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Abstract: 

We present an application for the calculation of radial distribution functions for molecular centres of mass, based on 

trajectories  generated  by molecular  simulation methods (Molecular  Dynamics,  Monte Carlo).  When designing this 

application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the 

program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to treat  

other formats. It is also very easy to ‘hack’ the program so it can compute intermolecular radial distribution functions  

for groups of interaction sites rather than whole molecules.  

1. Introduction

Molecular  Dynamics  and  Monte  Carlo  atomistic  simulations  are  an  integral  part  of  nowadays 

research in the areas of molecular liquids, complex molecular systems, materials etc. Among others, 

one can look at the microscopic structure of such systems, usually quantified in the form of pair 

distribution functions and, in the case of homogeneous systems, radial distribution functions (RDF) 

for each kind of interaction site pairs defined on the basis of types of sites present in the system. In 

a similar fashion, one is often interested in the computation of RDFs for whole molecules rather 

than individual interaction sites, especially in the case of small species. Molecular RDFs, g(r,ω) are, 

in general, functions of both the molecular pair distance,  r, and mutual orientation,  ω. However, 

their simpler version, g(r), in which orientational degrees of freedom are averaged out and only pair 

distance is taken into account are by no means less important. Structure generation and refinement 

and development of pairwise-additive force fields by means of Reverse Monte Carlo [1-6] or the 

variants of Boltzmann inversion technique [7-12] are examples worth mentioning, among others. 
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For  instance,  when  developing  a  coarse-grain  model,  centres  of  mass  are  required  instead  of 

individual site coordinates, but orientational degrees of freedom are eliminated.  

The DL_POLY package [13-15] is a well-known program for the simulation of molecular systems 

by means of the Molecular Dynamics method. With the end of a DL_POLY run, the RDFs of all 

interaction site pairs are computed by the program and stored in a file called ‘RDFDAT’. However,  

the program does not compute centre-of-mass RDFs and, to the authors’ knowledge, no application 

that  could carry out this task for DL_POLY trajectories,  seemed to be available  at  the time of 

writing this article. That was one of the motivations for the present work: to help the DL_POLY 

community by offering a freely available tool to compute molecular RDFs. 

The second motivation was the authors’ desire to start developing a molecular simulation toolbox 

of post-processing applications designed with simplicity of usage in mind – ideally, the user manual 

could be summarised in one sentence: type the program’s name in the command prompt and press 

‘Enter’.  In this  article,  we present  POLYANA1,  one such easy to use application that  can read 

DL_POLY output files and compute molecular RDFs for all species present in the simulated system 

without the users having to define any particular input unless they want to. By properly tweaking 

the DL_POLY input files, one can also compute RDFs for specific groups of sites rather than whole 

molecules.  

Our last motivation was to start building our toolbox in such a way that it will be easy for us or  

other interested developers to further expand it by adding new functionality. POLYANA is a self-

contained  code without  external  dependencies,  written  in  Fortran2003;  the  distributed  Makefile 

allows for a Fortran95 version, alhtough freely available compilers like GNU Fortran are updated to 

comply  with  the  most  recent  standards.  Internally,  the  POLYANA code  is  structured  as  a 

composition of modules corresponding to physically meaningful entities (atoms, molecules and so 

on) equipped with member functions to set or compute and get the values of important variables and 

parameters. These are then used in processing routines collected in a separate module and called as 

needed by a main ‘driver’ program.  

POLYANA does not need additional input data to run – DL_POLY input and output files serve 

this  purpose.  However,  if  one wants to exert  finer  control  on the program’s execution,  simple, 

particularly easy to learn directives can be inserted to this purpose, in the appropriate place of the 

DL_POLY input files. Currently, DL_POLY comes in two versions: the freely available ‘Classic’ 

version [13] and version 4 or DL_POLY_4 [14, 15] that is available to registered academic users. 

1 So named after a previous, in-house software of ours aimed at analysing polymer systems, hence called POLYmer 

ANAlysis; the name could be reinterpreted, now, as dl_POLY ANAlysis. The package is freely downloadable under the 

MIT license as gzipped tar file, from: http://cag.dat.demokritos.gr/software/polyana.tar.gz 
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Both can be executed serially or in parallel but version 4 can scale to a much higher number of 

processors.  The  commonest  input  and  output  files  of  the  two versions  have  the  same format; 

POLYANA has been tested against the ‘Classic’ version but the authors trust that it can handle 

DL_POLY_4 trajectories as well.  

Polyana is suitable for systems of ‘small’ molecules, i.e. those with sizes that do not exceed half  

the  shortest  simulation  cell  dimension.  When such is  the  case,  any molecular  topology can be 

handled by a generic algorithm that lifts the periodic boundary conditions and unfolds molecules to 

compute their  centre  of mass.  Indeed, it  is  shown via  numerical  examples,  as explained in the 

following  Section,  that  the  particular  algorithm  works  correctly  even  for  arbitrary  topologies, 

provided the  simulation  cell  is  at  least  twice  larger  than the molecules’  dimensions.  Section  2 

outlines  how  the  program  works  internally  and  Section  3  describes  its  input  and  output  and 

examples of usage. Section 4 discusses a particular test case, namely the simulation of a liquid 

hexane system, to  offer illustrative examples  of  POLYANA usage.  Section 5 concludes  with a 

general discussion and future goals.  

2. Theoretical considerations and POLYANA internals  

The concept of pair distribution functions is a very familiar one and it will not be presented here in 

detail. The interested reader may consult a statistical mechanics textbook such as Hill’s [16]. Two 

particular  points  have  to  be taken into  account  in  the calculation  of  the  molecular  RDFs.  The 

computation of molecular centres of mass in systems subjected to Periodic Boundary Conditions 

(PBC); and the computation of intermolecular distances under the same PBCs. The routines for 

applying or lifting  the PBCs have been borrowed from the DL_POLY source code.  Currently, 

POLYANA can  handle  the  cubic,  orthorhombic,  parallelepiped  and  slab  periodic  boundary 

conditions. Details about them can be found in DL_POLY’s user manual.    

The  two points  noted  above are  treated  as  follows:  First,  the  molecular  centres  of  mass  are 

computed;  then  the  pair  distances  among  them are  calculated  and  a  histogram of  distances  is 

updated  in order  to  compute  the final  RDFs.  In order  to  derive the centre  of mass  of a  given 

molecule correctly, the molecule has to be re-built by lifting the PBCs so that the correct, ‘physical’ 

or ‘unfolded’ distances among its interaction sites are restored. Usually, one does this by rebuilding 

the molecule in a bond-by-bond fashion from one end to the other. This is easy to do in the case of 

chain molecules but it is more difficult in the case of species with complicated connectivities and 

topologies like the ones involving rings, side chains etc. 

However,  if  the  molecule’s  dimensions  are  smaller  than  half  the  smaller  dimension  of  the 

simulation cell – and those are with all certainty the cases we are interested in molecular RDFs – 
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there is a more straightforward way to rebuild the molecule without having to take connectivity into 

account. Indeed, it suffices to compute the pair distances of each interaction site i = 2, 3, … Natmol 

with respect to a ‘base’ site  j = i-1 and update the unfolded positions accordingly, check whether 

there are still any ‘unphysical’ pair distances and repeat until all unfolded pair distances are sorted 

out, as follows: 

(1) FOLDED = FALSE 

(2) Multiply all site coordinates ri by the inverted simulation cell tensor C-1 to compute all 

reduced coordinates si = C-1ri. 

(3) Calculate the vectors b =  si – si-1 and d = b – NINT(b)  

(4) If | b2 – d2 | > TOL ( << 1) for every i then 

(4a) FOLDED=TRUE 

(4b) Reduced coordinates are updated as follows: si = si-1 + d  

(4c) Real coordinates are re-computed by multiplying reduced ones by the simulation 

tensor C.   

(5) If FOLDED = TRUE then return to step (1), else exit the loop 

The above algorithm has been tested by means of a simple program, included in a separate folder in 

the distribution. In this particular test, we tried the case of two molecules with random topology 

repeatedly  placed  at  randomly  varying  orientations.  The  centres  of  mass  of  the  molecules  are 

pegged at a fixed distance and the random orientations are recorded in the form of a DL_POLY 

style trajectory file. The molecular sizes are defined by the user in the form of a radius of a sphere 

wherein interaction sites are placed. The resulting RDF graphs always show the expected spike at 

the  given  distance  corresponding  to  the  centre-of-mass  positions.  Detailed  explanations  are 

provided in the accompanying README file in the source package.  

This  scheme will  only fail  in  the case of ‘large’  molecules,  i.e.  exceeding a  critical  distance 

beyond which  the  minimum image  calculation  at  step  (3),  above,  is  not  valid  [17].  The exact 

definition of that distance depends on the shape of the simulation cell [18] and, e.g. for a cubic box, 

it would be half its length. However, in such cases it doesn’t make much sense to look at molecular 

RDFs; these are only of practical interest when many molecules of a given type are dispersed more 

or  less  homogeneously  in  the  simulation  cell  and  their  number  and  size  relative  to  the  cell’s 

dimensions  are  such  that  PBCs  do  not  have  any  effect  on  the  RDFs  within  some  reasonable 

distance. 

Once the molecule has been rebuilt via the above procedure it is straightforward to compute its  



centre of mass based on its real unfolded coordinates. Its position then, may be found to lie outside 

the  simulation  cell;  PBCs are  applied  to  it  once  again  to  bring  it  back  in  the  cell.  Given the 

coordinates of the molecular centres of mass subjected to the system’s PBCs, it is easy to compute 

the molecular distances in the same way as we would for the individual interaction sites. These 

distances are used to update a histogram of pair occurrences with distance, hαβ(r, r+Δr) where α and 

β are the molecule types and Δr is the bin width, and use that histogram to compute the RDFs.  

Regarding the RDFs themselves, their computation is divided into two stages: the collection and 

the averaging stage. The first one takes place when the configurations stored in the trajectory file 

(called HISTORY in DL_POLY’s lingo) are read by POLYANA and the molecular positions are 

computed as described above. An index, n = 1+NINT(r/Δr) where r is the molecule pair distance, is 

computed for the respective element of the histograms for pairs αβ and βα. Pair distances exceeding 

a  defined  cutoff  are  not  taken  into  account.  At  the  same  time,  an  accumulator,  v, for  the 

computation of the average cell volume is updated with each configuration – this is useful in the 

case  of  the  NPT  or  ΝσΤ  ensembles.  The  second  operation,  averaging,  takes  place  when  all 

configurations have been read. Given a particular molecule type,  α, the RDF for species β around 

molecules of type α is computed as follows: 

First,  the  histograms  and  the  average  volume  accumulator  are  averaged  by  the  number  of 

configurations. The histogram hαβ is, subsequently, normalised to the number of molecules of type 

α. Then, the numbers of molecules of each type,  a, are divided by the average volume to convert 

them to number densities, ρα. Finally, the elements of the histograms hαβ are normalised by the shell 

volumes  contained  between (n-1/2)Δr and  (n+1/2)Δr and  the  number  densities  ρβ.  An optional 

feature controlled by a specific user directive, as explained in Section 3, allows the user to smooth 

the RDFs prior to printing them, using an established set of simple expressions [19].  

3. Usage of POLYANA 

3.1. Input files

Typically,  a  DL_POLY  simulation  will  need  three  input  files:  the  CONTROL file  where  the 

simulation details  are defined, the FIELD file that describes molecular topologies and the force 

field,  and  the  CONFIG file  which  contains  the  initial  conditions  (coordinates  and,  optionally, 

velocities and accelerations). The resultant Molecular Dynamics trajectory is stored in a file called 

HISTORY. Three out of these four files, namely CONTROL, FIELD and HISTORY, serve as input 

to the POLYANA post-processing application. If additional input is necessary for the user to exert 

finer control over POLYANA’s computations, this will be inserted at the end of the CONTROL file 

in the form of special directives, as explained in subsequent paragraphs. 
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In particular, with every run of  POLYANA the CONTROL file will be read. If no  POLYANA 

directives are found below the finish DL_POLY directive that marks the end of DL_POLY input, 

then  default  values  will  be  used  for  the  bin  width,  maximum  considered  distance  and  other 

quantities. Otherwise, these values will be defined according to the directives presented in the next 

section. Then, the FIELD file will be read so that POLYANA knows what molecules are there in 

the system, their numbers and the interaction sites they are composed of. This information will be 

used, then, to read the HISTORY file and process the stored trajectory to compute the molecular 

RDFs. 

Some times,  the DL_POLY user will  have to restart  a  MD run that  has been interrupted  for 

whatever reason, by using the ‘restart’ DL_POLY directive. Then, the new HISTORY file will 

be appended to the old one, but if the user has moved or renamed the old trajectory, the resultant  

HISTORY file will be lacking a header containing information about the system. POLYANA can 

handle both kinds of trajectory files, i.e. whether the header is missing or not, without the user 

having to take any particular action.  

3.2 Usage and description of output  

3.2.1 Usage without directives 

In  order  to  use  POLYANA one will  have  to  run the  executable  in  the  directory  of  the  MD 

trajectory to analyse or in one that is in the system’s PATH. Then, the program will read the FIELD 

file  to  figure  out  what  molecules  are  there  in  the  system,  and  it  will  analyse  the  trajectory 

(HISTORY  file).  With  the  end  of  the  analysis,  two  files  named  RDF  (not  to  confuse  with 

DL_POLY’s RDFDAT) and POP, will be created. 

In  RDF,  the  centre-of-mass  radial  distribution  functions  are  given  for  the  various  types  of 

molecules, numbered 1, 2, 3, ... according to the order they appear in the FIELD file. E.g, if water 

and ethanol molecules appear in FIELD in that order, then 1=water, 2=ethanol, and the columns 11, 

22 and 12 for the respective  g(r) functions will be printed in the RDF file. The default values of 

0.1 Å and 12.5 Å will be used for the pair distance bin and maximum distance, respectively – see 

next Section on how to change these values.   

In POP (standing for ‘populations’), the number of type  β molecules around a type  α molecule 

within a given distance, will be printed in a similar arrangement as the columns in RDF. These 

numbers can be obtained by appropriately integrating the RDFs – actually, ρdVg(r) – with distance. 

However, we don’t have to carry out the integration; POLYANA will do it for the user.  

It is worth noting that  POLYANA will process the HISTORY file even if the simulation were 

incomplete. In such a case a message will be emitted with the end of the computation letting the 
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user know that the trajectory was abnormally terminated – that would not prevent POLYANA from 

computing and printing some final results in RDF and POP. This is a convenient feature in that it  

allows users to look at the structure of their systems without waiting for the simulation to be over.

3.2.2 Usage with directives 

POLYANA can  read  directives  placed  at  the  end  of  the  CONTROL  file,  after  the  finish 

DL_POLY directive, to control its execution. A list of all POLYANA directives follows: 

polyana Marks the beginning of a section containing POLYANA directives

end polyana     Marks the end of a section of POLYANA directives 

start [n]       Skip configurations 1 to n-1 and start processing from n-th and beyond

stop  [n]       Skip (don’t process) configurations beyond the n-th

rmax            Maximum distance for g(r) calculations 

dr              Distance bin for the histograms in g(r) calculations

smooth              If present, g(r) will be smoothed as discussed above 

The  POLYANA directives are case insensitive:  start,  START and  Start are equivalent. Any 

number of spaces can be inserted before the directives or between the directive keyword and its 

accompanying numerical value. Their order is irrelevant. The  POLYANA and  end POLYANA lines 

must exist and enclose the other lines if directives are to be used. If some or all directives are  

missing, (see: ‘Usage without directives’, above), default values will be used instead. These are: 

start   =   1

stop    =   [set to Fortran’s intrinsic huge(integer) to exceed any reasonable number of MD steps]

rmax    =   12.5 

dr      =   0.1

smooth       [assumes no value; its absence is equivalent to .FALSE.]

3.2.3 Example of usage with directives

To further clarify the usage of directives let’s consider a concrete example of a MD simulation 

where  6000  configurations  have  been  stored.  The  first  1000  configurations  belong  to  the 

equilibration stage to be excluded from processing. Also, the last 1000 will not be processed. RDFs 

will be computed for distances up to 10 Å and the bin to be used will be 0.20 Å. Finally, we opt for 

smoothing the resultant RDF curves. Then, the  POLYANA section in the CONTROL file should 

look like this: 

...

[various DL_POLY directives]

...

finish [end of DL_POLY section]
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polyana

    start   1001

    stop    5000

    rmax    10.0

    dr       0.2

smooth

end polyana

The indentation does not matter and it is only used here for the purpose of readability. 

3.3 Exploring additional possibilities  

Often times we are interested in intermolecular interactions among certain groups of interaction 

sites rather than whole molecules. As a concrete example, let’s assume we have simulated a system 

of water mixed with n-butanol, using suitable united-atom models. Then, we would like to see how 

water is arranged around the hydroxyl or the alkyl tail of the alcohol. To do that, we take advantage 

of the definition of centre of mass,  ∑ mi r i/∑ mi , where i runs over the sites in the molecule, to 

filter the groups of interest by setting all other united-atom masses equal to zero. In the following 

paragraphs it is assumed that we are using the well-known TraPPE [20] and SPC/E [21] models to 

model the alkanol and water species, respectively, so the FIELD file will look as follows: 

...

MOLECULES      2       

Butanol 

NUMMOLS ...    

ATOMS 6

    CH3H        15.0344         0.0000    1

    CH2B        14.0336         0.0000    1

    CH2B        14.0336         0.0000    1

    CH2A        14.0336         0.2650    1

      OC        15.9996        -0.7000    1

      HC         1.0008         0.4350    1

...

...

FINISH

SPCE Water

NUMMOLS ...

ATOMS 3

    OW      15.9996  -0.8476



    HW       1.0080   0.4238

    HW       1.0080   0.4238

CONSTRAINTS 3

    1    2   1.0000

    1    3   1.0000

    2    3   1.63298

FINISH

To compute the hydroxyl-water g(r) for the two groups, we rewrite the butanol lines as follows:  

  CH3H         0.0            0.0000    1

  CH2B         0.0            0.0000    1

  CH2B         0.0            0.0000    1

  CH2A         0.0            0.2650    1

    OC        15.9996        -0.7000    1

    HC         1.0008         0.4350    1

Likewise, to calculate g(r)’s for the alkyl tail, we simply rewrite: 

    CH3H        15.0344         0.0000    1

  CH2B        14.0336         0.0000    1

  CH2B        14.0336         0.0000    1

  CH2A        14.0336         0.2650    1

    OC         0.0           -0.7000    1

    HC         0.0            0.4350    1

The same trick can be used to ‘highlight’ a particular site instead of the centre of mass as a basis for  

the RDF calculation.  As another example,  geometric centres rather than centres of mass can be 

looked at by setting masses equal to one and the same value for all site types.  

 4. Example of usage

As an example of practical application of the provided package, we present a test with a system of 

liquid n-hexane in a united-atom representation. The initial configuration, containing 322 n-hexane 

molecules, was obtained from previous simulations of ours and it was subjected to cubic boundary 

conditions using the TraPPE force field; the initial configuration box length was equal to 40.52 Å. 

The  DL_POLY simulation  was  carried  out  at  the  isothermal-isobaric  ensemble,  namely  at  the 

temperature of T = 300 K and atmospheric pressure with a time-step of 1 fs. The calculation lasted 

1100 ps, with the first 100 ps being the equilibration stage. 

The trajectories were  processed with POLYANA using the smooth directive and the RDF and 

POP curves shown in Fig. 1 were obtained. The region between 4 and 8 Å exhibits two overlapping 

yet  visible  peaks  that  probably  correspond  to  different  mutual  orientations  of  neighbouring 
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molecules, as sketchily shown in the inset picture of Fig. 1. The ‘hack’ described in Section 2.3 was 

then employed to compute intermolecular RDFs for the propyl groups that make up each hexane 

molecule – that would be useful if one were interested in the development of a coarse-grain force-

field mapping three carbon atoms to one ‘bead’. The modified FIELD records were as follows:  

MOLECULES      2       

HexanA 

NUMMOLS 161     

ATOMS 6

    CH3H        15.0344         0.0000    1

    CH2B        14.0336         0.0000    1

    CH2B        14.0336         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH3H        00.0000         0.0000    1

FINISH

HexanB 

NUMMOLS 161     

ATOMS 6

    CH3H        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        14.0336         0.0000    1

    CH2B        14.0336         0.0000    1

    CH3H        15.0344         0.0000    1

FINISH

Since we divide the molecules in two types, above denoted as ‘HexanA’ and ‘HexanB’, the output 

files contain three curves instead of one. These were almost identical; in Figure 2, their average is 

shown. Normally, one should also ‘filter out’ the propyl groups the other way around, namely by 

eliminating the first three united atoms of ‘HexanA’ and the last three of ‘HexanB’ and average all 

results obtained. Because the curves in Fig. 2 are particularly smooth, we trust that the additional 

RDFs would not differ substantially. The POP curves, on the other hand, should be added. The POP 

curve in Fig. 2, is actually double the one obtained by POLYANA to compensate for the division of 

molecules into two groups as above. To interpret the propyl RDF, Fig. 2, it should be borne in mind 

that POLYANA only computes distances of intermolecular pairs, therefore the propyl connectivity 

does not show up – this  should be helpful when developing a coarse-grain force-field with the 

appropriate  bonded  and  non-bonded  interactions,  the  latter  reflected  in  the  intermolecular 

distribution functions. Two coordinations shells at around 5 and 9 Å can be clearly seen, with one 
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or two propyl groups in the first and about twelve more in the second one. The system tends to 

become structureless at distances slightly above the default cutoff value of 12.5 Å used in this test. 

An interesting test would be to try and compute united-atom RDFs and compare with the ones 

obtained by DL_POLY. As said above, POLYANA computes intermolecular distributions whereas 

DL_POLY will include intra-molecular pairs. Then, the latter will result in peaks characteristic of 

the molecular connectivity. We carried out this test by computing the CH3-CH3 RDFs. The modified 

FIELD file was as follows  

MOLECULES      2       

HexanA 

NUMMOLS 161     

ATOMS 6

    CH3H        15.0344         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH3H        00.0000         0.0000    1

FINISH

HexanB 

NUMMOLS 161     

ATOMS 6

    CH3H        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH2B        00.0000         0.0000    1

    CH3H        15.0344         0.0000    1

FINISH

The obtained curves are compared to the ones computed by DL_POLY in Fig. 3. As expected, 

additional peaks show up in the DL_POLY distributions, corresponding to the connectivity effect. 

The sharp peak on the right, at a distance of about 6.5 Å should correspond to the energetically 

favoured  all-trans rotational  state  and the  hump at  about  5.5 Å should  reflect  the  presence  of 

entropically favoured twisted conformations. These two are completely absent in the  POLYANA 

curve, as the latter only contains the effect of intermolecular pairs. The two RDF curves coincide in 

the remaining range of pair distances, thus attesting to the reliability of POLYANA output.  
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5. Discussion  

In the above, we have presented POLYANA, a new tool for the computation of molecular centre-

of-mass radial distribution functions based on trajectories generated by the DL_POLY Molecular 

Dynamics software. The application has been designed so as to combine ease of use and flexibility 

in terms of user options, as we have shown in the previous Sections. It  is straightforward to use as 

it does not require any additional input, beyond the DL_POLY input and output files; it can handle 

abnormally terminated trajectory files so one can obtain results while the simulation is still under 

way; it allows the user a finer control (time-steps to process, bin width, cutoff distance, smoothing) 

by means of easy directives inserted in the DL_POLY input files; and the user can make it extract 

additional information, like intermolecular RDFs of groups of interaction sites or even single sites, 

by ‘hacking’ the topology (FIELD) file.  

 Compilation is a trivial task and, in any case, detailed instructions can be found in the README 

file that comes with the distribution. GNU make was used by us to compile the program in Linux 

environments and the included test scripts run in the bash shell; however, it should be easy to build 

and run the program in other environments and operating systems. The distribution contains some 

tests  from the  DL_POLY Classic  package  to  ensure  that  POLYANA runs  correctly;  a  simple 

program that was used by the authors to verify the validity of the molecular unfolding algorithm, 

described in Section 2; and the input files of the liquid n-hexane simulation described in Section 4. 

POLYANA was initially intended as a companion to DL_POLY. However, handling additional 

trajectory and topology formats would only require to extend a few particular functions of the input 

layer. This is indeed our intention concerning next releases; other future goals include: handling 

more kinds of periodic  conditions;  implementing appropriate  algorithms to extend the RDFs at 

longer distances [22]; generating tabulated values of inverted-RDF potentials, -kBT ln g(r), and the 

respective forces (in the form of so-called TABLE files, as regards DL_POLY) as an aid in defining 

effective coarse-grain pair potentials; adding user input for the definition of groups of sites as an 

alternative  to  ‘hacking’  the  FIELD  file;  computing  site-site  or  group-group  inter-  and  intra-

molecular  RDFs  separately  (particularly  useful  in  the  case  of  macromolecular  systems);  and 

computing distributions of internal degrees of freedom (bond lengths, bond angles, torsion angles).  

Last  but  not  least,  the  Fortran  modules  that  make  up  the  application  require  no  external 

dependecies and are so designed that they could be easily read and used in another context, thus 

serving as a basis for the development of more applications by the users.  

http://cag.dat.demokritos.gr/software/polyana.tar.gz
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Figure 1. Radial distribution function (left-hand side vertical axis) of hexane molecular centres of 

mass at T=300 K and atmospheric pressure. The average molecular population as a function of 

distance is also shown (right-hand side vertical axis). Inset picture: two possible mutual molecular 

orientations corresponding to RDF peaks ‘a’ and ‘b’.  
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Figure 2. Radial distribution function (left-hand side vertical axis) of centres of mass of propyl 

groups  belonging  to  hexane  molecules  simulated  at  T=300  K  and  atmospheric  pressure.  The 

average group population as a function of distance is also shown (right-hand side vertical axis).  
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Figure 3. Radial distribution function (left-hand side vertical axis) of methyl end-groups belonging 

to  hexane  molecules  simulated  at  T=300  K  and  atmospheric  pressure:  intermolecular  RDF 

computed by  POLYANA as compared to the RDF computed by DL_POLY itself.  The average 

group population computed by POLYANA, is also shown (right-hand side vertical axis).  

0 2 4 6 8 10 12
0.0

0.4

0.8

1.2

1.6

0

10

20

30

40
 Polyana: RDF

 Polyana: POP

 DL_POLY: RDF

Radius [Å]

http://cag.dat.demokritos.gr/software/polyana.tar.gz
http://cag.dat.demokritos.gr/software/polyana.tar.gz

	POLYANA - A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

