
DESY 14–206

Simple, Parallel, High-Performance Virtual Machines for Extreme
Computations

Bijan Chokoufe Nejada,b, Thorsten Ohlb, Jürgen Reutera

aDESY Theory Group, Notkestr. 85, D-22607 Hamburg
bUniversity of Würzburg, Emil-Hilb-Weg 22, 97074 Würzburg, Germany

Abstract

We introduce a high-performance virtual machine (VM) written in a numerically fast language
like Fortran or C to evaluate very large expressions. We discuss the general concept of how to
perform computations in terms of a VM and present specifically a VM that is able to compute
tree-level cross sections for any number of external legs, given the corresponding byte code from
the optimal matrix element generator, O’Mega. Furthermore, this approach allows to formulate
the parallel computation of a single phase space point in a simple and obvious way. We analyze
hereby the scaling behaviour with multiple threads as well as the benefits and drawbacks that are
introduced with this method. Our implementation of a VM can run faster than the corresponding
native, compiled code for certain processes and compilers, especially for very high multiplicities,
and has in general runtimes in the same order of magnitude. By avoiding the tedious compile
and link steps, which may fail for source code files of gigabyte sizes, new processes or complex
higher order corrections that are currently out of reach could be evaluated with a VM given
enough computing power.

Keywords: Virtual Machine, High-Performance Computing, Automation of perturbative
calculations, Higher Orders, Parallel Computation

1. Introduction

Computations in high energy physics tend to hit the limits of what is computationally fea-
sible. Setting demanding grid computations aside, one encounters even in perturbative calcula-
tions expressions of cross sections of enormous size. Such computations for the Large Hadron
Collider (LHC), its upgrade the High Luminosity LHC (HL-LHC) or the planned International
Linear Collider (ILC) are and keep getting more challenging as cross sections are needed for a
high number of external particles and to increasing precision to match the experimental efforts.
When facing such problems, a compromise has to be made, in order to have a maintainable and
extendible solution for the developer and at the same time fast execution of the code. The latter

Email addresses: bijan.chokoufe@desy.de (Bijan Chokoufe Nejad), ohl@physik.uni-wuerzburg.de
(Thorsten Ohl), juergen.reuter@desy.de (Jürgen Reuter)

Preprint submitted to Computer Physics Communications November 7, 2018

ar
X

iv
:1

41
1.

38
34

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

4
N

ov
 2

01
4

cannot be overrated as the same code, typically representing a certain process, has to be evalu-
ated billions of times with different input data for the Monte Carlo integration and/or parameter
scans.

A popular approach to solve this problem is a meta-programming ansatz, i.e. to determine the
expression of a cross section itself in a higher level programming language like Mathematica,
OCaml, FORM or Python while the numerical evaluation is performed in high-performance lan-
guages like Fortran or C. Hereby, the expression is vastly reduced with computer algebra and
tailored algorithms on the higher level to make the execution later on as fast as possible. Ex-
amples for this are the tree-level and one-loop matrix element generators MadGraph [1], Form-
Calc [2, 3] or O’Mega [4]. A problem, however, arises when the expression becomes so large
that it is impossible to compile and link, and hence to evaluate numerically, due to the sheer size.
In Fortran, which is known for its excellent numerical performance, we typically encounter this
problem for source code of gigabyte sizes irrespective of the available memory. This problem is
also being addressed by the project HepGame [5] that is based on Form [6, 7] and aims to reduce
the code size before compilation by using new concepts from game theory like Monte Carlo tree
searches. Furthermore, we should mention haggies [8], written in Java, which also generates
optimised programs for efficient numerical evaluation of mathematical expressions using mul-
tivariate Horner-schemes and commmon subexpression elimination (CSE) to reduce the source
code size.

In this paper, we show how to circumvent the tedious compile step in between completely by
using a VM. To avoid confusions, we have to define what we mean with the term VM. A VM
is in our context a compiled program, an interpreter, that is able to read instructions, in the form
of byte code, from disk and perform an arbitrary number of operations out of a finite instruction
set. We do not refer to any sort of operating system emulation that is commonly encountered
under the term VM. Also the parallel virtual machine (PVM) [9] is a completely different idea,
combining a network of multiple computers to one VM. Far closer to our VM is the VM used
in the open-source project numexpr [10]. Their VM is written in C and specializes on the fast
numerical expression evaluation of very large arrays in Python by dividing array operands in
chunks that easily fit in the cache of the central processing unit (CPU) and avoiding the creation
of temporary arrays. Though the idea is related, in our application we have comparably small
arrays per instruction and can hence not benefit from this project. We want to stress that a
VM allows the complexity of the computation to be only set by the available hardware and not
limited by software design or intermediate steps. Furthermore, we will show that a VM is easy
to implement and makes parallel evaluation obvious.

An important concern is of course whether the VM can still compete with compiled code in
terms of speed. The instructions have to be translated by the VM to actual machine code, which
is a potential overhead. However, in the computation of matrix elements there are typically a lot
of complex scalar products involved in a single instruction implying that this overhead plays a
minor role. What we explicitly give up are the optimizations that the compiler can perform in
the context of multiple instructions like CSE and data and instruction prefetching. Of these, at
least the CSE can be done beforehand by constructing the byte code with the lowest number of
common subexpressions on the higher level. In fact, we will show that a VM can even be faster
than compiled code for certain processes and compilers since the VM also benefits from the fact
that instruction cache misses are less likely in this formulation.

We will apply the concept of a VM to the tree-level Optimizing Matrix Element Generator,
O’Mega, to allow the computation of higher multiplicities of colored particles given the same
hardware. This does obviously not imply that the presented computational method is restricted

2

to tree-level computations. When trying to obtain higher order cross-sections the same problem
can arise even for less external particles, due to the inherent complexity of the computation. We
expect that VM implementations in such environments are a possible way to go beyond what is
nowadays considered as still feasible.

Apart from cross sections, we believe that the problem of evaluating huge expressions nu-
merically is a more general one, just as algebraic tools like FORM [6, 7] or integration tools
like CUBA [11] are useful beyond their original field of study. Therefore, we will tackle this
problem at first in a rather general way in Section 2, before we turn to the implementation of the
O’Mega virtual machine (OVM) in Section 3. Then we benchmark this proposal in Section 4
and conclude with a summary of our findings and a small technical outlook in Section 5.

2. General Virtual Machines

We will describe in this section the necessary components to perform a computation with a
VM. The byte code plays a central role as it embodies all nontrivial information about how to
compute the object of desire. One might imagine the VM as a machine, which has a number of
registers, and is given instructions how to act on them. This picture is quite similar to a CPU,
except that we are doing this on a higher level, i.e. our registers are arrays of e.g. wave functions
or momenta and the instructions can encode scalar products or more complicated expressions.
In Appendix A, we also give a purely mathematical example implementation of a VM. This code
is well suited for adaption to other problems as it has no dependency on external libraries and
still includes all of the necessary infrastructure.

2.1. Byte Code

For the dynamic construction of the VM, it is necessary to include a header in the byte code,
which contains the number of objects that have to be allocated. For convenience, it is also useful
to have some version numbers that document which physical or mathematical constants should
be used together with this byte code or comments to indicate how it was produced. Optionally,
one can add after the header tables of precomputed parameters, like information about the in-
volved helicities, color or flavor. After this the body of instructions follows, whereby each line
corresponds to a certain operation that the VM should perform on its registers.

We encode the instructions in pure integers inside a simple ASCII byte code such that it
is in principle human-readable if the meanings of the numbers are known. Though the use of
mere numbers does not exploit the full dictionary of ASCII, it allows a very fast integer line-
by-line scan of the byte code in the Fortran VM and avoids a translation step because integers
are already addresses in arrays. Since the initialization is, however, very fast compared to the
runtime, this could be optimized with a binary format, if the size of the byte code becomes a
problem. As the byte code size is about a factor of ten smaller compared to the native source
code, as shown in Section 4.3 this is not yet a concern for our application. The fact that our byte
code is portable and platform independent is a positive surplus when calculations are performed
on clusters.

The first number of an instruction is the operation code (opcode) that specifies which opera-
tion will be performed. For illustration, consider the example

1 5 4 3

3

which could be translated into momentum(5) = momentum(4) + momentum(3), a typical op-
eration to compute the s-channel momentum in a 2 → 2 scattering process. Depending on the
context, set by the opcode, the following numbers have different meanings but are typically ad-
dresses, i.e. indices, of objects, or specify how exactly the function should act on the operands,
by what numbers the result should be multiplied, etc.

When designing the byte code of a high-performance VM, the line length should be chosen
such that the most frequent operations fit within a line. Complex operations that would increase
the line length significantly above the average requirement, can also be split in multiple lines by
using sub-instructions, which are introduced in Section 2.3.

2.2. Interpreter
The interpreter is a very simple program that reads the byte code into memory and then loops

over the instruction block with a decode function, which is basically a select/case statement
depending on the opcode. The instructions can be instantly, compared to the execution time of the
relevant instructions, translated to physical machine code, since the different types of operations
are already compiled and only the memory locations of the objects have to be inserted. The
compilation of the VM itself is very fast and has only to be done once which is handy for the use
of many byte codes and necessary for extreme computations as motivated above.

Two things have to be adapted in the interpreter of the VM, when one wants to tackle a new
type of problem, e.g. when going from tree-level to one-loop. At first, one has to specify, where
and with which types to expect header, comments, tables and instructions1. Furthermore, the
decode function needs to be able to translate any instruction line into operations on registers,
i.e. all opcodes have to be implemented. The functions can be arbitrarily complex and are
also allowed to call external libraries, though most likely better performance is achieved by
keeping things as simple as possible. Especially, with parallelization in mind, it is desirable to
have roughly the same amount of computation time for different instructions, to ensure an even
workload and hereby minimizing idle times at synchronization points.

Given this environment, the byte code file that is given to the VM completely dictates the
specific problem, or process in the cross section context, that should be computed. Input data or
external parameters are given as arguments to the function call of the VM. The calling application
has of course to make sure that these parameters match the corresponding byte code, which can
be ensured with version numbers.

2.3. Parallelization
The generation of events for collider physics usually parallelize trivially. Since an integral

is in most cases needed, the same code is just evaluated multiple times with different input data.
The situation can change, however, for an extreme computation that already uses all caches. De-
pending on the size of the caches and the scheduler, evaluating such code with multiple data at the
same time, can run even slower than the single-threaded execution. Obviously, the computation
is then so large, containing numerous objects, that it is worth trying to parallelize the execution
with a single set of input data with shared memory.

Developing truly parallel code for a complicated calculation, however, is a non-trivial task
since race conditions have to be kept in mind at all times. Furthermore, physicists have to delve
into the frameworks like OpenMP or MPI to find the best parallelization method for each piece,

1One could, in principle, also determine this dynamically by using a certain markup, if one has the desire to do so.
4

which is time consuming and likely to introduce bugs that are hard to find. The byte code
gives us the opportunity to write the parallel computation in an obvious fashion that is both
easy to generate and to implement in the VM. The idea is to split the byte code into recursion
levels, whereby in each level all building blocks are non-nested and may be computed in parallel.
Different levels are separated by necessary synchronization points at which threads have to wait
until intermediate results are communicated and which can be represented in the byte code with
a zero opcode. It is clear that one should aim to keep the number of synchronization points to the
inherent minimum of the computation for optimal performance.

Figure 1: Sketch of the parallelization scheme for byte code of two levels. Instructions and sub-instructions are in
white and gray, respectively. Certain instructions imply that all following sub-instructions have to be executed before
the next instruction is addressed. This grouping of instructions allows multiple sequential writes while minimizing
synchronization points.

The fact that we demand commutativity within a level implies that every virtual register is
changed by at most one thread. A potential problem would hence be that the same address might
be written to successively multiple times in a computation though still being fully disconnected
to other parts. To maintain the parallel nature with respect to the other parts and at the same
time the sequential nature of such a subcomputation, we can group instructions addressing the
same register to a building block. A building block consists of one instruction and zero or more
sub-instructions. Sub-instructions are conveniently represented in the byte code with negative
opcodes that are skipped over by the main loop. Normal instructions can imply that all following
sub-instructions have to be executed sequentially before the thread computes the next instruction.
This is sketched in Figure 1. In OpenMP this translates to a parallel region with a parallel do
loop over the instructions in a level. More specifically, the complete parallelization of the VM
can be written as

!$omp parallel

do level = 1, vm%N_levels - 1

!$omp do schedule (static)

do instruction = vm%levels (level) + 1, vm%levels (level + 1)

5

call decode (vm, instruction)

end do

!$omp end do

end do

!$omp end parallel

hereby we have an outer loop over levels as vm%levels contains the indices in the vector of
instructions at which the level changes. Due to our organization of the byte code, we can then
perform the inner loop in each level in parallel, whereby the static schedule just means that
every thread gets the same number of instructions. The decode function is given the line number
instruction in the instructions block that should be translated.

As a side note, we want to mention that the sketched parallelization should be very well suited
for an implementation on a graphics processing unit (GPU). A common problem, encountered
when trying to do scientific computing on a GPU, is the finite kernel size problem. As noted
e.g. in Ref. [12], large source code cannot be processed by the CUDA compiler, which is related
to the fact that the numerous cores on a GPU are designed to execute simple operations very
fast. Dividing an amplitude into smaller pieces, which are computed one by one, introduces
more communication overhead and is no ultimate solution since the compilation can still fail
for complex amplitudes [12]. The VM on the other hand is a fixed small kernel, no matter
how complex the specific computation is. A potential bottleneck might be the availability of
the instruction block to all threads, but this question has to be settled by an implementation and
might have a quite hardware dependent answer.

Finally, we note that the phase space parallelization mentioned in the beginning of this sub-
section can still be applied. When considering heterogeneous cluster or grid environments, where
each node is equipped with multi-core processors, a combination of distributed memory paral-
lelization for the combination of different phase space points and shared memory parallelization
of a single point seems to be a quite natural and extremely potent combination.

3. O’Mega Virtual Machine

The concept of a VM can be easily applied to evaluate tree-level matrix elements of arbi-
trary multiplicity. The Optimizing Matrix Element Generator, O’Mega [4], avoids the redundant
representation of amplitudes in the form of Feynman-diagrams by using one-particle off-shell
wave functions (1POWs) recursively. Just like the first two numerical codes ALPHA [13] and
HELAC [14], which focussed on the standard model (SM), O’Mega tames herewith the com-
putational growth with the number of external particles from a factorial to an exponential one
but is completely general with respect to the used Lagrangian. Other programs with a very sim-
ilar approach are Comix [15], based on the color-dressed Berends-Giele recursion formulation,
and Recola [16], which follows more closely the Dyson-Schwinger formulation incorporating
an important generalization [17] that allows to compute one-loop amplitudes in the SM.

The model-independence is achieved in O’Mega with the meta-programming ansatz men-
tioned earlier whereby the symbolic representation is determined in OCaml. This abstract ex-
pression is then translated to valid Fortran code that is automatically compiled and used in
Whizard [18] for event generation. As O’Mega has been designed in a modular way, it has
been rather straightforward to add an additional output module that produces byte code instead
of Fortran code. Some additional technical details about the implementation can be found in
Ref. [19] and more completely in the documented source code [20].

6

Table 1: Byte code cheat sheet. Each instruction line consists of eight numbers having a different meaning depending
on the first one, the opcode. In general, the objects on the left hand side (lhs) are constructed from the right hand side
(rhs). X, Y and Z are placeholders for the different Lorentz types of wave functions like fermions, scalars, etc. The
value for width indicates which width scheme is used while its value and the one of the mass is inferred from the PDG
code. outer ind denotes spin and momentum index of the wave function. sym is the symmetry factor computed from the
number of identical particles involved.

code coupl coeff lhs rhs1 rhs2 rhs3 rhs4

ADD MOMENTA 0 0 p lhs p rhs1 p rhs2 p rhs3 0
LOAD X PDG 0 wf outer ind 0 0 amp
PROPAGATE Y PDG width wf p 0 0 amp
FUSE Z coupl coeff lhs rhs1 rhs2 rhs3 rhs4
CALC BRAKET sign 0 amp sym 0 0 0

The number of distinct operations that have to be performed in the computation of a cross
section is related to the Feynman rules and therefore quite limited. As such, these operations
are very good candidates for the translation to byte code. In fact, this results in only about 80
different opcodes for the complete SM, which have been implemented in the OVM. In order
to support completely general Lagrangians with arbitrary tensor structures as in [21, 22], the
subroutines implementing the vertices can be mapped to opcodes dynamically. They can be
classified as described in Table 1 as ADD MOMENTA, LOAD X, PROPAGATE Y, FUSE Z
and CALC BRAKET, i.e. the addition of momenta, the construction of external wave functions,
the propagation of wave functions, the fusion of wave functions according to the Feynman rules
and the computation of the final braket, which yields the amplitude with appropriate prefactors,
respectively. This limited set of instructions as well as the objects in a calculation can each be
identified unambiguously with an integer. To obtain this integer in O’Mega, we apply a map
from a given set of objects, e.g. wave functions, to the numbers from 1 to N, where N is the
cardinality of the set, by using an ordering that ensures that distinct objects are not assigned the
same number. To discriminate between particle flavors, there is of course already a well-known
ordering that we can use, namely the Particle Data Group (PDG) integers [23].

For the parallel execution, we identify the different levels by the number of external momenta
a wave function is connected to or equivalently the number of summands in the momentum of the
wave function. This is depicted in Figure 2. Furthermore, we have to group the FUSE Z instruc-
tions to building blocks together with either PROPAGATE Y or CALC BRAKET instructions.
In this sense, all FUSE Z instructions are sub-instructions that can belong to either of these two
building blocks and the OVM will either form a 1POW φ(p + q) = φ(p)φ(q) or the amplitude
A = φ(p)φ(q) depending on the main instruction.

The OVM is initialized with a call that specifies where to find the byte code file, what ver-
sions of the OVM and physics model are used, as well as input arrays for masses, widths and
couplings, which hold the numeric values for the different types of particles and interactions.
In the header of the byte code file the OVM finds the number of momenta, amplitudes (due to
multiple color flows and flavor combinations) and wave functions that should be allocated. This
is followed by fixed tables for spin, flavor, color flows and color ghosts, for details concerning
the color flow formulation cf. Ref. [24], as well as whether a certain flavor-color combination is
allowed. Finally, the body of instructions completes the necessary information to compute the
cross section.

7

1 2 3 4 5 6 7 8 9 10

1 2 5 6 7 8 9 10

5 6 7 81 2 3 4

1 2 3

Figure 2: The classification of levels by the number of summands in the momenta yields an unambiguous organization
of the calculation whereby each level can be calculated in parallel. We emphasize that this illustration is only one of
thousands of possible partitions, whereby each 1POW is heavily reused.

4. Speed Benchmarks

In this section, we benchmark the OVM against the compiled code in Section 4.1, analyze
the scaling behavior with multiple cores, which indicates to which degree we are computing in
parallel and how much speed up we can expect for more cores, in Section 4.2 and end with a
remark on the byte code generation performance in Section 4.3. All processes shown here, and
various others, have been validated against the compiled versions where possible for random
massless momenta, generated by Rambo [25], with the help of an automated test suite that is
run when make check is started in the build folder of O’Mega. Further tests or benchmarks
can be added by appending a single line to the two steering files. We stress that every process
is computed in its respective model (QED, QCD or SM) to full tree-level order including all
interferences and we have not restricted e.g. the Drell-Yan amplitudes to only one electroweak
propagator. For simplicity of the test and benchmark suite, we use massless momenta but are
in no way restricted to massless theories and do not use simplifications that would render the
massless code faster.

To avoid complete compiler dependence of the results, we use two different compilers that are
commonly used in scientific projects. These are the GNU and Intel compilers, gfortran 4.7.1

and ifort 14.0.3, respectively. We do not claim that our results are necessarily representative
for all Fortran compilers or even compiler versions, but they should still give a good impression
of the expected variance in performance. For multi-threading, we use the OpenMP library of the
compilers as we are only interested in shared memory parallelization as discussed in Section 2.3.
The evaluation time measurements are performed on a computer with two Intel(R) Xeon(R) E5-
2440 @ 2.40GHz CPUs, having 16 MiB L3 cache on each socket, and 2x 32 GiB RAM running
under Scientific Linux 6.5. The machine has been locked down exclusively for these runs to
minimize context switches as far as possible.

4.1. Runtime Performance

In Figure 3, 4 and 5, we show the measured CPU times for QCD, SM and QED processes
with two different optimization levels for the compiled code and the OVM using the GNU and

8

Intel compiler. Since the evaluation times are highly reproducible, we use only three runs to
obtain mean and standard deviation. In most cases this results in vanishing error bars. We stress
that we show here the relative times normalized for each process to gfortran-O3, which is
why the times are not growing with the number of particles. Absolute times for fully color and
helicity summed amplitudes are increasing at least like 2n due to helicity and like (n − 1)! (for
the gluon amplitude) due to the number of color flows if no Monte Carlo methods are employed
to include these sums in the integration. Lower optimization levels than -O2 are not competitive
in terms of run time. For gfortran, we observe for most processes the fastest performance with
-O3 and for ifort with -O2, which is an effect commonly encountered. The fastest performance
is given by the source code compiled with ifort-O2 being roughly 0.75 times the time needed
by gfortran-O3.

4 5 6 7
multiplicity n

1.0

1.5

2.0

ti
m

e
no

rm
al

iz
ed

to
g
f
o
r
t
r
a
n
-
O
3

,c
om

pi
le

d

gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

2→ (n− 2)g amplitudes

Figure 3: CPU times measured with the Fortran intrinsic cpu time and normalized for each process to the compiled
source code using gfortran -O3. Dashed (solid) lines represent the OVM (compiled source code). The error bars
correspond to the standard deviation of three runs.

The crucial point, however, is that ifort fails to compile the n = 7 gluon and the uu →
e+e−6 j Drell-Yan process while the OVM immediately starts computing. The GNU compiler is
usually able to compile one multiplicity higher compared to the Intel before breaking down. This
fits together with the better performance of the compilable processes and longer compile times
as ifort seems to apply more sophisticated optimization methods to the source code. Disabling
the optimizations with -O0 still does not allow to compute the aforementioned processes with
both compilers.

Another interesting observation is that the OVM gets faster compared to the compiled code
with increasing multiplicity of external particles though this feature is more pronounced in SM

9

and QCD processes. This is no initialization effect since we allocate the arrays in the beginning
and only measure the generation time of matrix elements for M different phase space points.
M has been set beforehand for each process with the known approximate scaling for higher
multiplicities such that it takes a couple of minutes to complete the computation to have a reliable
measurement. The absolute costs for translating an instruction line to actual machine code,
i.e. the virtualization costs, are proportional to the number of instructions resulting hence in a
constant factor in the relative, normalized time and can not account for this scaling behavior.
The most important difference between the compiled source code and the VM is then the explicit
double loop in the VM, which goes over the instructions in a level and over all levels as shown
in the code excerpt in Section 2.3. The advantages and disadvantages of the double loop are
basically the same as general loop unrolling considerations. The native source code represents
hereby the unrolled loop that does not have to check for the loop variables, can use latency
hiding to start the next instruction while waiting for memory, potentially use CSE2 and optimize
the prefetching of the processor. The double loop of the VM on the other hand has the advantage
of having a higher probability to keep the decode function in the instruction cache. This can
potentially explain the scaling behavior with growing complexity compared to the compiled code.
We observe roughly the same effect for both compilers, but the OVM compiled with ifort is
about a factor of two slower than the version with gfortran, rendering it not really useful for
production runs. This could eventually be solved with a profile-guided optimization, but this is
beyond the scope of this work.

Finally, we want to understand the performance difference of the OVM between the QED
and QCD amplitudes. To get an impression of the computational complexity, consider that the
e+e− → 9γ amplitude is represented by 125 KiB and the gg → 4g by 269 KiB of byte code
consisting of 3373 and 6780 instructions, respectively. Since the complexity grows exponentially
with the number of external particles, those processes can be considered approximatively equally
expensive. The difference is, however, that the QED amplitude consists, due to the very high
number of external particles, of 8 levels while the QCD amplitude has only 4 levels. This results
in about 422 and 1695 instructions per level on average, which is why we can expect worse
parallel performance for the QED amplitude due to higher synchronization costs compared to the
work to be done per level. Furthermore, this is accompanied with higher memory needs: For the
QED amplitude, we need 549 momenta, 256 spinors, 256 conjugated spinors and 9 vector wave
functions. The QCD amplitude, on the other hand, requires only 31 momenta and 330 vector
wave functions. Returning with this information to the argument made in the last paragraph, the
compiled code can gain more from data prefetching in the case of the QED amplitude while the
VM improves for more instructions on less data as it is the case for QCD due to the lower chance
for instruction cache misses. Overall, we can expect QED to be the worst case scenario for the
OVM as it has the lowest number of flavors and the simplest gauge structure one can think of3.
Considering all results, we find that the runtimes are in the same order of magnitude and that
a VM can be competitive in terms of speed with the compiled version, especially for extreme
computations with a high amount of operations per memory.

4.2. Parallelization
Amdahl’s idealized law [26] simply divides an algorithm into parallelizable parts p and

strictly serial parts 1 − p. Therefore, the possible speedup s for a computation with n processors

2Although all common subexpressions have in our case already been avoided by O’Mega.
3Excluding toy models like φ4 theory.

10

0 1 2 3 4 5 6
multiplicity n

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ti
m

e
no

rm
al

iz
ed

to
g
f
o
r
t
r
a
n
-
O
3

,c
om

pi
le

d

gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

uu → e+e−nj amplitudes

Figure 4: Same as Figure 3 but for the SM Drell-Yan process uu → e+e−n j where j = u, u, g.

2 3 4 5 6 7 8 9
multiplicity n

1.0

1.5

2.0

2.5

3.0

ti
m

e
no

rm
al

iz
ed

to
g
f
o
r
t
r
a
n
-
O
3

,c
om

pi
le

d

gfortran-O3, compiled
gfortran-O3, VM
gfortran-O2, compiled
gfortran-O2, VM

ifort-O3, compiled
ifort-O3, VM
ifort-O2, compiled
ifort-O2, VM

e+e−→ nγ amplitudes

Figure 5: Same as Figure 3 but for quantum electrodynamics (QED) photon production e+e− → nγ.

11

is

s(n) ≡
t(1)
t(n)

=
1

(1 − p) +
p
n

. (1)

Communication costs between processors O (n) have been neglected hereby in the denomina-

1 2 3 4 5 6 7 8 9 10 11 12
threads N

2

4

6

8

10

sp
ee

du
p
s

p = 100%
n = 6 (PS)
n = 6 (A)
n = 7 (PS)
n = 7 (A)
n = 8 (PS)
n = 8 (A)
p = 95%

1 2 3 4 5 6 7 8 9 10 11 12
threads N

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ef
fic

ie
nc

y
s
/
n

Parallel performance of 2→ (n− 2)g amplitudes

Figure 6: Speedup and efficiency to compute a fixed number of phase space points for the parallel evaluation of multiple
phase space points (PS) and the parallel evaluation of the amplitude itself (A) are shown as dashed and dotted lines. The
error bars correspond to the standard deviation of three runs. The solid lines represent Amdahl’s law for a fixed value of
the parallelizable part p.

tor of eq. (1). This means that we have limn→∞ s(n) = 1/(1 − p) in the idealized case and
limn→∞ s(n) = 0 including communication costs. In reality, we are interested in high speedups
for finite n and also have to care about efficient cache usage. The picture becomes more compli-
cated in modern Non-Uniform Memory Access (NUMA) environments with multiple CPUs on
the same board where each socket has its own memory that the others can access as distributed
shared memory. For our machine, the two sockets have even and odd numbers for the CPUs on
them. To improve the thread scheduling, we have pinned the threads to the cores via

GOMP_CPU_AFFINITY=’0 2 4 6 8 10 1 3 5 7 9 11’

corresponding to using the first CPU for the threads 1–6 and then the second for 7–12. Hyper-
threading is disabled as it is not expected to speedup such a calculation. Sadly, we could not
achieve any s > 1 for the parallelization of the OVM with the Intel compiler neither by using
multiple phase space points at once nor by computing the amplitude in parallel. The reason for
this is quite unclear, as the exact same code shows the expected speedup with the GNU compiler,

12

and seems to be correlated with the bad single-core performance of the OVM compiled with
ifort.

In Figure 6, 7 and 8, we show the speedup with multiple cores N by either using the par-
allelization procedure, discussed in Section 2.3, to compute one amplitude in parallel or by
computing multiple amplitudes for multiple phase space points in parallel again for processes
with different multiplicities n in QCD, SM and QED. In a real application the phase space par-
allelization can not be as efficient as the naive version here, where we can just parallelize the do
loop over Npoints, since usually Vegas [27] grids are used to approximate the matrix-element and
these have to be adjusted iteratively. These book-keeping tasks reduce the parallel parts and the
phase-space parallelization shown here (PS) can therefore be regarded as upper bounds. For the
parallelization, we chose to only compare the runtime of a single helicity combination to reduce
the overall time needed to perform the tests since numerical off-shell recursion algorithms have
the same runtime for every helicity, opposed to the closed analytical formulae [28]. To measure
the speedup we have used wall clock times as given by the OpenMP function omp_get_wtime.
In Figure 6, we can see that the n = 7 and n = 8 gluon amplitudes parallelize very well with
both methods with parallelizable parts above 95 %. In the shared memory parallel evaluation of
the amplitude (A), the impact of the architecture is quite obvious. For N = 7, i.e. when the
second CPU of the NUMA environment is activated, we see a sharp drop in efficiency, which
can be expected since there will be synchronization costs at the end of each level and costs to
maintain cache coherency after each instruction inside the amplitude. For the n = 6 gluon and
the n = 4 Drell-Yan process, this effect even leads to a saturation in the speedup indicating that
the performance is bound by the memory transfer rates between both CPUs. We observe that
this effect becomes less important for more complex amplitudes. To understand this, note that
Sandy Bridge with its Intel Quick Path Interconnect (QPI) is actually a cache coherent NUMA
architecture, meaning that the cache controllers are required to maintain a consistent memory
image when more than one local cache stores the same memory location. Such cache coherency
effects have been studied e.g. for the related Nehalem microarchitecture in Ref. [29]. They have
shown that the bandwidth to other cores strongly depend on the coherency state of the accessed
data. If the latest copy is in the local caches of the remote core, which is more likely to occur
for smaller processes, read bandwidths decrease significantly. As expected by the discussion in
Section 4.1, the QED amplitudes do only parallelize well if phase space parallelization is used.

The very good performance of the phase space parallelization can be explained by the avail-
able cache. The size of the L3 cache per core, 2.7 MiB, is more than enough to host N = 12
independent versions of the OVM even for the n = 8 gluon amplitude, where momenta, am-
plitudes and wave functions account to 464.77 KiB. This will break down for this architecture,
however, for one multiplicity higher if we extrapolate the given scaling for the number of objects
involved in the calculation. The current version of O’Mega will produce code for all color flows
of a given process simultaneusly. Therefore we have not included the n = 9 gluon amplitude in
the tests, because the (9 − 1)! = 40 320 different color flow amplitudes do not fit into memory.
For real world applications the summation of all color amplitudes will have to be replaced by a
sampling of color space.

Either way, it is important to also have the possibility to compute one amplitude in parallel
since architectures change and e.g. the Intel Xeon Phi has only 512 KiB cache per core, rendering
already the n = 8 case close to inappropriate for phase space parallelization.

13

1 2 3 4 5 6 7 8 9 10 11 12
threads N

2

4

6

8

10

sp
ee

du
p
s

p = 100%
n = 4 (PS)
n = 4 (A)
n = 5 (PS)
n = 5 (A)
n = 6 (PS)
n = 6 (A)
p = 95%

1 2 3 4 5 6 7 8 9 10 11 12
threads N

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ef
fic

ie
nc

y
s
/
n

Parallel performance of uu → e+e−nj amplitudes

Figure 7: Same as Figure 3 but for the SM Drell-Yan process uu → e+e−n j where j = u, u, g.

1 2 3 4 5 6 7 8 9 10 11 12
threads N

2

4

6

8

10

sp
ee

du
p
s

p = 100%
n = 8 (PS)
n = 8 (A)
n = 9 (PS)
n = 9 (A)
n = 10 (PS)
n = 10 (A)
p = 95%

1 2 3 4 5 6 7 8 9 10 11 12
threads N

0.2

0.4

0.6

0.8

1.0

ef
fic

ie
nc

y
s
/
n

Parallel performance of e+e−→ nγ amplitudes

Figure 8: Same as Figure 3 but for QED photon production e+e− → nγ.

14

4.3. Bytecode Generation
It is intuitively clear that integer byte code is smaller than syntactically correct Fortran

source code. Furthermore, we use long strings in the source code for debugging purposes, i.e. to
directly see to which color flow and momentum combination a 1POW belongs. To be specific, we
note that the byte code for the OVM is about one order of magnitude smaller. For convenience,
some values together with their old compile times are shown in Table 2. The bytecode size
has been furthermore almost halved for very colorful amplitudes in a later version, by using the
symmetry of the color factor table, but this could have been achieved with the Fortran output
as well and is not shown here. The smaller output format leads to less required RAM and time to
produce it. Especially for many color flows, where the generation time of O’Mega is dominated
by the output procedure, we observe e.g. for gg → 6g a reduction in memory from 2.17 GiB to
1.34 GiB and in generation time from 11 min 52 s to 3 min 35 s, while staying roughly the same
for small processes.

Table 2: Size of the byte code (BC) compared to the Fortran source code together with the corresponding compile time
with gfortran. The compile times were measured on a computer with an i7–2720QM CPU. The 2g → 6g process fails
to compile.

process BC size Fortran size tcompile

gg → gggggg 428 MiB 4.0 GiB -
gg → ggggg 9.4 MiB 85 MiB 483(18) s
gg → qq̄q′q̄′q′′q̄′′g 3.2 MiB 27 MiB 166(15) s
e+e− → 5 (e+e−) 0.7 MiB 1.9 MiB 32.46(13) s

5. Summary and Outlook

A VM circumvents the compile and link problems that are associated with huge source
code as it emerges from very complex algebraic expressions. This work is a, to our knowl-
edge first, proof of principle that VMs are indeed a viable option that is maintaining relatively
high-performance in the numerical evaluation of these expressions and allows to approach the
hardware limits. In practice, a VM saves hours of compile time that would result often enough
in internal compiler errors instead of working code. The concept has been successively applied
to construct the OVM that is now an alternative method to compute tree-level matrix elements in
the publicly available package O’Mega and will also be integrated in Whizard in an upcoming
release of the package. Any computation can in principle be performed with a VM though the
benefits are clearly in the regime of extreme computations that are not solvable with the conven-
tional method. Here, we have seen that VMs can even perform better than compiled code. Also
the parallelization of the amplitude is for very complex processes close to the optimum.

It would be an interesting experiment to reduce the virtualization overhead by using an ac-
tual machine to compute matrix elements. The number of instructions corresponding to different
wave function fusions and propagators is finite for renormalizable theories (including effective
theories up to a fixed mass dimension) and implemented similarly in the various matrix element
generators. If the authors can agree on a common set of instructions and conventions this ma-
chine could therefore be used by all those programs. The LHC collaborations might actually have
a need for this, especially in the light of the HL-LHC, where the number of events for simulation

15

and reconstruction increases by an order of magnitude and new computing clusters will most
likely be needed. Field programmable gate arrays (FPGAs) can serve as such a machine as they
have comparable if not superior floating-point performance with respect to current microproces-
sors and the OVM and its instruction set is the first step to test the feasibility and potential gains
of computing matrix elements in this environment. The hardware integration might be quite easy
as Intel has recently revealed [30] that Xeon processors can in future be paired with a FPGA in a
single socket.

While GPUs and FPGAs are rather unconventional devices that will need large code modi-
fications, similar speedups could be achieved with the Many Integrated Cores (MIC) platform.
Various existing scientific applications in Fortran and C++ have been analyzed in Ref. [31] with
an early development environment release of the upcoming Intel Xeon Phi. They have shown
that it is possible to compile libraries that utilize the Autotools build system for the MIC en-
vironment just by setting the proper ./configure options, at least for static builds. This is a
clear advantage as no rewriting is necessary while the speedup can still be in the order of 20
for about 100 threads. Obviously, this strongly depends on having a highly parallel code. We
would expect for the OVM speedups in the range of 17 − 50 for processes that exhibit 95 % to
99 % parallel fractions by extrapolating the data of Section 4 and assuming no severe memory
problems. In fact, the Xeon Phi possesses no L3 cache at all but a set of coherent L2 caches with
less overall cache per core. Thus, we might see a break down in the efficiency of the phase space
parallelization, when the objects of one matrix element exceed the L2 cache, while on the other
hand high speedups in the parallelization of the amplitude can be maintained.

Acknowledgments

BCN thanks Danny van Dyk, Tomas Jezo and Jos Vermaseren for useful discussions of the
idea.

Appendix A. A Trivial Example

To try out the ideas of Section 2, we evaluate a trivial problem here. Consider the identity,
for x ∈ R,

(−1)x = ei π x + eln 2 +
1

1 − 1
2

−
1

(1 − 1
2)2

≡ C1(x) + eR1 + R2 − R3 , (A.1)

which can be written in terms of the known series C1 and Ri as

C1(x) =

∞∑
n=0

1
n!

(i π x)n R1 =

∞∑
n=1

(−1)n+1 1
n

R2 =

∞∑
n=0

(
1
2

)n

R3 =

∞∑
n=1

n
(

1
2

)n−1

. (A.2)

To test the VM, we can compute these series explicitly numerically. This means we create byte
code for a given N, whereby the above equations follow for N → ∞, and execute it in the VM.
Though these series are not particularly interesting by themselves, it allows us to test the whole

16

VM infrastructure in a self-contained way, i.e. without dependencies on external libraries4. The
corresponding template code is freely accessible at https://github.com/bijancn/basic-
vm and can be used to create a VM for any purpose. It is written in a subset of Fortran2003 that
is supported by most modern compilers for mere convenience of the author and due to the envi-
ronment in which the O’Mega virtual machine (OVM) is used. A translation to C or Fortran95
is straightforward as the code structure is very simple. An earlier version in Fortran95 had
the same performance characteristics in the tested cases as the one shown here, indicating that
possible performance penalties for the use of some higher-level constructs on the top-level are
negligible.

The first step in writing a VM is to identify the set of operations that are needed to perform
the computation. Let us associate an instruction line of five integers as operation code (opcode),
left-hand side (LHS) and right-hand side (RHS)

OPCODE LHS RHS1 RHS2 RHS3.

The three fundamental operations, identified by the opcodes 1-3, could then be

1 tmp_real(LHS) += RHS1 / RHS2

2 tmp_cmplx(LHS) += (const(RHS1) * input(RHS1))^RHS2 / table(RHS3)

3 output(LHS) = tmp_cmplx(LHS) + exp(tmp_real(RHS1))

+ tmp_real(RHS2) - tmp_real (RHS3).

Hereby, we have chosen to put the factorials needed into a separate table. These are given in
the byte code as a simple line-by-line array

1

1

2

6...

The calling application has to supply the constant block

const(1) = i π (A.3)

and as input data

input(1) = x. (A.4)

The byte code for the first elements of C1 = 1 + iπ − 1
2π

2 + . . . now reads, e.g.,

2 1 1 0 1

2 1 1 1 2

2 1 1 2 3

2 1 1 3 4

and so on. Full example byte codes are part of the repository as well as a Python script to
dynamically construct such byte code for any N. Building and running the code is explained in
the README.

4Except OpenMP, which is needed for parallelization, but the single-threaded execution also works without the library.
17

https://github.com/bijancn/basic-vm
https://github.com/bijancn/basic-vm

References
[1] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond, Journal of High Energy

Physics 2011 (6) (2011) 128. arXiv:1106.0522v1, doi:10.1007/JHEP06(2011)128.
[2] T. Hahn, M. Pérez-Victoria, Automated one-loop calculations in four and D dimensions, Computer Physics Com-

munications 118 (2-3) (1999) 153–165. arXiv:hep-ph/9807565, doi:10.1016/S0010-4655(98)00173-8.
[3] B. Chokoufe Nejad, J.-N. Lang, T. Hahn, E. Mirabella, FormCalc 8: Better Algebra and Vectorization, Acta Physica

Polonica B 44 (11) (2013) 2231. arXiv:1310.0274, doi:10.5506/APhysPolB.44.2231.
[4] M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing Matrix Element Generator, arXiv hep-ph (0102195).

arXiv:hep-ph/0102195.
[5] B. Ruijl, J. Vermaseren, A. Plaat, J. V. D. Herik, HEPGAME and the Simplification of Expressions, arXiv

1405 (6369). arXiv:1405.6369.
[6] J. Kuipers, T. Ueda, J. Vermaseren, J. Vollinga, FORM version 4.0, Computer Physics Communications 184 (5)

(2013) 1453–1467. arXiv:1203.6543, doi:10.1016/j.cpc.2012.12.028.
[7] T. Ueda, J. Vermaseren, Recent developments on FORM, Journal of Physics: Conference Series 523 (2014) 012047.

doi:10.1088/1742-6596/523/1/012047.
[8] T. Reiter, Optimising code generation with haggies, Computer Physics Communications 181 (7) (2010) 1301–1331.

arXiv:1404.4328, doi:10.1016/j.cpc.2010.01.012.
[9] V. S. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concurrency: Practice and Experience

2 (4) (1990) 315–339.
URL http://www.csm.ornl.gov/pvm/pvm_home.html

[10] D. Cooke, T. Hochberg, F. Alted, I. Vilata, G. Thalhammer, M. Wiebe, G. de Menten, A. Valentino, numexpr - Fast
numerical array expression evaluator for Python, NumPy, PyTables, pandas, bcolz and more.
URL https://github.com/pydata/numexpr

[11] T. Hahn, Cuba - a library for multidimensional numerical integration, Computer Physics Communications 168 (2)
(2005) 78–95. doi:10.1016/j.cpc.2005.01.010.

[12] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer, Fast calculation of HELAS amplitudes using
graphics processing unit (GPU), The European Physical Journal C 66 (3-4) (2010) 477–492. arXiv:0908.4403,
doi:10.1140/epjc/s10052-010-1276-8.

[13] F. Caravaglios, M. Moretti, An Algorithm to Compute Born Scattering Amplitudes without Feynman Graphs,
Physics Letters B 358 (3-4) (1995) 332–338. arXiv:9507237, doi:10.1016/0370-2693(95)00971-M.

[14] A. Kanaki, C. G. Papadopoulos, HELAC: A package to compute electroweak helicity amplitudes, Computer
Physics Communications 132 (3) (2000) 306–315. arXiv:0002082, doi:10.1016/S0010-4655(00)00151-X.

[15] T. Gleisberg, S. Höche, Comix, a new matrix element generator, Journal of High Energy Physics 2008 (12) (2008)
039–039. arXiv:0808.3674v2, doi:10.1088/1126-6708/2008/12/039.

[16] S. Actis, A. Denner, L. Hofer, A. Scharf, S. Uccirati, Recursive generation of one-loop amplitudes in the Standard
Model, arXiv 1211 (6316). arXiv:1211.6316.

[17] A. van Hameren, Multi-gluon one-loop amplitudes using tensor integrals, Journal of High Energy Physics 2009 (07)
(2009) 088–088. arXiv:0905.1005, doi:10.1088/1126-6708/2009/07/088.

[18] W. Kilian, T. Ohl, J. Reuter, WHIZARD - simulating multi-particle processes at LHC and ILC, The European
Physical Journal C 71 (9) (2011) 1742. doi:10.1140/epjc/s10052-011-1742-y.

[19] B. Chokoufe Nejad, Numerical Calculations of Multi-Jet Cross Sections (2014).
URL http://www.physik.uni-wuerzburg.de/fileadmin/11030200/Master_Arbeiten/chokoufe_

nejad-bijan_master.pdf

[20] T. Ohl, J. Reuter, W. Kilian, O’Mega: Manual and Commented Source Code (2014).
URL http://projects.hepforge.org/whizard/omega.pdf

[21] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO The Universal FeynRules Output,
Computer Physics Communications 183 (6) (2012) 1201–1214. doi:10.1016/j.cpc.2012.01.022.

[22] P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer, ALOHA: Automatic libraries of helicity amplitudes
for Feynman diagram computations, Computer Physics Communications 183 (10) (2012) 2254–2263. arXiv:

1108.2041v2, doi:10.1016/j.cpc.2012.05.004.
[23] K.A. Olive et al. (Particle Data Group), Review of Particle Physics, Chinese Physics C 38 (9) (2014) 090001.

doi:10.1088/1674-1137/38/9/090001.
[24] W. Kilian, T. Ohl, J. Reuter, C. Speckner, QCD in the color-flow representation, Journal of High Energy Physics

2012 (10) (2012) 22. arXiv:1206.3700v2, doi:10.1007/JHEP10(2012)022.
[25] R. Kleiss, W. Stirling, S. Ellis, A new Monte Carlo treatment of multiparticle phase space at high energies, Com-

puter Physics Communications 40 (1986) 359–373.
[26] G. Amdahl, Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities, AFIPS

Conference Proceedings 30 (1967) 483–485.
URL http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

18

http://arxiv.org/abs/1106.0522v1
http://dx.doi.org/10.1007/JHEP06(2011)128
http://arxiv.org/abs/hep-ph/9807565
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/1310.0274
http://dx.doi.org/10.5506/APhysPolB.44.2231
http://arxiv.org/abs/hep-ph/0102195
http://arxiv.org/abs/1405.6369
http://arxiv.org/abs/1203.6543
http://dx.doi.org/10.1016/j.cpc.2012.12.028
http://dx.doi.org/10.1088/1742-6596/523/1/012047
http://arxiv.org/abs/1404.4328
http://dx.doi.org/10.1016/j.cpc.2010.01.012
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.csm.ornl.gov/pvm/pvm_home.html
https://github.com/pydata/numexpr
https://github.com/pydata/numexpr
https://github.com/pydata/numexpr
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/0908.4403
http://dx.doi.org/10.1140/epjc/s10052-010-1276-8
http://arxiv.org/abs/9507237
http://dx.doi.org/10.1016/0370-2693(95)00971-M
http://arxiv.org/abs/0002082
http://dx.doi.org/10.1016/S0010-4655(00)00151-X
http://arxiv.org/abs/0808.3674v2
http://dx.doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/1211.6316
http://arxiv.org/abs/0905.1005
http://dx.doi.org/10.1088/1126-6708/2009/07/088
http://dx.doi.org/10.1140/epjc/s10052-011-1742-y
http://www.physik.uni-wuerzburg.de/fileadmin/11030200/Master_Arbeiten/chokoufe_nejad-bijan_master.pdf
http://www.physik.uni-wuerzburg.de/fileadmin/11030200/Master_Arbeiten/chokoufe_nejad-bijan_master.pdf
http://www.physik.uni-wuerzburg.de/fileadmin/11030200/Master_Arbeiten/chokoufe_nejad-bijan_master.pdf
http://projects.hepforge.org/whizard/omega.pdf
http://projects.hepforge.org/whizard/omega.pdf
http://dx.doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/1108.2041v2
http://arxiv.org/abs/1108.2041v2
http://dx.doi.org/10.1016/j.cpc.2012.05.004
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://arxiv.org/abs/1206.3700v2
http://dx.doi.org/10.1007/JHEP10(2012)022
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

[27] G. Lepage, A new algorithm for adaptive multidimensional integration, Journal of Computational Physics 27 (2)
(1978) 192–203.

[28] S. Badger, B. Biedermann, L. Hackl, J. Plefka, T. Schuster, P. Uwer, Comparing efficient computation methods
for massless QCD tree amplitudes: Closed analytic formulas versus Berends-Giele recursion, Physical Review D
87 (3) (2013) 034011. doi:10.1103/PhysRevD.87.034011.

[29] D. Molka, D. Hackenberg, R. Schone, M. S. Muller, Memory Performance and Cache Coherency Effects on an Intel
Nehalem Multiprocessor System, in: 2009 18th International Conference on Parallel Architectures and Compilation
Techniques, IEEE, 2009, pp. 261–270. doi:10.1109/PACT.2009.22.

[30] Intel, Disrupting the Data Center to Create the Digital Services Economy (2014).
URL https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/

disrupting-the-data-center-to-create-the-digital-services-economy

[31] K. W. Schulz, R. Ulerich, N. Malaya, P. T. Bauman, R. Stogner, C. Simmons, Early Experiences Porting Scientific
Applications to the Many Integrated Core (MIC) Platform, TACC - Intel Highly Parallel Computing Symposium
MIC.
URL http://users.ices.utexas.edu/~rhys/papers/SchulzPS2cTIHCPS12.pdf

19

http://dx.doi.org/10.1103/PhysRevD.87.034011
http://dx.doi.org/10.1109/PACT.2009.22
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
https://communities.intel.com/community/itpeernetwork/datastack/blog/2014/06/18/disrupting-the-data-center-to-create-the-digital-services-economy
http://users.ices.utexas.edu/~rhys/papers/Schulz PS2c TIHCPS12.pdf
http://users.ices.utexas.edu/~rhys/papers/Schulz PS2c TIHCPS12.pdf
http://users.ices.utexas.edu/~rhys/papers/Schulz PS2c TIHCPS12.pdf

	1 Introduction
	2 General Virtual Machines
	2.1 Byte Code
	2.2 Interpreter
	2.3 Parallelization

	3 O'Mega Virtual Machine
	4 Speed Benchmarks
	4.1 Runtime Performance
	4.2 Parallelization
	4.3 Bytecode Generation

	5 Summary and Outlook
	Appendix A A Trivial Example

