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Abstract

A new version ofcarlomat that allows to generate automatically the Monte Carlo programs ded-
icated to the description of the processese+e− → hadrons at low center-of-mass energies is pre-
sented. The program has been substantially modified in orderto incorporate the photon–vector
meson mixing terms and to make possible computation of the helicity amplitudes involving the
Feynman interaction vertices of new tensor structures, like those predicted by the Resonance Chiral
Theory or Hidden Local Symmetry model, and the effective Lagrangian of the electromagnetic in-
teraction of the nucleons. Moreover, a number of new optionshave been introduced in the program
in order to enable a better control over the effective modelsimplemented. In particular, they offer a
possibility to determine the dominant production mechanisms of the final state chosen by the user.

1E-mail: karol.kolodziej@us.edu.pl

http://arxiv.org/abs/1504.05915v2


PROGRAM SUMMARY

Program title:carlomat, version 3.0

Catalogue identifier:
Program summary URL:
Program obtainable from:CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions:Standard CPC licence
No. of lines in distributed program, including test data, etc.:
No. of bytes in distributed program, including test data, etc.:
Distribution format:tar.gz
Programming language:Fortran 90/95

Computer:All
Operating system:Linux
Classification:
Nature of problem:
Predictions for reactions of low energye+e−-annihilation into final states containing pions, kaons,
light vector mesons, one or more photons and light fermion pairs within the Standard Model and ef-
fective models inspired by the Resonance Chiral Theory or Hidden Local Symmetry model. Descrip-
tion of the electromagnetic production of nucleon pairs within the effective Lagrangian approach.
Solution method:
As in former versions, a program for the Monte Carlo (MC) simulation of e+e− → hadrons at low
energies is generated in a fully automatic way for a user specified process. However, the user is
supposed to select a number of options and adjust arbitrary parameters in the main part of the MC
computation program in order to obtain possibly the best description of experimental data. To this
end, the user can also easily supplement her/his own formulae fors-dependent vector meson widths
or running couplings by appropriately modifying corresponding subroutines.
Reasons for new version:
Processes ofe+e− → hadrons in the energy range below theJ/ψ threshold cannot be described
in the framework of perturbative quantum chromodynamics. The scalar electrodynamics which has
been implemented incarlomat 2.0 [1] does not provide a satisfactory description either. Themost
promising theoretical frameworks in this context are the Resonance Chiral Theory or Hidden Local
Symmetry model which, among others, involve the photon–vector meson mixing and a number of
vertices of rather complicated Lorentz tensor structure that is not present in the Standard Model or
scalar QED. Already at low energies, the hadronic final states may consist of several particles, such
as pions, kaons, or nucleons which can be accompanied by one or more photons, or light fermion
pairs such ase+e−, or µ+µ−. The number of Feynman diagrams of such multiparticle reactions
grows substantially with increasing numbers of interaction vertices and mixing terms of the effec-
tive models. Therefore, it is highly desirable to automatize the calculations. At the same time, new
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program options should provide the user with an easy way of implementing her/his own changes in
the program in order to better fit the experimental data.
Summary of revisions:
The code-generation part of the program has been substantially modified in order to incorporate the
photon–vector meson mixing and calls to new subroutines forcomputation of the helicity amplitudes
of the building blocks and complete Feynman diagrams which contain new interaction vertices and
mixing terms. The subroutine library ofcarlomat has been extended to make possible computation
of the helicity amplitudes involving the Feynman interaction vertices of new Lorentz tensor struc-
tures. Many subroutines have been modified in order to incorporate theq2-dependent couplings and
vector meson widths. A number of options have been introduced in order to give a better control of
the effective model implemented.
Restrictions:
As in previous versions of the program the number of particles is limited to 12 which exceeds typical
numbers of particles of the exclusive low energye+e−-annihilation processes. However, in the pres-
ence of photon–vector meson mixing, the Feynman diagrams proliferate, for example, with currently
implemented Feynman rules, there are 90672 diagrams ofe+e− → 3(π+π−). Hence, the compi-
lation time of generated code may become very long already for processes with smaller number of
the final state particles. Many couplings of the effective models are not known with good enough
precision and must be adjusted in consecutive runs of the program in order to obtain satisfactory
description of the experimental data.
Running time:
Depends on the selected process. Typical running time for the code generation vary from a fraction
of a second for, e.g.,e+e− → π+π−K+K− to about 2 minutes fore+e− → 3(π+π−). It may become
substantially longer for processes with more particles in the final state. The execution time necessary
to produce the appended test output files fore+e− → π+π−µ+µ−γ ande+e− → π+π−π+π−γ was
13s and 4s, respectively. The code generation for both processes took a fraction of a second time for
each process.

1 Introduction

Hadronic contributions to the vacuum polarization are the major factor that influences precision of
theoretical predictions for the muon anomalyaµ and plays an important role in the evolution of the
fine structure constantα(Q2) from the Thomson limit to high energy scales. Improving the precision
of predictions for the muon anomaly becomes vital in the prospect of forthcoming measurements in
Fermilab that should reduce the experimental error ofaµ to 0.14 parts per million, while the better
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precision ofα(m2
Z) would be important for the precision data analysis from the future high energy

e+e− collider, which would most probably include a giga-Z option. Because of the breakdown of
predictive power of the perturbative QCD at low momentum transfer, the hadronic contributions to
the vacuum polarization are determined, with the help of dispersion relations, from the energy de-
pendence of the total cross section of electron–positron annihilation into hadrons,σe+e−→hadrons(s).
Below theJ/ψ production threshold,σe+e−→hadronsmust be measured and confronted with theoreti-
cal predictions of some effective model for the low energy hadron physics.

There are two QCD inspired theoretical frameworks which seem to be applicable in this context: the
Resonance Chiral Theory (RχT) [2] and the Hidden Local Symmetry (HLS) model [3], which were
proven to be essentially equivalent [4]. For example, the HLS model allowed for a quite satisfac-
tory simultaneous description of most hadronice+e−-annihilation channels in the low energy range,
including φ-resonance and 10 decay widths, mostly radiative ones, of light mesons and allowed
to resolve the inconsistency between thee+e−-annihilation toπ+π− and theτ±-decay toπ±π0ντ
[5], [6]. The hadronic currents based on RχT were implemented inTAUOLA, a τ-decay Monte
Carlo (MC) generator [7], and used for description of theτ lepton decay into two or three pseu-
doscalar mesons that constitute 88% of theτ hadronic decay width in Ref. [8] and later improved for
τ± → π±π±π∓ντ decay mode in Ref. [9] which allowed to successfully model the one-dimensional
distributions measured by the BaBar collaboration.

The number of Feynman diagrams in the framework of RχT or HLS model grows quite fast with
the number of particles in the final state ofe+e− → hadrons. In particular, in the presence of
one or a few photon–vector meson mixing terms, it can easily reach a hundred thousand already
for e+e− → 6π. Obviously, preparation of a reliable MC generator for sucha process is rather
tedious a task, unless the process of code writing is fully automatized. The first step toward the
automatic generation of the MC programs for description of reactionse+e− → hadrons was already
made incarlomat 2.0 [1], in which the Feynman rules of the scalar electrodynamics (sQED) were
implemented in addition to those of the Standard Model (SM).It allowed to effectively describe
the electromagnetic (EM) interaction of charged pions which, at low energies, can be considered as
being point like particles, see, e.g., [10]. However, the charged pion form factor that would allow
to account for the bound state nature of the particle was not implemented incarlomat 2.0. In the
present paper, a new version, labeled with 3.0, of a programcarlomat [11], [1] is described, which
to large extent should meet the requirements of automatic code generation for MC simulation of the
low energetice+e−-annihilation into hadrons in the framework of the effective models.

The paper is organized in the following way. In Section 2, theimplementation of new Feynman
rules in the program is described. New options which have been implemented in the program to
give the user a better control over the model are described inSection 3. Finally, the instructions for
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preparation for running and usage of the program are given inSection 4.

2 New Feynman rules implemented in the program

In this section, the implementation of the Feynman rules of the HLS model that are relevant for the
description ofe+e− → hadrons in the low energy range incarlomat 3.0 is described. Most of the
rules can be derived from the Lagrangian pieces of Appendix Cof Ref. [5]. The Lagrangian of EM
interaction of spin 1/2 nucleons implemented in the programis described in Subsection 2.3.

2.1 Photon–vector meson mixing

The topology generator ofcarlomat takes into account only triple and quartic vertices, therefore
the mixing should be added in subroutinechecktop, where topologies of diagrams are confronted
with the implemented Feynman rules. The procedure was described in detail in Ref. [11]. For
the sake of clarity let us remind here, that every topology incarlomat is divided into two parts,
each being checked against the Feynman rules separately. This is done by consecutive calls to
subroutinegenpart that combines two (three) particles into the third (fourth)leg of a triple (quartic)
Feynman vertex which is then folded with the adjacent Feynman propagator to form an off-shell
particle. The latter is represented by an array of spinors, polarization vectors or scalars, whose
elements are labeled with different combinations of the polarization indices of the particle spinors or
polarization vectors of which they are formed. At this point, if the particle mixing is present, a new
subroutinemixpl is called to check whether the propagator of the off-shell particle can be mixed
with some other propagator or not, if so, a new off-shell particle is formed. The particle with mixing
is appropriately tagged in order not to be mixed again, because, according to Fig. 1, the mixing
term contains an extra power of the electric chargee and therefore should be considered as the next
to leading-order correction. This procedure is being repeated until finally two off-shell particles
are formed, corresponding to both parts of the considered topology. Then, a modified subroutine
matchkk is called which checks, whether the particles can be matchedin the Feynman diagram with
the Feynman propagator or, if none of them has been mixed yet,with some of the mixing terms of
Fig. 1.

In spite of being conceptually quite simple, the implementation of particle mixing required sub-
stantial changes in the code-generation part of the program. Moreover, new subroutinesbbkk and
bbmd have been written to compute, respectively, the polarization vectors of the off-shell particle and
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helicity amplitudes of the Feynman diagrams in the case of mixing.

Aµ(q) V ν(q)
≡ −e fAV(q2) gµν, with V = ρ0,ω,φ,ρ1,ρ2.

Figure 1:The photon–vector meson mixing diagrams implemented in thecurrent version of the program;ρ1

andρ2 stand forρ(1450) andρ(1700), respectively.

2.2 Interaction vertices

The triple and quartic interaction vertices of the HLS modelthat are implemented incarlomat 3.0

are depicted in Figs. 2–4, where all the particle four momenta are assumed to be incoming to the
vertex andεµνρσ, with ε0123= 1, is the totally antisymmetric Levi-Civita tensor. A number of new
subroutines for computation of the building blocks and complete amplitudes of the Feynman dia-
grams containing vertices of new tensor structure have beenwritten. The implementation of calls
to the new subroutines required some changes in the code-generation part of the program which
concerned mainly subroutinegenpart.

The triple vertices of the photonAµ or vector mesonVµ interaction with the pseudoscalar meson pair
PP̄ which have the form similar to the triple vertex of sQED are shown in Fig. 2. The only difference
is the replacement

e → e fAPP(q
2) and e → fVPP(q

2), (1)

whereV = ρ0,ω,φ,ρ1,ρ2 and P = π+,K+,K0. Although couplings ofρ1 = ρ(1450) and ρ2 =
ρ(1700) to other particles are hard to define on the basis of existing data [12], the interaction vertices
ρiπ+π− and mixing termsγ−ρi , i = 1,2, have been included in the program just to enable tests of
their possible influence on some observables, e.g., on the pion form factor, where they play a role.

Subroutinesppakk, appkk andpapkk for the computation of building blocks of the Feynman dia-
grams, andppamd, appmd andpapmd for the computation of the helicity amplitudes in the sQED of
carlomat 2.0 have been all supplemented with an optionig, which allows to take into account the
q2-dependent couplings of (1). Subroutinesppakk andppamd have been additionally supplied with
an optioniwdth, that gives a possibility to include thes-dependent width of a vector meson. The
use of both options is explained in Section 3.

Triple interaction vertices of the HLS model that have a formdifferent from that of the triple vertices
of the SM or sQED are depicted in Fig. 3. New subroutines that have been written in order to
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Aµ(q)

P (p1)

P̄ (p2)

≡ iefAPP (q
2)(p1 − p2)

µ
V µ(q)

P (p1)

P̄ (p2)

≡ ifV PP (q
2)(p1 − p2)

µ

Figure 2:Triple vertices of the photonAµ or vector mesonVµ, V = ρ0,ω,φ, interaction with the pseudoscalar
meson pairPP̄, P= π+,K+,K0, of the same form as that of the triple vertex of sQED.

π0(q)

Aµ(p1)

Aν(p2)

≡ e2fπAA(q
2)εµναβp1αp2β

π0(q)

Aµ(p1)

V ν(p2)

≡ iefπAV (q
2)εµναβp1αp2β

π∓(q)

Aµ(p1)

ρ± ν(p2)

≡ iefπ∓Aρ±(q
2)εµναβp1αp2β

P (q)

ωµ(p1)

V ν(p2)

≡ fPωV (q
2)εµναβp1αp2β

Figure 3:Triple vertices of the pion interaction with photons or vector mesons, where, in the top right corner,
V = ρ0,ω, in the bottom right cornerP= π0 andV = ρ0 or P= π∓ andV = ρ±.

compute the corresponding building blocks and helicity amplitudes are:pvvkk, pvvmd, vvpkk and
vvpmd. All of them include the running-coupling optionig, and the first one, whose output is an
array of four vectors corresponding to all possible helicities of the scalar and vector particles they
are composed of, includes in addition the running-width option iwdth.

The quartic interaction vertices of the HLS model implemented in the current version of the program
are shown in Fig. 4. The vertices in the first row have the same tensor form as the quartic vertex of
the sQED or the quartic vertices of the Nambu-Goldstone boson – gauge boson interaction of the
SM, which have been implemented already in the first version of carlomat. Hence, the correspond-
ing building blocks and helicity amplitudes can be computedwith modified subroutinesvvsskk,
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ρ0µ

Aν

π+

π−

≡ 2iefAρππ(q
2)gµν

ρ+µ

ρ− ν

π+

π−

≡ 2ifρρππ(q
2)gµν

π0(p1)

Aµ(q)

π+(p2)

π−(p3)

≡ −efAπππ(q
2)εµναβp1 νp2αp3β

π0(p1)

ωµ(q)

π+(p2)

π−(p3)

≡ −efωπππ(q
2)εµναβp1 νp2αp3β

Figure 4:Quartic vertices of the HLS model implemented in the currentversion of the program. The quartic
vertexAAπ+π− of sQED, implemented already incarlomat 2.0, is not shown.

vvssmd, vsvskk, vsvsmd, vssvkk, vssvmd, svvskk, svvsmd, ssvvkk, ssvvmd, svsvkk

andsvsvmd, which have been all supplied with the running-coupling optionig. Subroutinesvssvkk,
ssvvkk andsvsvkk have been moreover supplemented with the running-width option iwidth. The
tensor form of the vertices in the second row of Fig. 4 is different. Therefore, the correspond-
ing building blocks and helicity amplitudes are computed with newly written subroutinespppvkk,
pppvmd, vpppkk andvpppmd.

2.3 Electromagnetic interaction of nucleons

The Lagrangian of EM interaction of spin 1/2 nucleons has thefollowing form:

LANN = eAµN̄(p′)

[

γµF1(Q
2)+

i
2mN

σµνqνF2(Q
2)

]

N(p), (2)

whereσµν = i
2[γ

µ,γν], with γµ, µ = 0,1,2,3, being the Dirac matrices,q = p− p′ is the four mo-
mentum transfer,F1(Q2) andF2(Q2) are the form factors andQ2 = −q2. The form of Eq. (2) is
similar to that of the effective Lagrangian of theWtb interaction given by Eq. (4) of Ref. [1]. Due
to this fact, the implementation of the corresponding Feynman rules for the nucleon–photon interac-
tion was straightforward. To compute the corresponding building blocks and helicity amplitudes the
following new subroutines have been written:annkk, annmd, nnakk, nnamd, nankk andnanmd
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and the calls to them have been appropriately implemented insubroutinegenpart. The form factors
F1(Q2) andF2(Q2) have been adopted fromPHOKARA [13] with the help of an interface subroutine
nuclff phok. In this way, the MC simulations of processes involving the EM production of the
nucleon pairs have become possible.

3 New program options

New options which have been added in the program to give the user a better control over the imple-
mented models for the description of the electron–positronannihilation into hadrons at low energies
are explained below.

All subroutines that are used to compute the building blocksor the complete helicity amplitudes of
the Feynman diagrams of Figs. 2–4 have been supplied with therunning-coupling option the name
of which is formed by adding a prefixi to the name of the corresponding coupling, as the name
is created in exactly the same way at the stage of code generation. The options are to be specified
in subroutinecouplsm, where they are defined below the assignment instruction foreach particular
coupling.

icoupl name=0/1,2,... if the fixed/running coupling is to be used in the computation,

where choices1,2,... corresponding to different running couplingsf...(q2) of Figs. 1–4 should be
added by the user as extraelse if (ig == ...) then blocks in subroutineruncoupl. The block
must contain an assignment for a double complex variablerg in terms of the four momentum transfer
squaredq2 and any other physical parameters that are available in module inprms. The actual form
of the four momentum transferq is determined automatically from the four momentum conservation
in the corresponding interaction vertex at the stage of codegeneration. Many couplings of the RχT
or HLS model are not known well enough and therefore must be adjusted in consecutive runs of the
program in order to obtain satisfactory description of the experimental data. If there are no hints
as to the form of the running couplingsf...(q2) then it is recommended to set the corresponding
running-coupling option to 0, which means that the fixed coupling is to be used in the computation.
The user can also modify any of the fixed couplings by changingthe corresponding assignments in
couplsm, where the couplings are defined in terms of the physical parameters of moduleinprms.

The subroutines for computation of the four vectors representing vector mesons have been in addition
supplied with the running-width optioniwdth name, i.e. igmrh, igmom, igmph, igmr1, igmr2

for the running width ofρ0,ω,φ,ρ1,ρ2, respectively:
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iwdth name=0/1,2,3 if the fixed/running width of the vector particle should be used,

where choices 1,2,3 refer to different running-width options in subroutinerunwidth which again
can easily be extended by the user. The options are controlled fromcarlocom, the main part of the
MC computation program.

The main part of the MC computation programcarlocom contains a few flags:iarho, iaome,

iaphi, iarho1 andiarho2 that allow to switch off and on the photon mixing withρ,ω,φ, ρ1

andρ2 vector mesons without a need of running the code-generationprogram anew, provided that
the corresponding mixing terms were included in a filevertices.dat when the MC code was
generated. This gives a possibility to determine the dominant production mechanisms of the final
state considered by the user.

In order to give a better control over the mixing contributions to a given process, subroutinesbbkk

andbbmd are equipped with the option:

iwgt=0/1,2,... if the additional complex factorc1,c2, ... is not/is to be included infAV(q2)
of Fig. 1, i.e. in the amplitude of the Feynman diagrams containing this
particular particle mixing contribution.

The actual names for that option incarlocom are: imrho, imome, imphi, imrh1, imrh2 for
theρ0,ω,φ,ρ1,ρ2 meson, respectively. The complex factorc j , j = 1,2, ... is given by

c j = w j eiϕ j f j(q
2), (3)

wherew j is a positive weight,ϕ j is an angle in degrees, which should be both specified for each
possible particle mixing term in the main program for the MC computationcarlocom, and f j(q2)
is a possible four momentum transfer dependence that is defined in subroutineweightfactor.
Actually only three simple dependences corresponding toiwgt=1,2,3 are currently defined in
weightfactor, but the user can easily add more options by implementing newelse if (iwgt

== ...) then conditions.

An important new option in the program, which allows to test the EM gauge invariance for processes
with one or more external photons, isigauge in carlocom.f:

igauge=1,2,.../else if the gauge invarianceis/is not to be tested,

where 1,2,... is the number of a photon, counting from left toright, whose polarization four vector
is replaced with its four momentum.
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To illustrate how this option can be used in practice, consider the following radiative processes:

e+e− → π+π−µ+µ−γ, (4)

e+e− → π+π−π+π−γ. (5)

Taking into account the Feynman rules of SM, without the Higgs couplings to electrons and muons,
sQED, theγ−ρ0 mixing of Fig. 1 and the vertices:γπ+π− andρ0π+π− of Fig. 2, π0γγ andπ0γρ0

of Fig. 3 andγρ0π+π− and γπ0π+π− of Fig. 4, processes (4) and (5) receive contribution from,
respectively, 209 and 774 Feynman diagrams. If, in addition, the verticesπ∓γρ± of Fig. 3 are
included then the number of diagrams of processes (4) and (5)grows, respectively, to 231 and 968.
The cross sections of processes (4) and (5) at

√
s= 1 GeV, with the following cuts on the angles

between the photon and a leptonθγ l , the photon and a pionθπ l and the photon energy:

θγ l > 5◦, θγπ > 5◦, Eγ > 10 MeV, (6)

are presented in Table 1. The cross sections without (with) contribution from theπ∓γρ± interaction
vertices of Fig. 3 are printed in the first (second) column foreach process. Ifigauge=1 then the
cross section drops by about 32 orders of magnitude, which means that the EM gauge invariance
works perfectly well. However, if the verticesπ∓γρ± of Fig. 3 are included then the EM gauge
invariance is not so perfect any more. For process (4) this iscaused by the two Feynman diagrams
depicted in Fig. 5. To justify this statement, let us denote the four momenta of particles of process (4)
by p1, p2, ..., p7, from left to right consecutively, and consider the EM gaugeinvariance test for the
amplitudes of the diagrams (a) and (b) of Fig. 5, which means in practice that the photon polarization
four vector is replaced with its four momentum. Neglecting thei factors, which are the same for both
amplitudes, and skipping polarization indices the amplitudes read:

Ma = g2ε12ν ενµαβp12α(−qβ)
−gµρ +

qµqρ
M2

q2−M2 ε56σ εσργδ(−p56γ)qδ s37

=
eg2

q2−M2 εµναβ εµσγδ ε12ν p12α p4β εσ
56 pγ

56(p3+ p7)
δ, (7)

Mb = g2ε12ν ενµαβp12α(−rβ)
−gµρ +

rµrρ
M2

r2−M2 ε56σ εσργδ(−p56γ)rδ s47

= −
eg2

r2−M2 εµναβ εµσγδ ε12ν p12α p3β εσ
56 pγ

56(p4+ p7)
δ, (8)

whereεν
12 (ε

σ
56) is the polarization four vector representing thee+e−γ (µ−µ+γ) vertex contracted with

the adjacent photon propagator,M2 = m2
ρ − imρΓρ is the complexρ meson mass parameter,p12 =

p1+ p2, p56 = p5+ p6, q= p56+ p3+ p7 andr = p56+ p4+ p7 are four momenta of intermediate
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virtual photons andρ± mesons, and the couplingg= e fπ−Aρ+(q2) = e fπ+Aρ−(q2) = e fπ−Aρ+(r2) =

e fπ+Aρ−(r2) has been assumed to have a fixed value. In the second row of Eqs.(7) and (8), use has
been made of the fact that, in the EM gauge invariance test, the scalarss37 ands47 representing the
π+π−γ andπ−π+γ vertex multiplied with the adjacent pion propagator, take the following form:

s37 = e
(p3+ p7− (−p3))

µε∗µ(p7)

(p3+ p7)2−m2
π

∣

∣

∣

∣

ε(p7)→ p7

= e
2p3 · p7

2p3 · p7
= e,

s47 = e
(−p4− (p4+ p7))

µε∗µ(p7)

(p4+ p7)2−m2
π

∣

∣

∣

∣

ε(p7)→ p7

= −e
2p4 · p7

2p4 · p7
= −e.

It is clear from the form of Eqs. (7) and (8) that amplitudesMa andMb neither vanish separately nor
cancel each other, contrary to the amplitudes of the other 20Feynman diagrams of process (4) which
also contain the verticesπ∓γρ±. Although that degree of gauge invariance violation shouldnot play
any role in practice, such effects should be treated with great care, as they may become sizable in
some regions of the photon phase space. Therefore, it is recommended to use theigauge option
whenever new interaction vertices are added to the program.

γ

γ

γ

µ+

µ−

e+

e− π−

π+

ρ

π

γ

(a)

γ γ

γ
µ−

µ+

e+

e−

π+

π−

ρ

π

(b)

Figure 5:The Feynman diagrams of process (4) that spoil the EM gauge invariance. The blobs indicate the
verticesπ∓γρ±.

4 Preparation for running and program usage

carlomat 3.0 is distributed as a singletar.gz archivecarlomat 3.0.tgz which can be down-
loaded from: http://kk.us.edu.pl/carlomat.html. When untared with a command
tar -xzvf carlomat 3.0.tgz
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igauge σ(e+e− → π+π−π+π−γ) σ(e+e− → π+π−µ+µ−γ)

0 11.86(5) 11.83(5) 0.0590(2) 0.0586(2)
1 0.124(2)e-30 0.441(1)e-100.636(9)e-33 0.973(1)e-9

Table 1: The cross sections in pb of processes (4) and (5) at
√

s= 1 GeV without (first column) and with
(second column) contributions from theπ∓γρ± interaction vertices of Fig. 3. The cuts used in the computation
are given by (6). The numbers in parentheses show the MC uncertainty of the last decimal.

it will create directorycarlomat 3.0 with sub directories:code generation, mc computation,
carlolib, test output andtest output0.

Althoughcarlomat 3.0 is dedicated to the description of low energye+e− scattering, interfaces
to the parton density functions are kept. Therefore, filesmstwpdf.f of MSTW [14] andCtq6Pdf.f
andcteq6l.tbl of CTEQ6 [15] are also included in the current distribution of the program, but
grids must be downloaded from the web page ofMSTW, seereadme file or [1] for details. If the
program will not be run for the hadron scattering processes the user can comment lines contained
betweenckk had> andckk had< in crosskk.f andparfixkk.f, and comment or remove ref-
erences tomstw interface.o, mstwpdf.o, Ctq6Pdf.o, ctq6f interface.o from makefile

in mc computation.

Preparation for running requires basically the same steps as incarlomat 2.0. They are recollected
below for user’s convenience.

• Choose a Fortran 90 compiler inmakefile’s of code generation andmc computation and
compile all the routines ofcarlolib with the same compiler as that chosen inmc computation;

• Specify the process and required options incarlomat.f and executemake code from the
command line incode generation;

• Go tomc computation, choose the center of mass energy and required options incarlocom.f

and executemake mc in the command line.

Whenever the Fortran compiler is changed, or a compiled program is transferred to another com-
puter with a different processor, all the object and module files should be deleted by executing the
commands:
rm *.o
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rm *.mod

and the necessary steps of those listed above should be repeated.

The basic output of the MC run is written to filetot name, wherename is created automatically if
the assignment for character variable
prcsnm=’auto’

in carlomat.f is not changed to arbitrary user’s defined name. The output files for processes (4)
and (5) with the preselected parameters and options should reproduce those delivered in directory
test output0.

If the differential cross sections/distributions are required then set
idis=1

in carlocom.f. The number of distributions to be calculated must be specified indistribs.f and
their parameters should be defined incalcdis.f. The output will be stored in data filesdb# name

anddl# name which can be plotted with boxes and lines, respectively, with the use ofgnuplot.
When the run is finished all output files, except fortest that may contain information relevant in
case of unexpected program stop, are moved to directorytest output.

As in former versions of the program, there is a possibility of generating the unweighted events. It
is governed by the optionimc that is available incarlocom.

The code generation for processes (4) and (5) takes a fraction of a second time. The MC computation
of the cross sections of Table 3 in 10 iterations, with a maximum of 200000 calls to the integrand
each, takes 142s and 43s time, respectively, for (4) and (5) on processor IntelR CoreTM i5-4200M
CPU @ 2.50 GHz with a 64 bit Intel Fortran compiler.
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