed pressure. They can be plotted by other plot softwares. The
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phase boundaries are indexed by “|” and the phase transitions are labelled

by ”——>”.

4. Two examples: phase analyses of GaN and Fe

To test the ability of Phasego package, I performed phase analyses for

the semiconductor GaN and the metal Fe. Phasego can automatically

determine the phase boundaries and plot the phase diagrams for the several

competing structures. The total time to run is less than a minute both for

the two cases. For GaN, the thermodynamic properties of the wurtzite phase

are also presented and discussed below.
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Fig. 1: (a) The thermal expansion coefficients of wurtzite-GaN as the function of temper-

ature at different high pressures. (b) The isothermal bulk moduli of wurtzite-GaN as the

function of temperature at different pressures.

Their phonon frequencies and phonon density of state were calculated

using the density functional perturbation theory (DFPT) [20, 21], as im-

plemented in the QUANTUM-ESPRESSO package [22]. The exchange-

correlation functional used is generalized gradient approximation (GGA)
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parametrized by PBE [23] and the pseudopotential is ultrasoft pseudopo-

tential [24]. The Fe pseudopotential is the newest version from the recently

developed pseudopotential library [25]. We careful tested on k and q grids,

the kinetic energy cutoff, and other technical parameters to ensure good con-

vergence of phonon frequencies. The kinetic energy cutoff and the energy

cutoff for the electron density were chosen to be 50 Ryd., 500 Ryd for GaN,

and 40 Ryd. and 400 Ryd. for Fe in both total energy and phonon dispersion

calculations, respectively. We applied the Marzari-Vanderbilt [26] smearing

method with the smearing width of 0.03 Ryd. For the electronic thermal

excitation in Fe, the smearing with the Fermi-Dirac function was applied to

set the electronic temperature.
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Fig. 2: (a) The thermal pressure of wurtzite-GaN as the function of temperature at differ-

ent pressures. (b) The Debye temperature of wurtzite-GaN as the function of temperature

at fixed volumes.

4.1. Thermodynamics of GaN

The thermodynamic properties of its zinc blende, wurtzite and rocksalt

structures are first calculated before phase diagrams calculations. Figure1a
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shows the thermal expansion coefficients of wurtzite-GaN as the function of

temperature at fixed pressures 0, 10, 20, and 30 GPa. The thermal expansion

coefficient increases with temperature at fixed pressure. But it decreases with

pressure at fixed temperature. The isothermal bulk modulus as a function

of temperature at fixed pressure is illustrated in Fig.1b, which shows its

decreasing behaviour with temperature at fixed pressure.
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Fig. 3: (a) The Hugoniot volume versus pressure relation of wurtzite-GaN from single

phase analysis. (b) The Hugoniot temperature versus pressure relation of wurtzite-GaN.

The thermal pressure of wurtzite-GaN as a function of temperature at

fixed atomic volumes 72.07, 76.71, and 81.35 a.u.3 are reduced and shown

in Fig.2a. The thermal pressure increases with temperature as fixed vol-

ume. But unusually the thermal pressure of wurtzite-GaN decreases with

decreasing volume. The Debye temperatures of wurtzite-GaN (Fig.2b) ex-

hibit dramatic drops before 50 K and then increase quickly before 300 K,

and finally converge to constants at fixed volumes.

Manually reducing the Hugoniot pressure-temperature-volume relations

is a time-consuming work. For the Phasego package, it is very easy to
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implement. As an example, the Hugoniot pressure-volume and pressure-

temperature relations of wurtzite-GaN are calculated and presented in Fig.3a.
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Fig. 4: (a) The QHA based high pressure and temperature phase diagram of GaN from the

automatic analysis and plot of phase transition. (b) The QHA based high PT phase dia-

gram of Fe with (red symbols) and without (black symbols) electronic thermal excitation

free energy corrections.

4.2. Phase diagrams of GaN and Fe

Figure 4a is the automatic plot of the phase diagram of GaN. One only

needs provide the necessary volume-energy and phonon density of state data

for different structures covering the pressure range of interest. The Phasego

package will gather the Gibbs free energy information and judge the stable

field of each structure, and finally plot the phase diagram and label the

phase boundary between two structures automatically. The triple point is

also clearly shown in the phase diagram. For metallic materials, the electronic

thermal excitation free energies at high temperature can not be neglected.

In the case of Fe, the results of automatic phase transition analyses with and
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without electronic thermal excitation free energy corrections are shown in

Fig.4b. One notes that the electronic thermal excitation free energies alter

the phase boundaries much obviously at high temperature.

5. Conclusions

I described here the Phasego package which implements the automatic

calculation and plot of phase diagram based on the QHA. The QHA the-

ory and the numerical derivation process of the thermodynamic properties

are also detailed. In order to test the validity and efficiency of the Phasego

package, I performed the phase transition analyses and thermodynamic prop-

erties calculation for GaN. For the metallic materials, I took Fe as an example,

and found the electronic thermal excitation free energy can not be neglected

at high temperature and it changes the phase diagram of Fe obviously.
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