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a b s t r a c t

The computational efficiency of Finite Element Methods (FEMs) on parallel architectures is severely
limited by conventional sparse iterative solvers. Conventional solvers are based on a sequence of
global algebraic operations that limits their parallel efficiency. Traditionally, sophisticated programming
techniques tailored to specific CPU architectures are used to improve the poor performance of sparse
algebraic kernels. The introduced FEM Multigrid Gaussian Belief Propagation (FMGaBP) algorithm is a
novel technique that eliminates all global algebraic operations and sparse data-structures. The algorithm
is based on reformulating the FEM into a distributed variational inference problem on graphical
models. We present new formulations for FMGaBP, which enhance its computation and communication
complexities. A Helmholtz problem is used to validate the FMGaBP formulation for 2D, 3D and higher
FEM degrees. Implementation techniques for multicore architectures that exploit the parallel features
of FMGaBP are presented showing speedups compared to open-source libraries, specifically deal.II and
Trilinos. FMGaBP is also implemented onmanycore architectures in this work; Speedups of 4.8X, 2.3X and
1.5X are achieved on an NVIDIA Tesla C2075 compared to the parallel CPU implementation of FMGaBP on
dual-core, quad-core and 12-core CPUs respectively.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Manycore architectural advances inHigh Performance Comput-
ing (HPC) have introduced difficult challenges to the FEM soft-
ware design. The conventional FEM software relies on performing
global and sparse algebraic operations that severely limits its par-
allel performance. Many attempts were made to improve the per-
formance of conventional sparse computations at the expense of
sophisticated programming techniques. Such techniques are tai-
lored to specific CPU hardware architectures, such as cache access
optimizations, data-structures and code transformations [1]. These
optimizations are known to limit code portability and reusability.
For example, implementations of Conjugate Gradient (CG) solvers
for FEM problems [2], require global sparse operations which per-
form at a low fraction of the peak CPU computational through-
put [3]. Also accelerating CG solvers on parallel architectures is
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communication-bound; recent attempts to improve the commu-
nication overhead of such solvers through reformulation, namely
communication avoiding schemes, suffer from numerical insta-
bility and limited support for preconditioners [4,5]. This perfor-
mance bottleneck is even more pronounced when high accuracy
FEM analysis scales to large number of unknowns, in the order of
millions ormore,which prevents the FEM software users frompro-
ductively utilizing their parallel HPC platforms.

While existing generic andoptimized libraries such as deal.II [6],
GetFEM++ [7], and Trilinos [8] can be used for sparse FEM com-
putations; obtaining a sustained performance can be difficult due
to the varying sparsity structure for different application areas. In
addition, such libraries do not help with the costly stage of as-
sembling the sparse matrix. However, recent work by Kronbichler
et al. [9] use amatrix free (MF) approach to execute the sparse ma-
trix–vector multiply (SMVM) kernel in the CG solver. While their
approach shows promising speedups, it does not depart from the
sequential global algebraic setup of the CG solver and is only effi-
cient for high order elements. The present work is based on a novel
distributed FEM reformulation using belief propagation (BP) that
eliminates the dependency on any sparse data-structures or alge-
braic operations; hence, attacking the root-cause of the problem.
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The belief propagation algorithm, as proposed by Pearl in [10], is
a recursivemessage passing algorithmon graphicalmodels that ef-
ficiently computes the marginal distribution of each variable node
by sharing intermediate results. If the graph is a tree, then BP is
guaranteed to converge to exact marginals. However, if the graph
contains cycles, as typically the case inmany practical applications,
then BP takes an iterative form, referred to as Loopy Belief Propa-
gation (LBP), which can be used to obtain an approximation for the
marginals [10–14]. BP recently showed excellent empirical results
in certain applications, such as machine learning, channel decod-
ing, and computer vision [15–25]. Shental et al. [26] introduced
the Gaussian BP algorithm as a parallel solver for a linear system
of equations by modeling it as a pairwise graphical model. While
the solver showed great promise for highly parallel computations
on diagonally dominant matrices [27], it does not scale for large
FEMmatrices. It also fails to converge for high order FEM problems
[28,29]. In addition, such a solver would still require assembling a
large sparse data-structure.

The introduced Finite Element Gaussian Belief Propagation
(FGaBP) algorithm and its multigrid variant, the FMGaBP algo-
rithm, presented in [28,30,31], are distributed reformulations of
the FEM that results in highly efficient parallel implementations.
The algorithmsprovide a highly parallel approach to processing the
FEM problem, element-by-element, based on distributed message
communication and localized computations. This provides an algo-
rithm amicable to different parallel computing architectures such
as multicore CPUs and manycore GPUs.

In thiswork,we introduce new formulations for the FGaBP algo-
rithm that better exploit its distributed nature. The newalgorithms
provide more efficient memory bandwidth utilization and consid-
erably lower computational complexity; that is, reducing the lo-
cal computational complexity from O


n3


to O


n2


, where n is the

rank of the local (element) FEM matrix. We verify the numerical
results of the new formulation using the definite Helmholtz equa-
tionwith a known solution.We also compare the new formulations
with state-of-the-art open-source libraries such as deal.II [6] and
Trilinos [8] on modern multicore CPUs. Implementation details of
FMGaBP on GPUs are also presented in this work and its perfor-
mance is compared to multicore CPUs.

The paper is organized as follows. In Section 2, a background on
the FGaBP and FMGaBP algorithms is provided, which illustrates
the algorithms and their key parallel features. In Section 3, we
present the new formulations that reduce computation and com-
munication costs of FGaBP. Section 4 presents implementation de-
tails onmulticore andmanycore architectures. Finally in Section 5,
we present and discuss speedup results and close with concluding
remarks.

2. Preliminary

In this section, an overview of the FGaBP and FMGaBP
algorithms is provided; illustrating their distributed attributes,
which will later be used to develop more efficient variants of the
algorithms.

2.1. The FGaBP algorithm

In the following, the FGaBP algorithm is presented in threemain
stages. First, the FEM problem is transformed into a probabilistic
inference problem. Second, a factor graph model of the FEM
problem is created to facilitate the execution of a computational
inference algorithm such as BP. Finally, the FGaBP update rules and
algorithm is presented.
2.1.1. FEM as a variational inference
The variational form of the Helmholtz equation as discretized

by the FEM is generally represented as follows [32,33]:

F (U) =

s∈S

Fs(Us) (1)

where S is the set of all finite elements (local functions); Us are the
field unknowns for element s; and Fs is the energy-like contribu-
tion of each finite element. The local function Fs takes a quadratic
form that can be shown as:

Fs(Us) =
1
2
UT
s MsUs − BT

s U (2)

in which Ms is the element characteristic matrix with dimensions
n× nwhere n is the number of Local element Degrees of Freedom
(LDOF), and Bs is the element source vector.

Conventionally, the FEM solution is obtained by setting ∂F
∂U = 0,

which results in a large and sparse linear system of equations
presented as:

Au = b (3)

where A is a large sparse matrix with dimensions N × N; N is the
number of Global Degrees of Freedom (GDOF) of the linear system;
and b is the Right-Hand Side (RHS) vector. The linear system is
typically solved using iterative solvers such as the Preconditioned
Conjugate Gradient (PCG) method when A is Symmetric Positive
Definite (SPD).

The FGaBP algorithm takes a different approach by directlymin-
imizing the energy functional (1) using the BP inference algorithm.
A variational inference formulation of FEM is created bymodifying
(1) as follows:

P (U) = exp [−F ] (4)

=
1
Z


s∈S

Ψs(Us) (5)

where Z is a normalizing constant, andΨs(Us) are local factor func-
tions expressed as:

Ψs(Us) = exp

−

1
2
UT
s MsUs + BT

s Us


. (6)

Considering applicationswhereMs is SPD, the functionΨs, as in (6),
takes the form of an unnormalized multivariate Gaussian distri-
bution. In addition, it can be shown using convex analysis [16,34]
that P is a valid multivariate Gaussian distribution functional of
the joint Gaussian random variables U . The solution point to the
original problem, which is the stationary point of the functional
F , can be restated as:

argmin
U

F = argmax
U

P . (7)

Since the Gaussian probability P is maximized when U = µ,
where µ is the marginal mean vector of P , the FEM problem can
alternatively be solved by employing computational inference for
finding the marginal means of U under the distribution P . Hence
BP inference algorithms will be employed to efficiently compute
the marginal means of the random variables U .

2.1.2. FEM factor graph
Because P is directly derived from the FEM variational form, it

is conveniently represented in a factored form as shown in (5). As a
result, we can define a graphical model to facilitate the derivation
of the BP update rules. One widely used graphical model is a Factor
Graph (FG) [15], which is a bipartite graphical model that directly
represents the factorization of P . In our setting, we refer to such
a FG as the FEM-FG. The FEM-FG, as shown in Fig. 1(b), includes
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two types of nodes, a random variable node (ui) representing each
node in the unknown vector U , and a factor node representing the
local factors Ψs. An edge is inserted between a variable node ui and
a factor node Ψs, if ui is an argument of the local factor Ψs.

Inference on FEM-FG can perform more dense and localized
computations, especially for higher order FEM, as opposed to infer-
ence on the pairwise models based on sparse matrices as in [26].

2.1.3. BP update rules
Using the FEM-FG, we can execute the general BP update

rules [10] by passing two types ofmessages, Factor Node (FN)mes-
sages and Variable Node (VN) messages. A factor node message,
ma→i, is sent from factor nodes a (FNa) to the connected variable
node i (VNi); and a variable node message, ηi→a, is sent back from
VNi to FNa. BPmessages are basically probability distributions such
that, a FN message ma→i represents the distribution in terms of
the continuous random variable ui, or the most probable state of
ui, as observed from the FN Ψa. In return, the VN message ηi→a is
a distribution in terms of ui representing observations from other
connected factors. For simplicity, we will drop the arrow from the
notation and represent messages between nodes’ indexes a and i
as mai and ηia. The general BP update rules are stated as follows:

m(t)
ai (Ui) ∝


UN (a)\i

Ψa(Ua)


j∈N (a)\i

η
(t⋆)
ja (Uj) dUN (a)\i (8)

η
(t)
ia (Ui) ∝


k∈N (i)\a

m(t⋆)
ki (Ui) (9)

b(t)
i (Ui) ∝


k∈N (i)

m(t)
ki (Ui) (10)

where t and t⋆ are iteration counts such that t⋆ ≤ t; N (a) is the
set of all nodes’ indexes connected to node index a, referred to as
the neighborhood set of a; N (a)\i is the neighborhood set of ami-
nus node i; bi(ui) is referred to as the belief at node i. The integral
in (8) is multidimensional; however, since we are using Gaussian
distributions, the integral can be solved in a closed form.

2.1.4. FGaBP update rules
To facilitate the derivation of the BP update rules, we use the

following Gaussian function parameterization:

G(α, β) ∝ exp

−1
2

αu2
+ βu


(11)

where α is the reciprocal of the variance and β

α
is the Gaussian

mean. This parameterization results in simplified BP message
update formulas that are only functions of parametersα andβ . The
following is the formulation of the FGaBP algorithm update rules:

1. Iterate: t = 0 initialize all messages β = 0 and α = 1.
2. Iterate: t = 1, 2, . . . and t⋆ ≤ t .
3. For each VNi process: compute messages (αia, βia) to each FNa,

such that a ∈ N (i), as follows:

α
(t⋆)
i =


k∈N (i)

α
(t⋆)
ki , α

(t)
ia = α

(t⋆)
i − α

(t⋆)
ai (12)

β
(t⋆)
i =


k∈N (i)

β
(t⋆)
ki , β

(t)
ia = β

(t⋆)
i − β

(t⋆)
ai . (13)

4. For each FNa process:
(a) Receive messages (α

(t⋆)
ia , β

(t⋆)
ia ), where i ∈ N (a).

(b) Define A(t⋆) and B(t⋆) such that A(t⋆) is a diagonal matrix of
incoming α

(t⋆)
ia parameters, and B(t⋆) is a vector of incoming
Fig. 1. (a) Sample FEMmesh of two-second order triangles. (b) The FEM-FGmodel.

β
(t⋆)
ia parameters. Then, computeW and K as follows:

W (t⋆) = M +A(t⋆) (14)

K (t⋆) = B+B(t⋆) (15)
where M and B are the element a characteristic matrix and
source vector as defined in (6) with s = a.

(c) PartitionW (t⋆) and K (t⋆) as follows:

W (t⋆) =


W (t⋆)

L(i) V T

V W̄ (t⋆)


, K (t⋆) =


K (t⋆)

L(i)
K̄ (t⋆)


where L(i) is the local index corresponding to the global
variable node i.

(d) Compute and send FNa messages (α
(t)
ai , β

(t)
ai ) to each VNi as

follows:
α

(t)
ai = ML(i) − V T (W̄ (t⋆))−1V (16)

β
(t)
ai = BL(i) − (K̄ (t⋆))T (W̄ (t⋆))−1V . (17)

5. Messages can be communicated according to any specified
schedule such that t⋆ ≤ t .

6. At message convergence, the means of the VNs, or solutions, µi
can be obtained by:

ū(t)
i = µ

(t)
i =

β
(t)
i

α
(t)
i

. (18)

The FGaBP update rules in (16) and (17) are based on distributed
local computations performed using matrices of order (n − 1).
Clearly, the FGaBP algorithm does not need to assemble a large
global system of equations nor does it perform any operations on
sparse matrices as required in conventional implementations of
PCG. Also, the FGaBP update rules are generally applicable to any
arbitrary element geometrical shape or interpolation order.

2.1.5. Boundary element treatment
Essential boundary conditions, such as Dirichlet conditions, are

incorporated directly into Ψs in (6). Once boundary conditions
are incorporated, the FGaBP communicates informative messages
between variable nodes only. To setup boundary FNs, the VNs (Us)

of a boundary FN (Ψs) are first partitioned into Us =

U{v},U{c}

T
where v is the set of indexes for interior VNs and c is the set of
indexes of boundary VNs. Then, the boundary FN matrix Ms and
vector Bs in (6) are modified as:

Ms = Mvv (19)
Bs = Bv −MvcUc (20)

where Bv,Mvv , andMvc are the sub-vector and the sub-matrix par-
titions corresponding to the Uv and Uc partitions. After incorporat-
ing the boundary conditions, the FGaBP update rules are executed
on boundary elements as normal.

2.2. The FMGaBP algorithm

As previously demonstrated, the FGaBP solves the FEM by pass-
ing locally computed messages on a graphical model comprised
of factor and variable nodes. However, when the discretization
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Fig. 2. (a) Mesh refinement by splitting each triangle in mesh ΩH into four
geometrically similar sub-triangles to produce a finer mesh Ωh . (b) Local node
numbering for each parent–child element set using quadrilaterals.

level becomes finer, or the number of elements and variables in-
crease, the FGaBP convergence takes longer due to slower informa-
tion propagation.While attempts to improve convergence through
message relaxation schemes were proposed in [29], the number
of iterations remains proportional to the number of problem vari-
ables. Multigrid (MG) acceleration schemes [35,36] provide op-
timal convergence speeds. As a result, the number of iterations
are almost independent of the FEM mesh discretization level. The
FGaBP algorithm should benefit greatly from MG schemes mainly
because, BP communications on coarser levels can serve as bridges
to communications between far away nodes on finer levels. This
can considerably improve the overall information propagation in
the FEM-FGmodel and thus enhance convergence. As shown later,
the convergence rates in the multigrid FGaBP (FMGaBP) algorithm
are independent of the domain’s discretization level. In addition,
FMGaBP retains the distributed nature of computations, which has
important benefits for parallel implementation. Mainly, the FM-
GaBP level transfer operations are computationally decoupled and
localized without requiring any global sparse algebraic operations.
To illustrate the FMGaBP formulation, a multivariate distribution,
associatedwith each FNa, called the factor node belief ba is defined.
The belief ba is in the form of a multivariate Gaussian distribution:

b(t)
a (Ua) ∝ exp


−

1
2
UT
a W

(t)
a Ua + (K (t)

a )TUa


(21)

where Ua is a vector of random unknowns linked to the FNa. The
belief ba, unlike the nodal belief bi defined in (10), represents the
marginal distribution as seen from FNa in a specific iteration t . The
message update rules of the BP algorithm in (8)–(10) show that at
message convergence the joint mean of the distribution ba, given
by ūa = W−1a Ka, will be equal to the marginal means of each of
the random unknowns Ua as computed from a global perspective
by (18). In otherwords, themeans computed from local beliefs will
agreewith themarginalmeans computed from the global perspec-
tive at message convergence. Using this observation, a quantity re-
ferred to as the belief residual ra is formulated via:

r (t)
a = K (t)

a −W (t)
a ū(t)

a . (22)

Using multiple grids with refinement by splitting and a consistent
local node numbering between each set of parent–child elements
as shown in Fig. 2, the belief residuals of each group of child ele-
ments can be locally restricted to the parent element:

KH
a = Rlrha (23)

where KH
a is the source vector of the parent element, rha is the accu-

mulated local residual of child elements, andRl is the child–parent
local restriction operator. The iteration count (t) is dropped be-
cause both sides of the equation are operated in the same iteration.
Similarly, we can use local operations for interpolation to apply the
corrections from the coarse elements as follows:

ūh
a ← ūh

a + IlūH
a . (24)

Using the level updated ūh
a we can reinitialize the correspond-

ing level local messages with again using (22) but for ra → 0.
We would then solve for Ka and the incoming messages. In this
setup, the αai messages of each corresponding level is kept with-
out modifications and only the βai messages are reinitialized. For
self-adjoint problems,Rl is typically the transpose of Il. Since con-
vergence is achievedwhen the level restricted local belief residuals
approach zero, the resultingmultigrid FMGaBP algorithm becomes
a fixed-point algorithm for the true stationary solution point.

3. FGaBP reformulations

As can be seen from the FGaBP update rules in (12), (13),
(16) and (17), the FGaBP computational complexity per iteration is
dominated by the FN processes. Because of thematrix inversion re-
quired by each FN, the total FGaBP complexity per iteration, when
using the Cholesky algorithm, is O


Nf n(n − 1)3/3


≈ O


Nf n4/3


where Nf is the number of FNs. For FEM problems, Nf is typically
proportional to N . In addition, we have n ≪ Nf , e.g. for triangular
meshes n = 3 and tetrahedral meshes n = 4. More importantly, n
is independent of Nf which implies that the FGaBP algorithm can
offer high parallel scalability for a good choice of message schedul-
ing, as will be shown later. However, due to the high FN computa-
tional complexity, the local computational cost may dominate as n
increases when supporting higher degree FEM basis functions, or
for example n ≥ 5.

In this section,we present reformulations of FGaBP that reduces
the FN complexity to O


n2


. We also present schemes such

as, element merging and color-based message scheduling, that
enhance the parallel efficiency of the FGaBP algorithm by better
exploiting its distributed computations.

3.1. Lower complexity FGaBP

We can reformulate the FN update rules using the partitioned
matrix inversion identity as stated in the following:

Z =

P Q
R S


, Z−1 =


P̃ Q̃
R̃ S̃


(25)

where:

P̃ = N
Q̃ = −NQS−1

R̃ = −S−1RN
S̃ = S−1 + S−1RNQS−1

N =

P − QS−1R

−1
.

In our algorithm, P is a single element matrix and R is equal to Q T

with dimensions (n−1)×1. The FN update rules can alternatively
be obtained by directly computing the inverse ofW and partition-
ing it as follows:

(W (t⋆))−1 =


W̃L(i) C̃T

C̃ D̃


. (26)

The resulting FN updates will be:

α
(t)
ai =

1

W̃L(i)
− α

(t⋆)
ia (27)

β
(t)
ai = BL(i) +

1

W̃L(i)
(K̄ (t⋆))T C̃ . (28)

Using an in-place Cholesky inversion algorithm to compute
(W (t⋆))−1, the FN complexity can be reduced to O


n3/3


. Since W

is small and dense, optimized linear algebra libraries can be used
to compute its inverse efficiently, e.g. Eigen [37], Gmm++ [38], and
Lapack [39].
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For cases where n is relatively large, e.g. n ≥ 5, computing the
inverse can be costly. As shown in (7), the FEM solution requires
only finding the marginal means which are the ratios of the nodal
parameters βi and αi as shown in (18). From substituting (13) with
(28) and rearranging terms, we obtain:

ū(t)
a = (W (t⋆))−1K (t⋆) (29)

which can be seen as a local element approximate solution ob-
tained from the FNa for the VNii ∈ N (a) and for fixed α messages.
If we partition W as W = D − E − F such that D is the main di-
agonal of W while E and F are the lower and upper off-diagonals
ofW correspondingly, a local stationary, fixed-point, iterative pro-
cess can be createdwithin each FN. For example, the followingwill
constitute a Gauss–Seidel (GS) iteration:

ū(t)
a = (D− E)−1F ū(t⋆)

a + (D− E)−1K (t⋆). (30)

Other fixed-point iterative methods such as Jacobi or successive
overrelaxation (SOR) can also be configured.

Theα messages can be fixed after allowing the FGaBP algorithm
to execute normally for a couple of iterations, or until the α mes-
sages converge to a very high tolerance such as 10−1. This should
replace the initial values in the α messages with better estimates.
Then a number of iterations is executed using (29) to obtain a bet-
ter estimate for ūa. In all of our experiments, one or two iterations
of GS was practically sufficient. Finally, the new β

(t)
ai messages are

obtained from the ū(t⋆)
a estimates as follows:

β
(t)
ai = ū(t⋆)

i α
(to)
i − β

(t⋆)
i + β

(t⋆)
ai , (31)

where to is the iteration in which the α messages are fixed. Clearly
using this approach, the FN process complexity is reduced to ap-
proximately O


n2


. It can be shown that the fixed-point solutions,

or marginal means, of the original FGaBP update rules are equal to
the fixed-point solutions of the new FGaBP update rules. However,
the final message parameters, α and β , may be different between
the two algorithms.We refer to this reduced complexity algorithm
as the approximated update (AU) FGaBP algorithm.

3.2. Element merging

In this section, variations on the graphical structure of the
FGaBP algorithm are proposed in order to increase the parallel effi-
ciency of the FGaBP execution onmulticore architectureswith suit-
able cache capacities. The FEM-FG factorization structure allows us
to easily redefine new factors in (5) by joining other factors as fol-
lows:

Ψŝ(Uŝ) = Ψs1(Us1)Ψs2(Us2), (32)

where s1 and s2 are joint into factor ŝ, which is a function of the
variable set Uŝ = Us1 ∪ Us2 . Once suitable elements are identi-
fied for merging, the FGaBP algorithm can be executed normally
after locally assembling the merged element matrices and source
vectors. When the factors are adjacent, the cardinality of Uŝ is
|Uŝ| =

Us1

+Us2

−Us1 ∩ Us2

. ElementMerging (EM) can be par-
ticularly advantageous if elements sharing edges in 2D meshes or
surfaces in 3D meshes are merged. As a result, the memory band-
width utilization can improve because of considerable edge reduc-
tion in the FEM-FG graph. By merging adjacent elements, the high
CPU computational throughput can be better utilized in exchange
for the slower memory bandwidth and latency.

EM can be mainly useful for 2-D triangular and 3-D tetrahedral
meshes with first order FEM elements. To help illustrate the effect
of merging, we define a quantity referred to as the percentage of
Merge Reduction Ratio (MRR) which is obtained by dividing the
amount of reduced memory due to the effect of merging by the
Fig. 3. Triangular element merging example. (a) Original triangular mesh. (b) The
initial FEM-FG using single element factorization. (c) Merging two adjacent
triangles. (d) Merging adjacent four triangles.

original amount of memory before the merge. In general, the MRR
is computed as:

MRR =


a∈D

Ma −

a∈C

Ma
a∈D

Ma
· 100%, (33)

where D is the set of all factors before any merge, C is the set
of merged factors, and Ma is the amount of memory required for
FNa. Considering the particular implementation detailed later in
Section 4, the memory complexity per factor node can be obtained
by Mi ∝ O


4na + n2

a


where na is the number of VNa edges, or

the rank of Ma. If we consider structured meshes, for illustration
purposes only, the resulting MRR is 23.8% when merging every
two adjacent triangles into a quadrilateral, or 46.4% whenmerging
every four fully connected triangles into a quadrilateral. Fig. 3
illustrates the different FEM-FG graphs frommerging every two or
every four adjacent triangles in a structured triangular mesh.

For irregular triangular meshes with a large number of trian-
gles, Euler’s formula [40, p. 28] states that each vertex will be sur-
rounded by six triangles on average. Thus, when merging mostly
six triangle groups into hexagons, the MRR increases to 38.9%, or
to 42.9% when merging five triangles. Merging triangles does not
have to be uniform. We may decide to merge patches of 2, 3, 4, 5,
6, or more as long as the triangles share edges and form connected,
or preferably, convex regions. Similarly for 3D tetrahedral meshes,
merging tetrahedrons sharing faces can also result in significant
memory storage reductions. If two tetrahedrons of first order are
merged, the MRR is 29.7%, and 53.1% when merging three tetrahe-
drons sharing faces and are enclosed by five vertexes.

While merging elements based on a structured mesh is a trivial
operation, we can still efficiently merge certain element configu-
rations in unstructured meshes by using partitioning algorithms
[41–44]. Specifically, the work in [45] presents algorithms to cre-
ate macro-elements by joining adjacent elements in unstructured
grids. Partitioning may add some overhead in the preprocessing
stage; however, since in practice the number of factors is much
greater than the number of CPU cores, a lower partition quality can
be used to lower the partitioning overhead time [42] without hav-
ing much impact on the overall parallel efficiency.

The element merging does not affect the underlying FEM
mesh discretization properties, it does however affect the FGaBP
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numerical complexity as a solver. Our results in Section 5.2 re-
veal that the overall computational complexity of the merged
FEM-FG can be higher than that of the original, un-merged one.
However, the FGaBP demonstrates considerable speedups for the
merged FEM-FG structure, because of better utilization of available
memory bandwidth and cache resources resulting from improved
computational locality. These observations are illustrated in Sec-
tion 5.2. To conclude, we propose to use the merge feature to con-
trol trade-offs between CPU resources such asmemory bandwidth,
cache utilization and CPU cycles, thus facilitate fine-tuned imple-
mentations on manycore architecture.

3.3. Message scheduling

Message communication in FGaBP can be performed subject
to a particular schedule which can be sequential, parallel, or in
any order. One of the key empirical observations of the FGaBP
algorithm is the flexibility in message communication, which
enables implementations that efficiently trade off computation
with communication on various parallel architectures without
compromising the numerical stability of the algorithm. However,
message scheduling can considerably affect the convergence rate
of the algorithm; therefore, a good message schedule exposes
parallelism by exploiting the underlying connectivity structure of
the problem [27].

There are two basic scheduling schemes for general BP mes-
sages, sequential (asynchronous) and parallel (synchronous). In se-
quential scheduling, all the FNs are sequentially traversed based
on a particular order while their messages are communicated and
synchronized one FN at a time. Each FN computes its messages
based on the most recent nodal messages available within the it-
eration, which is t⋆ = t . This message schedule results in the least
number of FGaBP iterations; but, it does not offermuch parallelism.
In parallel message scheduling, all the FN are processed in parallel
while using the αi and βi values computed at a previous iteration,
t⋆ = t − 1. An additional loop is needed to traverse all the VNs
in parallel to compute new αi and βi values from updated αai and
βai. Such scheduling offers a high degree of parallelism; however,
it requires considerably higher number of iterations due to slower
informationpropagation. To address sharedmemory architectures,
we propose an element-based coloring schedule that exploits par-
allelism inherent in the FEM-FG graphical model while not signifi-
cantly increasing the number of FGaBP iterations.

3.3.1. Color-parallel scheduling
To implement a color-parallel message schedule (CPS), an ele-

ment coloring algorithm needs to be used. The mesh elements are
colored so that no two adjacent elements have the same color sym-
bol. Elements are deemed adjacent if they share at least a node.
A simple mesh coloring diagram is illustrated in Fig. 4 using two
types of meshes, a quadrilateral mesh and a triangular mesh. FN
messages in each color group are computed and communicated in
parallel.

To facilitate a CPS scheme, the FGaBP message updates are
modified as follows:

α
(t)
i = α

(t⋆)
i + (α

(t)
ai − α

(t⋆)
ai ) (34)

β
(t)
i = β

(t⋆)
i + (β

(t)
ai − β

(t⋆)
ai ). (35)

In other words, a running sum of the αi and βi parameters are kept
in each VN, initialized to zero at t = 1, while differences on the
FN edge messages are only communicated by FN processes. In this
scheme, there is no need for an additional loop to traverse and
synchronize the VNs.

The FN processes are synchronized before starting each color
group. This scheme is particularly efficient for multi-threaded
Fig. 4. Illustration of mesh element coloring showing two types of meshes.
(a) Structured quadrilateral mesh containing a total of four colors. (b) Triangular
mesh containing a total of six colors.

implementations on multicore CPUs or manycore GPUs, since
thread-safety is automatically guaranteed by the CPS. A typical col-
oring algorithm would aim to produce the least number of col-
ors; since, this will reduce the number of thread synchronizations
needed at the end of each color group. However, because FEM
meshes contain a very large number of elements, producing a rea-
sonable number of colors using a low complexity algorithm can be
sufficient as long as each color contains a nearly balanced number
of elements. Our numerical tests, shown later in Section 5, indi-
cate that FMGaBP with CPS results in competitive iteration counts
compared to PCG with both Geometric MG (GMG) and Algebraic
MG (AMG) preconditioning.

4. Implementation techniques

In this section we describe techniques used for the implemen-
tation of the AU-FGaBP and FMGaBP algorithms on manycore and
multicore architectures using the CPS scheme.

4.1. Data-structures

Using the CPS scheme of FGaBP and assuming all FNs are of the
same type, the overall storage requirement of FGaBP is O


2N +

Nf (n2
+ 4n)


in 64-bit words. This includes two vectors of size

N for the VNs’ αi and βi, and a data-structure of size Nf con-
taining the collection of FN data-structures where each FN data-
structure contain dense matrices Ma, vectors Ba, αai, and βai, and
an integer vector storing local to global index associations. Also,
this setup assumes that all indexes are stored in 64-bit integers
and all real numbers are stored in 64-bit double-precision floating-
points, which is essential for very large problems. Since usually
O

Nf


≈ O


N


, the overall FGaBP memory complexity is O


N


,

typical for sparse problems. However, unlike conventional sparse
data-structures such as the compressed row storage (CRS), all the
FGaBP data is dense. Hence, the FGaBP data-structure adds mini-
mal overhead by eliminating the need to store complicated spar-
sity patterns. More importantly, iterative solvers in comparison,
such as the PCG, require considerable memory not only to store
the sparse matrix, but also the preconditioner.

The FMGaBP data-structures are mostly based on the FGaBP
data-structures with the addition of another dense matrix per
multigrid level. The added matrix stores the index associations of
parent–child FNs for each hierarchical pair of coarse–fine levels.
The total size of the FMGaBP memory can be obtained by:

FMGaBPMem. ≈ O


(Z + cNf )

L−1
l=0

1
c l
− cNf


(36)

= O

(Z + cNf )

1− (1/c)L

1− (1/c)
− cNf


(37)

where l is the level index; L is the total number of levels; Z =
2N + Nf (n2

+ 4n) which is the FGaBP memory on the finest level;
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and c is the number of children, e.g. c = 4 for 2D quadrilateral
meshes or c = 8 for 3D hexahedral meshes. Clearly, the overall
memory complexity is linear in N as L→∞.

4.2. Multicore CPU implementation

Both the FGaBP and FMGaBP were programmed using C++
Object Oriented Programming (OOP) [46]. FGaBP and FMGaBP are
parallelized on multicore using OpenMP [47].

4.3. Manycore GPU implementation

In the past decade, architectures with many (tens or hundreds
of) integrated cores have been introduced and used in the scientific
computing community. GPUs are a popular class of manycore
processors offering greater opportunities of parallelism on a single
chip than multicore CPUs. It is expected that adeptly parallel
algorithms such as the FMGaBP to benefit from the increased
parallelism of GPU architectures. In this section we will detail
the implementation techniques used to evaluate the FMGaBP
performance on GPU architectures.

4.3.1. Background
Attempts to port parts or all of the FEM computations to

manycore architectures have been presented in previous works.
Most of these works are aimed at accelerating either the global
sparse matrix assembly or the global system solve stage. Con-
strained by the special characteristics of their applications, the
works in [48,49] present simple assembly strategies suited for
manycore architectures. Their proposed techniques are not appli-
cable for general FEM applications but, rather, are mostly suited to
the sparsity structure of their specific applications. Graph coloring
schemes in [50–52] are used to partition the FEM elements to non-
overlapping sets, in order to enable a parallel thread-safe execution
of the assembly routines for the global sparse matrix.

Assembling a global matrix, to be solved in a separate stage,
based on graph coloring and partitioning can be costly. In the
case of FGaBP, coloring adds little overhead since the global sparse
matrix is never assembled and the colored graph is used to process
the FEM solution in parallel. Otherwork [53–55] propose strategies
and novel sparse storage formats to reduce the memory footprint
of the assembled sparse matrix. Since, FGaBP eliminates the need
for assembling a large sparse matrix, many of the optimizations
proposed in previous work are, thus, not applicable to our work.

Significant research has been aimed at improving the solve
stage of the sparse system using GPUs. Most of these work focus
on accelerating the execution of the compute intensive kernels in
the Krylov solvers. As shown in [4,56] such efforts are mainly com-
munication bound and are limited by the maximum performance
achieved from parallelizing the compute intensive kernels. The as-
sembled matrix is usually large and sparse and in many cases does
not fit in the small and fast access memory levels of CPU and the
co-processor memory.

FGaBP avoids assembling a global sparse matrix, thus, is a
promising candidate formanycore architectures. Instead of solving
a large sparse matrix, each FGaBP iteration needs to compute the
incoming and outgoing messages for each factor node. The com-
pute intensive kernel in a FGaBP iteration involves computing the
inverses of many small dense matrices; an operation that is em-
barrassingly parallel and well suited for manycore architectures.
Coloring the FEM-FG graphs improves the underlying parallelism
significantly and allows FNs of the same color to be processed in
parallel by hundreds of threads without producing any synchro-
nization or memory collisions when accessing VN data. To demon-
strate the embarrassingly parallel nature of both of the FGaBP and
FMGaBP algorithms, we have implemented them on the NVIDIA
Tesla C2075 GPU.
4.3.2. The GPU architecture
The NVIDIA Tesla C2075 GPU, which belongs to the Fermi

generation, is used to illustrate the performance of the FMGaBP
implementation on manycore architectures. The Tesla C2075 has
a 6 GB DRAM, 448 CUDA cores, 48 KB of shared memory, and a
memory bandwidth of 144 GB/s.

Current NVIDIA GPUs consist of streaming multiprocessors
(SMs) each containing a few scalar processor cores (SPs), an on-
chip shared memory, a data cache and a register file. Threads ex-
ecuting on each SM have access to the same shared memory and
register file, which enables communication and data synchroniza-
tion with little overhead. Threads executing on different SMs can
only synchronize through the GPU of-chip global DRAM which in-
curs high latency of several hundred clock cycles. To parallelize an
algorithm on GPUs, all of these architectural features have to be
taken into account to efficiently use the available GPU resources.

The most popular APIs used to implement algorithms on GPUs
are the Compute Unified Device Architecture (CUDA) and the Open
Computing Language (OpenCL). CUDA 5.0 was used along with the
library CUBLAS 5.0 [57] to implement the FMGaBP algorithmon the
GPU. Initially, data has to be explicitly transferred from the CPU
memory to GPU and then a collection of kernels are instantiated
from the CPU to execute the parallel segments of the program
on the GPU. Threads are grouped into blocks that are scheduled
for execution on the GPU’s SM. Groups of 32 threads in a block,
called warps, are scheduled to execute the same instruction at the
same time. Threads in the same block can communicate via on-
chip shared memory with little latency while threads in different
blocks have to go through GPU global memory for any kind of data
synchronization [57].

4.3.3. GPU implementation details
FMGaBP is fully implemented on the NVIDIA Tesla C2075. The

FNs, VNs, and levelmatrix data are transferred to theGPUonce thus
noGPU–CPUmemory transfers are required during the algorithm’s
execution. The following details the GPU implementation of
FMGaBP:
Multigrid restrict and prolong kernels: The restriction and prolon-
gation stages are implemented in two different kernels. The par-
ent–child mapping in the FMGaBP is loaded into shared memory
to reduce globalmemory references. The compute intensive opera-
tion in themultigrid computations is the densematrix–vectormul-
tiply for each parent FN in the coarser grid. The number of parent
nodes assigned to each warp is computed by dividing the number
of threads per warp (32) by the number of children for each par-
ent. For example, in a 2D problem using quadrilateralmeshes, each
warp in the interpolation kernel applies corrections from eight FNs
in the coarse grid to their children; thus allocating four threads to
each FN in the coarse grid to parallelize the compute intensive ker-
nels involved in the restrict operations.
Batch of inverses on GPUs: Computing the inverse of local matrices
in the smoother iterations is the most time consuming operation
in the FGaBP algorithm. Depending on the problem size, the
number of matrices to be inverted can be very large. Various
heuristics could be used to compute a batch of inverses on the GPU.
Depending on the size of the local matrices, each inverse could
be computed via one thread block, one warp or even one thread.
For example, if the rank of each matrix is 256 then allocating one
thread block (with 256 threads) to each matrix inverse would be
efficient.

A batch of inverses can be computed using the NVIDIA CUBLAS
library [57] for matrices up to rank 32. An in-place LU decompo-
sition should first be performed and then the cublasDgetriBatched
kernel is called to compute an out-of-place batch inversion. Since
eachwarp computes the inverse of onematrix, the aforementioned
kernel does not perform well for the low rank matrices in the
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Fig. 5. The global error of the AU-FGaBP obtained from element-based l2-norm
error relative to the exact solution.

FMGaBP kernel. For 2D problems using quadrilateral meshes or 3D
problems using tetrahedral meshes, our matrices are only of rank
4, thus when using the CUBLASmatrix inversion, the GPU resource
will be underutilized and threads in a warp will not have enough
work. Our matrix inversion kernel is customized to the matrix’s
dimension. The number of inverses computed via one warp is ob-
tained through dividing the number of threads per warp (32) by
the rank of the local densematrices. For example, for a 2D problem
with rank 4 local matrices, each warp computes 8 matrix inver-
sions. We outperform the CUBLAS matrix inversion kernel by 2X
when inverting a batch of 10 million rank 4 matrices. Another ma-
jor advantage of our matrix inverse kernel is that it performs the
inverse in-place on shared memory. As a result, the computed in-
verses do not have to be stored in global memory and the outgoing
messages can be computed in the same kernel. Not storing thema-
trix inverses in the global memory enables the GPU to solve larger
problems more readily.
Kernel fusion in FGaBP: The FGaBP iterations involve computing the
incoming and outgoing messages and updating the VN’s running
sums. Instead of calling three separate GPU kernels one for each
stage, we fuse these kernels and only call one GPU kernel for each
iteration. Key advantages resulting from the fusion process are:
First, data can be loaded completely into shared memory in order
to be used by a single FGaBP kernel call reducing communication
within the GPU’s memory hierarchy. Second, the local matrix in-
verses can be generated on the fly and used to compute the run-
ning sum without the need to be stored in global memory. Lastly,
kernel call overheads are also reduced by only calling one kernel
for each FGaBP iteration.

5. Results and discussions

In this section, we present numerical and performance results
of the new FGaBP and FMGaBP algorithms. The definite Helmholtz
problem is first used to verify the numerical results of the AU-
FGaBP algorithm. Then, the performance results of the enhanced
FMGaBP algorithm on multicore and manycore architectures are
presented. In all our experiments, unless otherwise stated, the
iterations are terminated when the relative message error l2-norm
drops below 10−12 on the finest level.

5.1. FGaBP verification

The OOP based design of the FGaBP software facilitates its
integration with existing frameworks of open-source software
such as deal.II [6] and GetFEM++ [7]. The basic FGaBP formulation
was previously demonstrated in [28,30] for 2D Laplace problems
using both triangular and quadrilateral FEM elements as provided
by the libraries GetFEM++ and deal.II. In this work, we verify the
numerical results of the new AU-FGaBP formulation using the
definite Helmholtz problem with a known solution for 2D and 3D
domains as well as higher order FEM elements. The Helmholtz
problem setup is provided by deal.II. The definite Helmholtz is
formulated as follows:

−∇ · ∇u+ u = g, on Ω (38)
u = f1, on ∂D (39)
n · ∇u = f2, on ∂N (40)

where ∂D and ∂N are the Dirichlet and Neumann boundaries such
that ∂D∪∂N = ∂Ω , andΩ is the square or cubic domain bounded
by [−1, 1]. Eq. (40) constitutes the non-homogeneous Neumann
boundary condition. The right-hand-side functions are set, such
that the exact solution is:

u(p) =
3
i

exp

−
|p− pi|2

σ 2


(41)

where p is a spatial variable in (x, y, z), pi are exponential center
points chosen arbitrarily, and σ = 0.125. The library deal.II creates
the mesh, and provides the FGaBP class with the elements’ M, B,
and local to global index data. The AU-FGaBP processes the FEM
problem element-by-element in parallel to compute the solution.
Afterwards, certain functions from the library deal.II are used
to compute the final error relative to the exact solution of the
Helmholtz problem on each individual element.

The AU-FGaBP uses α message tolerance of 10−1 and two GS
iterations. The test cases are obtained by varying the FEM ele-
ment order from the 1st to the 3rd order for both 2D quadrilaterals
and 3D hexahedrals. Fig. 5 shows the global error plots for each
test case. The global error plots are obtained by summing up the
squares of the l2-norm of the error on each element and then tak-
ing the square root of the result. As shown the AU-FGaBP obtains
the expected error trends for the FEM; accuracy increases on all
test cases with increasing number of elements as well as increas-
ing FEM order.

5.2. Element merging performance

Elementmerging in the FGaBP algorithm is demonstrated using
a structured triangular mesh on a unit square domain. The Laplace
equation is solved in the domain using zeroDirichlet on the bound-
ary. The unit square is subdivided into equally spaced sub-squares
where each square is further divided into two right triangles. We
perform two level merges by merging each two adjacent trian-
gles, and then each four adjacent triangles. The original mesh has
Nf = 200 000 triangular element FN. Relaxation, as in [29], was
not used in order to isolate the effect of merging on performance
and iterations. The algorithm iterations were terminated when the
message relative error l2-norm reached < 10−9. Table 1 shows the
speedup results from merging. The experiments were performed
on an Intel Core2 Quad CPU with clock frequency of 2.83 GHz.

The merge results in increasing speedups. The results illustrate
that the execution time improves with increased merging which
was mainly due to the improved locality of the algorithm. The
complexity of the merged algorithms can approximately be stated
as O


TNf (n3

+ n2)

, where T is the total number of iterations.

The results also show reductions in iterations with increased
merging, whereas the computational complexity increases due to
increased local complexities in the factor nodes. These reductions
in iterations may be attributed to the better numerical properties
of the merged algorithms by correlating more local information
in each factor belief. However the improved locality of the
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Fig. 6. Execution times on a 16-core node. (a) 2D execution times. (b) 3D execution times.
Table 1
AU-FGaBP with element merge speedups.

Merge Nf LDOF Iteration
ratioa

Complexity
ratiob

Speedup

Un-merged 200 000 3 1.0 1.0 1.0
2-triangle 100 000 4 1.08 0.972 1.34
4-triangle 50 000 6 1.35 0.771 2.89
a Iterations ratio= iterations of un-merged/merged.
b Complexity ratio= complexity of un-merged/merged.

merge algorithms predominate the increase in overall complexity
resulting in higher speedups. Mainly, improved locality results
in better trade-offs of cache and memory bandwidth for cheaper
CPU flops. Nonetheless, increased merging is expected to result in
reduced performance; however, such high merge configurations
would not be practical in most FEM problems.

5.3. Multicore performance

We compare our multicore implementation to two optimized
parallel open-source implementations which are deal.II-MT (Mul-
tithreaded) and Trilinos [8]. The execution time for all runs are ob-
tained on a SciNet Sandybride cluster node [58]. The node contains
2 × 8-core Xeon 2.0 GHz CPUs with 64 GB DRAM. The imple-
mentation from deal.II uses geometric MG (GMG) as a precondi-
tioner with multithreaded parallelism, while the implementation
from Trilinos uses Algebraic MG (AMG) as a preconditioner with
MPI [59] parallelism. Since our focus is to show the efficiency of
the parallel computations of the FEM solvers, we have used simple
domains with well balanced partitions.

The AU-FMGaBP required 6 iterations for all 2D level runs; and
8 iterations for all 3D level runs. This illustrates that the FMGaBP,
typical of multigrid schemes, results in optimal convergence.
deal.II implementations show similar iteration results. Trilinos
execution resulted in up to 14 iterations for 2D and 16 iterations
for 3D since AMG typically requires more iterations than GMG.

TheAU-FMGaBP algorithmwas usedwith the CPS scheme. Fig. 6
shows the execution results for all implementations parallelized
on 16-cores. Problem sizes ranging from 35K to 16.7M unknowns
were used. The AU-FMGaBP demonstrated faster execution time
in all runs while showing linear scalability with the number of un-
knowns. As the problem size increases, the overhead due to Trili-
nos’s MPI calls reduces resulting in improved efficiency for larger
problems. In contrast, the AU-FMGaBP demonstrated higher effi-
ciency for all problem sizes. The single node ran out of memory for
larger problems. However these results indicate that to efficiently
address larger problems, the AU-FMGaBP needs to employ hybrid
parallelism with multithreading and MPI on multiple nodes. Such
Fig. 7. The speedup achieved from accelerating FMGaBP on NVIDIA Tesla C2075
compared to the parallel implementation of the method on 1–16 CPU cores.

implementation requires specialized message scheduling algo-
rithms and mesh partitioning schemes which support the element
merging features. This implementation is planned for future work.

5.4. Manycore performance

The FMGaBP is implemented on NVIDIA Tesla C2075 for the
2D Helmholtz problem with number of unknowns ranging from
26K to 4.1M. Larger problems should be executed on a cluster of
GPUs because of the GPU global memory size limits. Fig. 7 shows
the speedup achieved by implementing FMGaBP on a single GPU
versus the proposed parallel CPU implementation of the method
on the SciNet 2×8-core Xeon processor. The speedup scalability is
also presented in the figure by altering the number of threads for
the CPU runs. As shown in the figure, the Tesla C2075 outperforms
the CPU with up to 12 cores for all problem sizes. Larger problems
are able to utilize the GPU resources more efficiently thus the
GPU is faster than the 16-core CPU node for the largest problem
with 4.1M unknowns. The only case where the GPU did not
demonstrate speedups was for the smaller problem sizes (26K
and 1M unknowns). The average (speedup over all problem sizes)
achieved from the GPU implementation compared to the dual-
core, quad-core and 12-core CPU settings are 4.8X, 2.3X and 1.5X
respectively.

6. Conclusions

Enhanced distributed FEM algorithms based on probabilistic
inference are presented showing high degree of efficiency
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on parallel architectures. Multicore implementations of our
algorithms showed considerable speedups on most experiments
against highly optimized open-source libraries; while, manycore
implementations showed speedups on various problem sizes,
outperforming 12-core CPUs. Future work will explore extending
the FGaBP to solve nonlinear FEM applications along with support
for local element assembly in order to further increase parallelism.
In addition, hybrid multithreaded and MPI implementation based
on distributed message scheduling on cluster architectures will be
investigated.
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