
Exact Charge-Conserving Scatter-Gather Algorithm for Particle-in-Cell
Simulations on Unstructured Grids: A Geometric Perspective

Haksu Moona,∗, Fernando L. Teixeiraa, Yuri A. Omelchenkob

aElectroScience Laboratory, The Ohio State University, Columbus, OH 43212, USA
bTrinum Research Inc., San Diego, CA 92126, USA

Abstract

We describe a charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured
grids. Charge conservation is obtained from first principles, i.e., without the need for any post-processing or
correction steps. This algorithm recovers, at a fundamental level, the scatter-gather algorithms presented
recently by Campos-Pinto et al. [1] (to first-order) and by Squire et al. [2], but it is derived here in a
streamlined fashion from a geometric viewpoint. Some ingredients reflecting this viewpoint are (1) the use of
(discrete) differential forms of various degrees to represent fields, currents, and charged particles and provide
localization rules for the degrees of freedom thereof on the various grid elements (nodes, edges, facets), (2) use
of Whitney forms as basic interpolants from discrete differential forms to continuum space, and (3) use of a
Galerkin formula for the discrete Hodge star operators (i.e., “mass matrices” incorporating the metric datum
of the grid) applicable to generally irregular, unstructured grids. The expressions obtained for the scatter
charges and scatter currents are very concise and do not involve numerical quadrature rules. Appropriate
fractional areas within each grid element are identified that represent scatter charges and scatter currents
within the element, and a simple geometric representation for the (exact) charge conservation mechanism
is obtained by such identification. The field update is based on the coupled first-order Maxwell’s curl
equations to avoid spurious modes with secular growth (otherwise present in formulations that discretize
the second-order wave equation). Examples are provided to verify preservation of discrete Gauss’ law for all
times.

Keywords: scatter-gather, particle-in-cell (PIC), Whitney forms, finite elements, unstructured grids,
differential forms.

1. Introduction

Particle-in-cell (PIC) algorithms have been extensively used for several decades in the simulation of prob-
lems involving space charges [3, 4, 5, 6], including plasma-related applications such as electron accelerators
[7], laser ignited devices [8], and high-power microwave generation [9], to name a few. A key challenge to
PIC algorithms is how to achieve exact charge conservation properties on unstructured, irregular grids. The
traditional approach to enforce charge conservation is to apply correction terms to the electric fields in order
to satisfy Gauss’ law at every time step [10, 11, 12]. An alternative approach is to enforce the (discrete)
continuity equation directly at every grid cell [13, 14, 15, 16, 17, 18]. However, this latter approach is
predicated on the use of rectangular grids. In order to more accurately represent general curved geometries,
unstructured grids are highly desirable [2, 19].

A charge-conserving scatter-gather algorithm for irregular grids based on first principles, that is without
resorting to any correction steps, was proposed in [20, 21]. This algorithm relies on the vector-wave equation
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and on the use of the time-integrated electric field as a dynamical variable. Compared to Maxwell’s equations,
the vector-wave equation admits an enlarged solution space that includes gradient-like solutions exhibiting
secular growth in time, i.e., of the form t∇φ. These solutions, even if not initially excited by (properly
set) initial conditions, can nevertheless emerge at late times due to the accumulation of round-off errors and
pollute the numerical solution unless specialized strategies such tree-cotree decomposition (gauging) [22],
grad-div regularization [23], or ad hoc corrections [24] are utilized. In addition, the approach in [20, 21]
requires a numerical differentiation in time to compute the electric field E. This causes the (temporal)
order of accuracy for E to be one order less than the order of accuracy of the time integration scheme itself.
Further, a Newmark-beta scheme is adopted in [20, 21] for the numerical time integration. This scheme
has the advantage of producing an unconditionally stable update, but has the disadvantage of yielding a
linear system with deteriorating condition numbers for large Courant factors that may occur, for example,
in highly refined grids or multiscale problems [25].

Another exact charge-conserving algorithm based on first-principles was recently presented by Squire
et al. [2]. This algorithm utilizes a variational vector-potential formulation that is multi-symplectic and
has manifest gauge symmetry. The authors employ discrete Hodge star operators (“mass matrices,” which
encode the spatial metric) represented as diagonal matrices. This diagonal representation is only adequate
for Delaunay triangular (primal) grids, wherein a particular type of dual grids can be constructed such that
the paired primal-dual grid elements are orthogonal to each other (constituting the so-called Voronoi dual).
This diagonal representation is not suited for more general types of triangular grids where a dual grid with
such orthogonality property may not exist.

More recently, Campos Pinto et al. [1] put forth a comprehensive charge-conserving PIC algorithm
based on a finite element Maxwell solver using curl-conforming elements of arbitrary orders, arbitrary shape
factors, and piecewise polynomial trajectories of particles. In this paper, we derive a charge-conserving
scatter-gather scheme for PIC simulations on unstructured grid that recovers, at a fundamental level, the
scatter-gather algorithm by Campos Pinto et al. [1] to first-order, and by Squire et al. [2], but is obtained here
in a more streamlined fashion from a geometric viewpoint. Similarly to [1] but in contrast to [2], the present
algorithm does not require a Delaunay triangular grid, being equally applicable to any irregular triangular
(or simplicial1) grid through the use of a sparse, but nondiagonal representation for the discrete Hodge
star operators [26, 27], as given by expressions (9) and (10) below. The present algorithm uses the coupled
first-order Maxwell’s curl equations and a mixed Whitney form representation for the electromagnetic fields
to avoid spurious solutions, and a leap-frog time update that only requires a symmetric-positive-definite
linear system solver with no condition number deterioration across different mesh-refinement scales [25].
Some of the ingredients reflecting the geometric perspective adopted here are: (1) the use of (discrete)
differential forms of various degrees to represent all dynamic variables (fields, currents, and particles) and
provide clear localization rules for the degrees of freedom thereof on the appropriate grid elements (nodes,
edges, facets), and (2) the use of 0, 1, and 2 (or nodal, edge, and face) Whitney forms (interpolatory
functions) to consistently represent the particle charges, currents, and fields in continuum space [26, 28, 29].
In particular, the expressions obtained for the scatter charges and scatter currents are very simple and
do not involve any numerical quadrature rules. Appropriate fractional areas within each grid element are
identified to represent scatter charges and scatter currents, and a geometric demonstration of the exact
charge conservation is obtained from this very identification and irrespective of triangular shape of the grid
cells.

1Recall that a simplicial grid is such that all its elements are simplices, i.e., elements whose boundaries are the union of a
minimal number of lower-dimensional elements. Therefore, in a 3-D simplicial grid for example, any face is a triangle and any
volume cell is a tetrahedron.
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2. Formulation

2.1. Field update

On unstructured grids, the electric field intensity E(r, t) and the magnetic flux density B(r, t) can be
expanded using Whitney basis functions as [28, 29, 26]

E(r, t) =

Ne∑
i=1

ei(t)W
1
i (r), (1)

B(r, t) =

Nf∑
i=1

bi(t)W
2
i (r), (2)

where Ne and Nf are the number of edges and faces in the grid, so that there is a 1:1 correspondence
(localization) of the degrees of freedom ei(t) and bi(t) to edges and faces, resp., in the grid. In the above,
W1

i (r) and W2
i (r) are (Whitney) edge and face basis functions [28, 29, 26], respectively. The units of W1

i (r)
and W2

i (r) are [m−1] and [m−2], respectively. The edge and face Whitney functions above are vector proxies
of Whitney 1-forms and Whitney 2-forms, respectively. For details about Whitney functions, see Appendix
A. Note that the units of the ei(t) and bi(t) factors are Volts [V] and Webers [Wb], respectively. The above
expansions are informed by the fact that electric field is a 1-form and magnetic flux density is a 2-form in
the language of differential forms [30, 31, 32, 33]. Furthermore, if an electric current density is present in
the grid, current density is defined such that

J?(r, t) =

Ne∑
i=1

ii(t)W
1
i (r). (3)

so that the degrees of freedom ii(t) are associated to the edges of the grid, like those of E(r, t) 2. With the
aid of Galerkin testing, Maxwell’s equations can be spatially discretized as [26]

C · e = − d

dt
b, (4)

CT ·
[
?µ−1

]
· b =

d

dt
[?ε] · e + i. (5)

C is an incidence matrix with elements in the set {-1,0,1}, providing the (discrete) representation of curl
operator distilled from the metric [34, 35]. The superscript T indicates the transpose. The arrays of degrees
of freedom are defined as

e = [e1(t), e2(t), · · · , eNe(t)]T , (6)

b = [b1(t), b2(t), · · · , bNf (t)]T , (7)

i = [i1(t), i2(t), · · · , iNe(t)]T . (8)

In addition,
[
?µ−1

]
and [?ε] in (5) are discrete Hodge star operators given by the following integrals [26, 27],

[?ε]ij =

∫
Ω

εW1
i (r) ·W1

j (r) dV, (9)[
?µ−1

]
ij

=

∫
Ω

1

µ
W2

i (r) ·W2
j (r) dV, (10)

2We employ a star subscript on J? because, strictly speaking, the electric current density J is a (twisted) 2-form that should
be discretized in the dual grid. The above J? is the Hodge dual representation of J, on the primal grid [32].
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Figure 1: Temporal basis functions of the lowest orders: (a) Piecewise constant (pulse) function and (b)
Piecewise linear (rooftop) function.

which, for a given grid, are pre-computed using quadratures. Both
[
?µ−1

]
and [?ε] are symmetric positive-

definite matrices, which is a property is necessary to ensure stability of the time updating scheme [32]. It
should be pointed out that the Hodge matrix associated with i in (5) is the identity matrix.

Using the leap-frog scheme, the semi-discrete equations (4) and (5) can be fully discretized as

bn+ 1
2 = bn−

1
2 −∆tC · en, (11)

[?ε] · en+1 = [?ε] · en + ∆t
(
CT ·

[
?µ−1

]
· bn+ 1

2 − in+ 1
2

)
. (12)

Since (9) and (10) are positive-definite, it can be easily be shown that the above update scheme is condi-

tionally stable, obeying a Courant-like stability criterion [26],[35]. From the discrete values en+1 and bn+ 1
2

obtained from (11) and (12), the temporal coefficients ei(t) in (1) and bi(t) in (2) can be interpolated as [36].

ei(t) =
∑
n

eni Πn(t), (13)

bi(t) =
∑
n

b
n+ 1

2
i Λn+ 1

2 (t), (14)

where Πn(t) is a piecewise constant (pulse) function centered on integer times and Λn+ 1
2 (t) is a piecewise

linear (rooftop) function centered on half-integer times. The choice of (13) and (14) is inspired by (4),
where time derivative of b should be the same form of e. Also, ii(t) in (3) can be likewise expanded in the
piecewise linear function centered on half-integer time indices (see (5)).

2.2. Gather step

In the gather step, field values are interpolated at the positions of particles. Since Whitney basis functions
are used to represent the field values, (1) and (2) can be directly used for the interpolation. Using (13) and
(14), E and B in their respective discrete times are expressed as

E(rp, n∆t) = En(rp) =

Ne∑
i=1

eni W
1
i (rp), (15)

B (rp, (n+ 1/2)∆t) = Bn+ 1
2 (rp) =

Nf∑
i=1

b
n+ 1

2
i W2

i (rp), (16)

where rp is the position of the p-th particle.
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2.3. Particle update

The next step is to update particle attributes such as position rp(t) and velocity vp(t). The equation of
motion and Lorentz-Newton equation are utilized. For simplicity, we consider here a non-relativistic case:

drp
dt

= vp, (17)

dvp
dt

=
q

m
(E + vp ×B) . (18)

In (18), q and m are the charge and mass of the particle, respectively. Using the leap-frog time update, (17)
and (18) are discretized as

rn+1
p − rnp = ∆tv

n+ 1
2

p , (19)

v
n+ 1

2
p − v

n− 1
2

p =
q∆t

m

(
En + vnp ×Bn

)
. (20)

Note that (19) is the explicit update whereas (20) is implicit. Furthermore, the interpolated values of vnp
and Bn in the right hand side of (20) should be calculated a priori. We assume that vnp is expanded in the
piecewise linear function because vnp and Bn are centered on the same time. Therefore, when t = n∆t,

vnp =
1

2

(
v
n+ 1

2
p + v

n− 1
2

p

)
, (21)

Bn =
1

2

(
Bn+ 1

2 + Bn− 1
2

)
. (22)

In contrast to vp, B is the function of space as well, so it is assumed that Bn+ 1
2 (rp) = Bn+ 1

2 (rnp ). Therefore,
(20) is modified to

v
n+ 1

2
p − v

n− 1
2

p =
q∆t

m

[
En +

1

4
v
n+ 1

2
p ×

(
Bn+ 1

2 + Bn− 1
2

)
+

1

4
v
n− 1

2
p ×

(
Bn+ 1

2 + Bn− 1
2

)]
. (23)

After some algebra, (23) can be succinctly expressed as

v
n+ 1

2
p = N−1 ·NT · vn−

1
2

p +
q∆t

m
N−1 ·En, (24)

where

N =


1 − q∆t2m Bnz

q∆t
2m Bny

q∆t
2m Bnz 1 − q∆t2m Bnx

− q∆t2m Bny
q∆t
2m Bnx 1

 , (25)

Bns =
1

2

(
B
n+ 1

2
s +B

n− 1
2

s

)
, s = x, y, or z. (26)

Note that N is unitless. In summary, (19) together with (24) constitute the well-known (non-relativistic)
equation of motion for a charged particle in an electromagnetic field. Note that the particle velocity should
be updated before the update of the particle position.

2.4. Scatter step

This step is to assign charge density and current density back to the grid using the updated particle
attributes. Of course, the fundamental question here is how to assign the particle charge to grid vertices
(nodes) consistent to the assignment of the respective currents to grid edges. To achieve this, we use the
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Figure 2: Scatter step: (a) Nodal charge assignment from a charged particle placed at rp with local numbering
of vertices and edges and (b) Current assignment due to charge movement from rp,s to rp,f during ∆t with
default directions for currents.

same family of interpolatory functions for both, viz. Whitney functions. The advantage of using such
functions is two-fold: (i) they preserve the total amount of the vertex-distributed charge for each particle
and (ii) they exactly preserve the charge continuity equation (more on this below) and guarantee that no
spurious charges arise in Gauss’ law during the particle motion on the grid.

To examine this, let us first consider the charge assignment. The charge Q of the p-th particle is
represented as a 0-form and distributed to the grid vertices so that

qi = QW 0
i (rp) = Qλi(rp), (27)

where the subscript i is the index of vertices and W 0
i is the Whitney 0-form associated with vertex i. The

value of the function W 0
i (rp) is simply equal to the barycentric coordinate of the point rp referred to the

node i, i.e., W 0
i (rp) = λi(rp) (see Appendix A). When (27) is summed over all possible i values,∑

i

qi =
∑
i

Qλi(rp) = Q
∑
i

λi(rp) = Q, (28)

since
∑
i λi(rp) = 1 holds (a partition of unity). The charge assignment (27) is illustrated in Fig. 2a with

the local numbering of vertices and edges. Vertices and edges are represented by ν and e, respectively. Note
that the charge values are only associated to the vertices of the triangle on which the particle is located.

Fig. 2b describes the current assignment. The p-th particle of charge Q moves from rp,s to rp,f during
∆t along straight path L. For example, the current assigned to e1 (edge 1) is

i1 =
Q

∆t

∫ rp,f

rp,s

W1
1(rp) · dL =

Q

∆t

(
λs1λ

f
2 − λ

f
1λ

s
2

)
, (29)

where λsi and λfi are shorthands of λi(rp,s) and λi(rp,f ), respectively. See Appendix B for further details
on the evaluation of this line integral. We note that Equation (29) is a simpler version of the first equation
in Section 3.2 of [1], here evaluated in closed-form along a linear particle trajectory. The current values i2
and i3 can be obtained similarly. During the scatter step ∆t, particles might travel beyond a single triangle
element and cross element edges. In this case, the path can be simply divided into smaller segments whereby
each segment resides entirely within a single triangle. The scatter step above can then be applied to each
segment.

2.5. Charge conservation
To verify charge conservation, let us consider the semi-discrete continuity equation

d

dt
q + S̃ · i = 0, (30)
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where the array q represents the amount of charge at all vertices, i.e., q = [q1(t), q2(t), · · · , qNν (t)]T , Nν
being the number of vertices in the grid, and S̃ being the incidence matrix associated with the (discrete)

divergence operator in the dual grid [27, 32, 34, 37]. Note that, similarly to C, all elements of S̃ are in the
set {-1,0,1}. Applying a leap-frog time update to (30), we obtain

qn+1 − qn

∆t
+ S̃ · in+ 1

2 = 0. (31)

Then, let us consider ν1 (vertex 1) without loss of generality. The time rate of charge variation at ν1 is

qn+1
1 − qn1

∆t
=
Qλf1
∆t
− Qλs1

∆t
=

Q

∆t
(λf1 − λs1). (32)

On the other hand, the current flowing out of ν1 can be computed as

(S̃in+ 1
2 )1 = i1 + i2

=
Q

∆t

[∫ rp,f

rp,s

W1
1(rp) · dL +

∫ rp,f

rp,s

W1
2(rp) · dL

]

=
Q

∆t

[(
λs1λ

f
2 − λ

f
1λ

s
2

)
+
(
λs1λ

f
3 − λ

f
1λ

s
3

)]
=

Q

∆t

[
λs1 − λ

f
1

]
, (33)

where the property λ1 + λ2 + λ3 = 1 has been used, and the Whitney edge basis functions are indexed in
an ascending order fashion (instead of a cyclic order) such that

W1
1(rp) = λ1(rp)∇λ2(rp)− λ2(rp)∇λ1(rp), (34)

W1
2(rp) = λ1(rp)∇λ3(rp)− λ3(rp)∇λ1(rp), (35)

W1
3(rp) = λ2(rp)∇λ3(rp)− λ3(rp)∇λ2(rp). (36)

As the sum of (32) and (33) equals zero, the continuity equation is verified exactly.
The above derivation can be interpreted geometrically by understanding the geometric representation of

Whitney 0-forms and 1-forms. Let us consider ν1 again. As explained in Appendix A and illustrated in
Fig. A.11, barycentric coordinates can be visualized as a ratio of two areas. The variation on the charge
assigned to ν1 during ∆t is illustrated in terms of such areas in Fig. 3a and is expressed as

Q

∆t
(λf1 − λs1) =

Q

∆t

Aq1,n+1 −Aq1,n
A

, (37)

where Aq1,n1 and Aq1,n+1 are the triangle areas as indicated in Fig. 3a, and A is the area of the whole
triangle (grid element) defined by ν1, ν2 and ν3. On the other hand, the current flowing out of ν1 is the sum
of the currents along the edges touching ν1, that is e1 and e2. Referring to the geometric interpretation of
the integral of Whitney 1-forms provided in Appendix A, the sum of these two currents is evaluated as

i1 + i2 =
Q

∆t

[
−
∫ rp,f

rp,s

W1
1(rp) · dL−

∫ rp,f

rp,s

W1
2(rp) · dL

]
= − Q

∆t

[
Ai1
A

+
Ai2
A

]
, (38)

where Ai1 and Ai2 are indicated in Fig. 3b, and the minus sign is due to the relative orientations of the path
L and Whitney 1-forms. Since

Aq1,n+1 −Aq1,n = Ai1 +Ai2, (39)

the sum of (37) and (38) is identically zero.
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Figure 3: Geometric representation of charge-conservation identity (39): (a) Variation of Whitney 0-forms
coefficients (barycentric coordinates) associated with ν1 (vertex 1) during a time interval ∆t, where the
solid red region indicates the starting time instant and the striped red region (which includes the solid red
region) indicates the finishing time instant. (b) Areas associated with the magnitude of induced currents (as
computed by Whitney 1-forms) on adjacent edges e1 (edge 1) and e2 (edge 2) during ∆t (see also Figs. A.11
and A.12). It is clear that Aq1,n+1 −Aq1,n = Ai1 +Ai2.

2.6. Gauss’ law preservation

We next demonstrate that Gauss’ law is automatically satisfied for all time steps if proper initial condi-
tions are used. By left-multiplying both sides of (12) by the discrete divergence matrix S̃, we obtain

S̃ · [?ε] ·
(
en+1 − en

∆t

)
= S̃ ·CT ·

[
?µ−1

]
· bn+ 1

2 − S̃ · in+ 1
2 . (40)

The first term of the right-hand side of (40) vanishes due to the exact sequence property for the dual grid,

i.e., S̃ ·CT = 0 [32, 34, 38]3. Using the discrete continuity equation (31), we can rearrange (40) as

S̃ · [?ε] ·
(
en+1 − en

∆t

)
=

qn+1 − qn

∆t
, (41)

which is the discrete version of

∂

∂t
∇ ·D =

∂

∂t
ρ. (42)

Therefore, Gauss’ law is preserved for all time steps if the initial condition S̃ · [?ε] · e0 = q0 is met.
For completeness, we show next that Gauss’ law for magnetism is also satisfied if appropriate initial

conditions are used. By taking discrete divergence matrix S in both sides of (11), we have4

S ·

(
bn+ 1

2 − bn−
1
2

∆t

)
= −S ·C · en = 0, (43)

where the second equality is from the exact sequence property in the primal grid, i.e., S ·C = 0. The relation
(43) is the discrete version of

∂

∂t
∇ ·B = 0. (44)

Therefore, Gauss’ law for magnetism is also preserved for all times if b0 is such that S · b0 = 0.

3The identity S̃ ·CT = 0 can be recognized as the discrete analogue of ∇ ·∇× = 0.
4Note that S is distinct from S̃ since S refers to the primal grid (i.e., the computational mesh itself) whereas S̃ refers to the

dual grid (See [32, 34]).
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Figure 4: Full time-update procedure for the charge-conserving PIC algorithm.

2.7. Time-update sequence

Using the above equations, the overall time-update procedure is carried out in the following sequence.

Initial conditions for E0, B− 1
2 , v

− 1
2

p , and r0
p are first assumed. During each cycle, bn+ 1

2 is first calculated.

Then, En and Bn+ 1
2 are interpolated at particle positions. Next, after the particle acceleration v

n+ 1
2

p is

performed, the particle push rn+1
p is performed for all particles. Next, currents in+ 1

2 are assigned (scattered)
to grid edges. Finally, en+1 is updated. Note that vp and rp are 3×1 column vectors. The procedure is
illustrated in Fig. 4 and each step is enumerated below.

1) B update : bn+ 1
2 = bn−

1
2 −∆tC · en

2) E gather : En =

Ne∑
i=1

eni W
1
i (r

n
p )

3) B gather : Bn+ 1
2 =

Nf∑
i=1

b
n+ 1

2
i W2

i (r
n
p )

4) Particle acceleration : v
n+ 1

2
p = N−1 ·NT · vn−

1
2

p +
q∆t

m
N−1 ·En

5) Particle push : rn+1
p = rnp + ∆tv

n+ 1
2

p

6) I scatter : i
n+ 1

2
i =

Q

∆t

∫ rp,f

rp,s

W1
i (rp) · dL

7) E update : [?ε] · en+1 = [?ε] · en + ∆t
(
CT ·

[
?µ−1

]
· bn+ 1

2 − in+ 1
2

)
The algorithm utilizes an “intelligent” mesh for tracking particles at each time step without resorting to
iterative search or lookup tables. The intelligent mesh is constructed (initialized) once the input mesh is
loaded and it includes (adds) the necessary connectivity information among mesh elements to efficiently
determine the element location of each particle in the next time step. The computing time of this process is
minimal because it always starts the particle search from adjacent elements. It should also be stressed that
the proposed scatter-gather algorithm is independent of the time integration scheme and it can be combined
with other schemes as well.
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Figure 5: Movement of a single particle in the uniform static magnetic field at different time instants (∆t
= 0.1 ns): (a) t = 0, (b) t = 50∆t, (c) t = 100∆t, and (d) t = 200∆t.

3. Validation

Let us consider a simple cyclotron motion for which a uniform static magnetic field is excited along the
z-direction. The static magnetic flux density is Bz = 2.275×10−3 Wb/m2, which produces the gyroradius of
0.25 m using Bz = (mv)/(rq), where m = 9.1×10−31 kg, v = 108 m/s, and q = −1.6×10−19 C. Fig. 5 shows
the snapshots of the movement of a single particle at selected time steps. As the scheme is conditionally
stable, time step should be less than the Courant limit ∆tc = 0.14887 ns, which is the function of the mesh
element sizes and is computed from the maximum eigenvalue of the stiffness matrix [25]. This ∆tc is less
than ∆l/|vp| ≈ 0.1/108 = 10−9 s, where ∆l is the typical edge length of the triangular grid elements. It
can be observed that the particle exactly shows the circular motion of 0.25 m radius. In this simulation,
a pair of particles with the opposite charges are initially placed in the same location, so that net charge
density and electric fields are initially zero. In contrast to the negatively charged particle, the particle with
positive charge is assumed to be stationary due to its much larger mass, which is not shown in Fig. 5. Fig.
6a and 6b show the amount of vertex-distributed charge and the absolute value of the particle velocity as
a function of time, respectively. The total charge remains constant by the virtue of the consistent particle
interpolation in the scatter-gather algorithm. The absolute value of the particle velocity (hence, energy)
also remains constant as well due to a negligible electric field. Table 1 shows similar results as Fig. 6, but
extended up to 106 time steps to further verify charge and energy conservation.

As second example, Fig. 7 shows the movement of three negatively-charged particles at different time
steps. Similarly as before, these particles describe circular motions because the influence of the static
magnetic field is more dominant than interactions among the particles. Particles with positive charges,
which are not shown in Fig. 7, are again stationary at all time steps due to their much larger masses. We
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Figure 6: Charge and energy conservation: (a) Distributed amounts of charge to local vertices and their
sum at all time steps and (b) Absolute value of the particle velocity at all time steps.

Table 1: Charge and energy conservation at large time steps.

n q1 q2 q3 Q |vp|
101 -6.410056 ×10−20 -9.245821 ×10−20 -3.441224 ×10−21 -1.600000 ×10−19 9.999999 ×107

102 -7.635486 ×10−20 -7.154041 ×10−20 -1.210471 ×10−20 -1.600000 ×10−19 9.999999 ×107

103 -6.187120 ×10−20 -7.721123 ×10−20 -2.091755 ×10−20 -1.600000 ×10−19 9.999999 ×107

104 -5.772639 ×10−21 -1.472014 ×10−19 -7.025898 ×10−21 -1.600000 ×10−19 9.999999 ×107

105 -5.766949 ×10−20 -2.809120 ×10−20 -7.423930 ×10−20 -1.600000 ×10−19 1.000000 ×108

106 -1.480969 ×10−20 -1.365091 ×10−21 -1.438252 ×10−19 -1.600000 ×10−19 1.000000 ×108

select three random vertices ν5, ν21, ν42 as illustrated in Fig. 7a for the verification of Gauss’ law. The
discrete version of Gauss’ law at t = n∆t, i.e., S̃ · [?ε] ·en = qn is computed in double-precision floating-point
arithmetic. Table 2 shows the left- and right-hand side values of this equation and the residuals at several
time steps up to 106. The agreement is excellent, and includes at least thirteenth significant digits in all cases
and relatively negligible residuals at very large time steps. Note that Gauss’ law for magnetism S · bn = 0
is trivially preserved because only the Bz component is present in this case, and is invariant with respect to
z.

For the third example, we consider the PIC simulation of a blowing-up plasma ball (circle) composed of
two species: electrons (hot) and ions (cold). Initially, all electrons and ions are overlapped, so that the local
charge is zero everywhere. The mesh is dense around the initial plasma ball and relaxed radially. The mesh
is depicted in Fig. 8 and has 2539 edge elements. A total of 4000 negatively charged particles are initially
randomly distributed inside the red circle shown, with particle density ne = 4×103/(0.052π) = 5.0930×105

m−3. Electron velocities are initialized with a Maxwellian distribution, with a thermal velocity |vth| = 10−3c
m/s, where c is the light speed (nonrelativistic regime). Positive ions are assumed much more massive, with
zero velocity. In Fig. 8, three nodes ν10, ν53, and ν134 are designated for veryfying charge conservation at all
times. The electron Debye length is such that λ2

D = ε0kT/(ne)
3/2q2, which gives λD = 0.1974 m from the

settings above. Fig. 9 shows the distribution of the 4000 particles at different time steps, illustrating the
expansion of the plasma ball. To examine energy conservation, we consider the energy balanced equation

∂

∂t

(
1

2
E · εE +

1

2
B · µ−1B

)
+ E · J = 0. (45)
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Figure 7: Movement of three particles in the uniform static magnetic field at different time instants (∆t =
0.1 ns): (a) t = 0, (b) t = 50∆t, (c) t = 100∆t, and (d) t = 200∆t.

After spatial discretization, (45) writes

d

dt

(
1

2
eT · [?ε] · e +

1

2
bT ·

[
?µ−1

]
· b
)

+ eT · i = 0, (46)

or, more concisely,

d

dt
(We +Wm) + Ps = 0, (47)

where We and Wm are the electric and magnetic energy density terms, and Ps is the term associated with
the presence of electric current J from the moving charges. Using a leap-frog scheme for time-discretization,
we obtain

∆W
n+ 1

2
e + ∆W

n+ 1
2

m = −Pn+ 1
2

s ∆t, (48)

where half-integer times are considered to coincide with i. Figure 10 shows the comparison between the
left hand side and the right hand side of (48) for all time steps. An excellent agreement is observed, which
numerically verifies energy conservation.

The discrete version of Gauss’ law is also examined for this case in Table 3. Again, there is a very good
match between the two terms of Gauss’ law for all times, with at least eight significant digits of agreement
even after a million time steps.
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Table 2: Verification of the discrete Gauss’ law at different time steps and (global) vertices.

Vertex n S̃ · [?ε] · en qn S̃ · [?ε] · en − qn

ν5

101 -6.206610172341678 ×10−36 0 -6.206610172341678 ×10−36

102 -3.655787431057314 ×10−34 0 -3.655787431057314 ×10−34

103 -3.996030839009677 ×10−20 -3.996030839009684 ×10−20 6.620384183831123 ×10−35

104 -3.581126715387582 ×10−20 -3.581126715385507 ×10−20 -2.074587661969626 ×10−32

105 1.442950348685220 ×10−31 0 1.442950348685220 ×10−31

106 -2.830713776667131 ×10−30 0 -2.830713776667131 ×10−30

ν21

101 3.385423730368188 ×10−36 0 3.385423730368188 ×10−36

102 -2.045237819570873 ×10−20 -2.045237819570803 ×10−20 -6.981496048403730 ×10−34

103 -3.751623558930333 ×10−20 -3.751623558929736 ×10−20 -5.970382827600431 ×10−33

104 -6.801441860813513 ×10−20 -6.801441860811823 ×10−20 -1.690003526199800 ×10−32

105 -1.264643842388650 ×10−31 0 -1.264643842388650 ×10−31

106 -1.345470457792998 ×10−30 0 -1.345470457792998 ×10−30

ν42

101 -4.988033347936703 ×10−20 -4.988033347936874 ×10−20 1.709262825643672 ×10−33

102 -3.159139423392524 ×10−20 -3.159139423392751 ×10−20 2.268986215731212 ×10−33

103 -3.915500401400283 ×10−20 -3.915500401401157 ×10−20 8.738907122657083 ×10−33

104 8.443811020826656 ×10−32 0 8.443811020826656 ×10−32

105 7.919916698552179 ×10−31 0 7.919916698552179 ×10−31

106 -5.373841942680172 ×10−21 -5.373841950539624 ×10−21 7.859451526095034 ×10−30

4. Concluding Remarks

A new, geometrically intuitive charge-conserving scatter-gather algorithm for full electromagnetic PIC
simulations has been presented for arbitrary unstructured grids. The algorithm relies upon the representation
of the various dynamical quantities as discrete differential forms of different degrees, and on their self-
consistent interpolation by Whitney forms. Preservation of Gauss’ law is demonstrated for all times, both
analytically and by means of numerical tests.
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Appendix A. Whitney forms: Basic properties

For convenience, we provide here the explicit expressions of Whitney forms [39] in 3-D. In the past,
Whitney forms have proved useful in finite element modeling of electromagnetic fields [40, 41, 42], to suppress
spurious modes. Although Whitney forms can be more succinctly and elegantly expressed using the exterior
calculus of differential forms [26, 32, 33, 39], we adopt here the more familiar notation of vector calculus.
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Figure 8: Mesh with 2539 edges and three selected nodes ν10, ν53, and ν134. A total of 4 × 103 negatively
charged particles are initially placed in the red circle, uniformily distributed.

In 3-D, there are four types of Whitney p-forms, according to their degree p. A Whitney 0-form is a
continuous scalar function simply expressed as [32]

W 0
i (r) = λi(r), (A.1)

where the subscript i represents vertex i and λi is the barycentric coordinate [43] associated with vertex i.
The geometric construction for barycentric coordinates is illustrated in Fig. A.11. For a 1-D simplex (i.e.
edge), the barycentric coordinates associated to the vertices ν1 and ν2 of any point r in the simplex are
equal to ratios λ1 = L1/(L1 +L2) and λ2 = L2/(L1 +L2), respectively, with L1 and L2 as indicated in Fig.
A.11. For a 2-D simplex (triangle), the barycentric coordinates associated to the three vertices ν1, ν2 and
ν3 of any point r in the simple are equal to λ1 = A1/A, λ2 = A2/A, and λ3 = A3/A, respectively, with the
areas A1, A2, and A3 as indicated and A = A1 + A2 + A3. In a 3-D simplex, which is a tetrahedron, the
barycentric coordinates can be similarly written as volume ratios. It is clear that 0 ≤ λi ≤ 1 for all i and
that the sum of the barycentric coordinates of any given point r associated to the neighbor vertices equals
to one. Hereinafter, the dependence on r is dropped for notational simplicity, i.e., λi(r) = λi.

The vector (function) proxy of a Whitney 1-form associated with an arbitrary edge ij5 bounded by
vertices i and j is expressed as [32]

W1
ij(r) = λi∇λj − λj∇λi. (A.2)

For a brief geometric illustration of the Whitney 1-form, let us consider Fig. A.12. The area Ae1, which is
associated with e1, is

Ae1 = A
[
λs1λ

f
2 − λs2λ

f
1

]
, (A.3)

where λsi and λfi are shorthands of λi(rs) and λi(rf ), respectively. As Fig. A.12b shows, Ae1 can be regarded
as the sum of small triangles such that

Ae1 = A
∑
n

[
λn1λ

n+1
2 − λn2λn+1

1

]

5For the sake of clarity, we adopt in this Appendix a vertex-based indexing for all types of elements. This is in contrast to
the single-indexing adopted for all element types elsewhere in the paper.
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(c) (d)

Figure 9: Distribution of 4× 103 particles with initial Maxwellian distribution, and zero initial fields. The
particle distribution is shown at different time instants (∆t = 0.01 ns): (a) t = 104∆t, (b) t = 2 × 104∆t,
(c) t = 4× 104∆t, and (d) t = 6× 104∆t.

= A
∑
n

[λn1 (λn2 + ∆λn2 )− λn2 (λn1 + ∆λn1 )]

= A
∑
n

[λn1 ∆λn2 − λn2 ∆λn1 ] . (A.4)

After taking the limit of infinitesimally small triangles and transforming this summation to an integral, we
obtain

Ae1 = A

∫ rf

rs

[λ1∇λ2 − λ2∇λ1] · dL = A

∫ rf

rs

W1
12(r) · dL. (A.5)

The areas associated with e2 and e3 can be derived in a similar fashion. The last integral above can be
viewed as the generalization of the concept of barycentric coordinates from 0-dimensional objects (points) to
1-dimensional objects (segments). That is, this relation illustrates that, in the same manner as the Whitney
0-forms (barycentric coordinates) are used to represent a point as a weighted sum of nearby vertices i = 1, 2, 3
(with respective weights Ai/A), Whitney 1-forms represent any segment [rs, rf ] in terms of the nearby edges
e1, e2, and e3 (now with weights Ae1/A, Ae2/A, and Ae3/A, respectively). In both cases, the weights are
computed by the “contraction” [32] of the Whitney form with the corresponding geometric object. For a
0-form, this contraction simply means an evaluation of W 0

i at the point r, i.e., W 0
i (r) as in (A.1), whereas

for a 1-form, this contraction means an evaluation of the line integral of W1
ij along the segment [rs, rf ]

as in (A.5). For a more general description of these Whitney form properties, see [44]. A comprehensive
discussion of the integral of Whitney 1-forms along a straight segment is presented in Appendix B below.
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Figure A.11: Geometric illustration for Whitney 0-forms (barycentric coordinates) of a point r in simplices
of various degrees: (a) 1-D simplex and (b) 2-D simplex.

Likewise, the vector proxy of a Whitney 2-form associated with a triangular cell ijk is a vector function
expressed as [32]

W2
ijk(r) = 2

[
λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj

]
. (A.6)

Finally, in 3-D, the proxy of a Whitney 3-form associated with a tetrahedral cell ijkl in 3-D is a scalar
function written as [32]

W 3
ijkl(r) = 6

[
λi∇λj · (∇λk ×∇λl) + λj∇λk · (∇λl ×∇λi)

+ λk∇λl · (∇λi ×∇λj) + λl∇λi · (∇λj ×∇λk)
]
, (A.7)

Despite the complicated-looking expression A.7, W 3
ijkl can be shown in 3-D to be simply equal to

W 3
ijkl(r) =

{
1
V , if r is in the tetrahedron ijkl,

0, otherwise,
(A.8)
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Table 3: Verification of the discrete Gauss’ law for PIC simulations with many particles at different time
steps and for three arbitrary (global) vertices.

Vertex n S̃ · [?ε] · en qn S̃ · [?ε] · en − qn

ν10

101 3.938626419217293 ×10−21 3.938828609135238 ×10−21 -2.021899179450384 ×10−25

102 4.216965415302240 ×10−20 4.216619000000000 ×10−20 3.464153022399240 ×10−24

103 5.693133763020551 ×10−19 5.692525000000000 ×10−19 6.087630205511676 ×10−23

104 3.376346144358901 ×10−18 3.373843000000000 ×10−18 2.503144358901224 ×10−21

6× 104 1.948941527506024 ×10−17 1.947695000000000 ×10−17 1.246527506023833 ×10−20

ν53

101 -6.035730222106830 ×10−25 0 -6.035730222106830 ×10−25

102 -3.859548532081658 ×10−24 0 -3.859548532081658 ×10−24

103 -3.778195570243296 ×10−23 0 -3.778195570243296 ×10−23

104 -2.171627281773591 ×10−21 0 -2.171627281773591 ×10−21

6× 104 -6.202694078733229 ×10−18 -6.183721000000000 ×10−18 -1.897307873322922 ×10−20

ν134

101 4.216746669112738 ×10−31 0 4.216746669112738 ×10−31

102 1.762689521069704 ×10−26 0 1.762689521069704 ×10−26

103 6.830106418522705 ×10−26 0 6.830106418522705 ×10−26

104 1.532866351101663 ×10−24 0 1.532866351101663 ×10−24

6× 104 -1.478546530191113 ×10−18 -1.478877000000000 ×10−18 3.304698088865041 ×10−22

where V is the volume of the tetrahedron ijkl [32]. Whitney forms are interpolatory in the precise sense
that they are equal to one when “evaluated on” the respective elements (vertices, edges, triangles, and
tetrahedra) and to zero on all remaining elements of the grid, where “evaluated on” in the case of W1

ij ,

W2
ijk, and W 3

ijkl means “integrated over” edges, triangles, or tetrahedrons respectively6. Furthermore,

Whitney forms inherit the same type of continuity of the fields they represent. Specifically, W 0
i (r) is a

continuous scalar function (representing scalar potentials for example), W1
ij(r) is a tangentially continuous

vector function (representing “intensity” vector fields for example), W2
ijk(r) is a normally continuous vector

functions (representing “flux density” vector fields or volumetric current densities for example) and W 3
ijkl(r)

is a discontinuous scalar field (representing volumetric charge densities, for example).
In 2-D, as in the numerical examples considered here, W 0

i (r) and W1
ij write exactly as above, but W 2

ijk

reduces to a scalar discontinuous function

W 2
ijk(r) =

{
1
A , if r is in the triangle ijk,

0, otherwise,
(A.9)

where A is the area of the triangle ijk 7. Furthermore, W 3
ijkl is identically zero in 2-D. For these and more

properties of Whitney forms, the reader is refered to [28, 29, 45, 46, 44] and references therein.

Appendix B. Line integral of Whitney 1-forms

The scatter step of the proposed algorithm and the analytical verification of charge conservation provided
above both rely upon the evaluation of line integrals of Whitney 1-forms. In this Appendix, we consider

6That is, line, surface, or volume integration, for a Whitney form of degree p = 1, 2, and 3, respectively.
7Alternatively, one could consider it as a discontinuous vector function with such amplitude and oriented along the z-

direction, i.e., transverse to a 2-D domain in the xy-plane, so that expressions such as (10) remain invariant with the volume
element dV representing an area (2-D volume).
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Figure A.12: Geometric illustration of the weight assigned to Whitney 1-forms representing a segment L
in a 2-D simplex: (a) In red color is the area Ae1 associated with the Whitney 1-form on e1 (edge 1) that
represents L. The associated weight is given by Ae1/A, where A is the total area of the triangle composed of
ν1, ν2, and ν3. A similar construction can be made for the other two edges e2 and e3. (b) Area represented
by a sum of small triangles. See the main text for more details.

this in more detail. An arbitrary segment L from rp,s to rp,f on a triangle is illustrated in Fig. B.13. The
segment can be decomposed into two vectors a and b. λ1(·) and λ2(·) are barycentric coordinates associated
with ν1 and ν2. h1 and h2 are the heights of the triangle for the base of e3 and e2, respectively. The edge
vectors e1, e2, and e3 are oriented in an ascending fashion of the associated vertex numbers. Note that the
edge numbers do not coincide with the vertex numbers.

A simple way to evaluate the line integral∫ rp,f

rp,s

W1
i (rp) · dL, (B.1)

is to use a parametric representation such that

W1
i (rp) = W1

i (s) and dL = dL(s). (B.2)

W1
i (s) and dL(s) are simply assumed to be a linear function of the parameter s and the range of s is set

to be 0 ≤ s ≤ 1. As an example, the line integral of the Whitney edge basis function associated with e1,
W1

1(rp) = λ1∇λ2 − λ2∇λ1, is derived here.
As preliminaries, several variables are calculated. Vectors a and b can be expressed as

a = −
(
λf2 − λs2

)
e3 = −∆2e3, (B.3)

b = −
(
λf1 − λs1

)
e2 = −∆1e2. (B.4)

First, the path and its space derivative are parameterized through s such that

L = L(s) = (a + b)s = −(∆2e3 + ∆1e2)s, (B.5)

and dL = −(∆2e3 + ∆1e2)ds. Next, barycentric coordinates and their gradients are parameterized through
s as well, i.e.,

λ1(s) =
[
λf1 − λs1

]
s+ λs1 = ∆1s+ λs1 (B.6)
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λ2(s) =
[
λf2 − λs2

]
s+ λs2 = ∆2s+ λs2 (B.7)

The gradients of the barycentric coordinates are constant, so they are not the function of s, that is

∇λ1 =
1

2A
ẑ × e3, ∇λ2 =

1

2A
e2 × ẑ, (B.8)

where A is the area of the triangle. Some dot products used for the line integral are summarized below.

∇λ1 · e2 = −1, ∇λ1 · e3 = 0 (B.9a)

∇λ2 · e2 = 0, ∇λ2 · e3 = −1 (B.9b)

Therefore, (B.1) for e1 is computed as∫ rp,f

rp,s

W1
1(rp) · dL =

∫ rp,f

rp,s

(λ1∇λ2 − λ2∇λ1) · dL

=

∫ 1

0

[(∆1s+ λs1)∇λ2 − (∆2s+ λs2)∇λ1] · (−∆2e3 −∆1e2) ds

= −∆2 (∇λ2 · e3)

∫ 1

0

(∆1s+ λs1) ds+ ∆1 (∇λ1 · e2)

∫ 1

0

(∆2s+ λs2) ds

= ∆2

[
∆1

2
+ λs1

]
−∆1

[
∆2 + λs2

2

]
= ∆2λ

s
1 −∆1λ

s
2

=
(
λf2 − λs2

)
λs1 −

(
λf1 − λs1

)
λs2 = λs1λ

f
2 − λ

f
1λ

s
2. (B.10)

Similarly, the other two line integrals can be computed as∫ rp,f

rp,s

W1
2(rp) · dL = λs1λ

f
3 − λ

f
1λ

s
3 (B.11)

∫ rp,f

rp,s

W1
3(rp) · dL = λs2λ

f
3 − λ

f
2λ

s
3 (B.12)
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