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Package-X, a Mathematica package for the analytic computation of one-loop integrals dimension-
ally regulated near 4 spacetime dimensions is described. Package-X computes arbitrarily high rank
tensor integrals with up to three propagators, and gives compact expressions of UV divergent, IR
divergent, and finite parts for any kinematic configuration involving real-valued external invariants
and internal masses. Output expressions can be readily evaluated numerically and manipulated
symbolically with built-in Mathematica functions. Emphasis is on evaluation speed, on readabil-
ity of results, and especially on user-friendliness. Also included is a routine to compute traces of
products of Dirac matrices, and a collection of projectors to facilitate the computation of fermion
form factors at one-loop. The package is intended to be used both as a research tool and as an
educational tool.

Program summary

Program title: Package-X

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland, or
http://packagex.hepforge.org

Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html

Programming language: Mathematica (Wolfram Languange)

Operating systems: Windows, Mac OS X, Linux (or any system supporting Mathematica 8.0 or
higher)

RAM required for execution: 10 MB, depending on size of computation

Vectorised/parallelized?: No

Nature of problem: Analytic calculation of one-loop integrals in relativistic quantum field theory
for arbitrarily high-rank tensor integrals and any kinematic configuration of real-valued external
invariants and internal masses.

Solution method: Passarino-Veltman reduction formula, Denner-Dittmaier reduction formulae, and
two new reduction algorithms described in the manuscript.

Restrictions: One-loop integrals are limited to those involving no more than three propagator fac-
tors.

Unusual features: Includes rudimentary routines for tensor algebraic operations and for performing
traces over Dirac gamma matrices.

Running Time: 5ms to 10s for integrals typically occurring in practical computations; longer for
higher rank tensor integrals.

I. INTRODUCTION

Many packages are available to assist with the evalu-
ation of one-loop integrals that appear in higher order
calculations of perturbative quantum field theory. The
most widely used ones are the Mathematica packages
FeynCalc[1], FormCalc[2] and the Fortran program
Golem95[3]. These packages compute one-loop inte-
grals using the Passarino-Veltman reduction algorithm[4]

∗ hiren.patel@mpi-hd.mpg.de

(FeynCalc and FormCalc also feature a collection of
routines designed to streamline the numerical computa-
tion of a differential cross section; as such, they do sub-
stantially more than to simply compute one-loop inte-
grals).

Nevertheless FeynCalc falls short in that it gives re-
sults of one-loop computations in terms of basis scalar
functions which cannot be evaluated on their own. In-
stead, it is up to the user to supply their analyti-
cal forms from an external source, or to link them to
yet another package (such as FF[5], LoopTools[2], or
OneLOop[6]).

Moreover, one-loop integrals have many more applica-
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tions than to calculate cross sections and decay rates. Ex-
amples are the computation of ultraviolet counterterms,
pole positions, residues, Peskin-Takeuchi oblique param-
eters, electromagnetic moments, etc. Many of these ap-
plications require the calculation of Feynman integrals
at singular kinematic points such as at physical thresh-
olds or zero external momenta. Since the Passarino-
Veltman reduction algorithm typically breaks down at
these points, it is nearly impossible to obtain results with

FeynCalc or FormCalc (Golem95 can give numeri-
cal results). But, it is also at these points where compact
analytic expressions exist.

Although smaller-scale packages are available that are
designed around a particular application (such as lool[7]
and ant[8]), there is no general-purpose software that
gives analytic results to one-loop integrals for all kine-
matic configurations. In this regard, Package-X serves to
fill this gap.

Package-X calculates dimensionally regulated (d = 4− 2ε) rank-P one-loop tensor integrals of the form

Tµ1...µP
N (p1, . . . , pN ;m0,m1 . . . ,mN ) = µ2ε

∫
ddk

(2π)d
kµ1 · · · kµP

[k2−m2
0+iε][(k+p1)2−m2

1+iε] · · · [(k+pN )2−m2
N+iε]

, (1)

with up toN = 3 denominator factors, and finds compact
analytic expressions for arbitrary configurations of exter-
nal momenta pi and real-valued internal masses mi. The
functional paradigm of the Wolfram Language together
with the supplementary trace-taking routines included
in Package-X allows one to compute an entire one-loop
diagram at once. All output is ready for numerical eval-
uation and symbolic manipulation with Mathematica’s
internal functions.

This article details the technical aspects of Package-
X, and assumes familiarity in the use of the package.
The application files are found at the Hepforge web-
page http://packagex.hepforge.org, where the soft-
ware will be maintained and periodically updated. In-
cluded among the package files is a tutorial that provides
an introduction, and a complete set of documentation
files that becomes embedded with the Wolfram Docu-
mentation Center upon installation which provides de-
tails and examples of all functions defined in Package-X.

II. STRUCTURE AND DESIGN OF PACKAGE

The subroutines in this package belong to one of
three Mathematica contexts organized as in Fig. 1.
The module IndexAlg‘ contains the rudimentary tensor-
algebraic routines and serves as the backbone of Package-
X. OneLoop‘ contains the algorithms and look-up tables
for the computation of one-loop integrals, and Spur‘ in-
cludes the algorithms to perform traces over products of
Dirac matrices and contains a catalog of fermion form
factor projectors.

The basic Package-X workflow for the computation of
a one-loop integral consists of three steps:

1. Call LoopIntegrate to carry out the covariant ten-
sor decomposition (section III).

2. Apply on-shell conditions and other kinematic
relations with Mathematica’s built-in functions
ReplaceAll (/.) and Rules (→).

IndexAlg`
LTensor
LDot

OneLoop`
LoopIntegrate
LoopRefine

Spur`
Spur
Projector

FIG. 1. Organization of functions into contexts as defined in
Package-X.

3. Call LoopRefine to convert coefficient functions
into explicit expressions (section IV).

The reasoning behind the three-step design is as follows:
kinematic configurations of external invariants pi.pj and
internal massesmi relevant to many physical applications
occur at singular points of one-loop integrals, such that
if they were applied after obtaining the general expres-
sions, errors like 0/0 or 0× ln(0) would inevitably occur.
To avoid such errors and to facilitate the generation of
compact results, LoopRefine uses algorithms depending
critically on the kinematic configuration supplied by the
user beforehand.

Two other supplementary functions are provided to
streamline computations involving fermions:

• Spur (German for ‘trace’ ) computes traces of Dirac
matrices that may appear in the numerators of one-
loop integrals (section VII).

• Projector is used to project fermion self-energy
and vertex form factors out of the loop integrals
(section VIII).

The algorithms used by these functions are detailed in
the aforementioned sections below.

http://packagex.hepforge.org
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III. LOOPINTEGRATE: COVARIANT TENSOR DECOMPOSITION

The evaluation of an integral is initiated with LoopIntegrate, which carries out its covariant tensor decomposition
in terms of scalar coefficient functions. For example (omitting the +iε),

LoopIntegrate[kµkνkρ, k, p1, m0, m1] :(
i

16π2

)−1
µ2ε

∫
ddk

(2π)d
kµkνkρ

[k2 −m2
0][(k + p1)2 −m2

1]
−→ {[p1][g]}µνρB001 + {[p1]3}µνρB111 , (2)

LoopIntegrate[kµkν , k, p1, p2, m0, m1, m2] :(
i

16π2

)−1
µ2ε

∫
ddk

(2π)d
kµkν

[k2 −m2
0][(k + p1)2 −m2

1][(k + p2)2 −m2
2]
−→

{[g]}µνC00 + {[p1]2}µνC11 + {[p1][p2]}µνC12 + {[p2]2}µνC22 (3)

Here, B001, B111, C00 etc. are coefficient functions that
depend only on Lorentz invariants, pi.pj and mi. Note
that as indicated in the left hand sides, an overall con-
stant ( i

16π2 ) is factored out of the natural integration

measure µ2ε ddk
(2π)d

to simplify the output. Each coeffi-

cient function multiplies a totally symmetric tensor, de-
noted {. . .}µ... in the notation of [9], containing products
of external momentum four-vectors pµi and the metric
tensor gµν . These tensors are generated by a Package-X
internal function (inside IndexAlg‘), which utilizes Math-
ematica’s built-in function Permutations. The time to
generate the corresponding symmetric tensors grows fac-
torially with the rank of tensor integrals.

For integrals with high powers of contracted loop mo-
menta, such as

µ2ε

∫
ddk

(2π)d
kαkβ (k.k)5

[k2 −m2
0][(k + p1)2 −m2

1]
, (4)

it is necessary to obtain explicit expressions of
self-contracted symmetrized high-rank tensors like
{[p1]6[g]3}αβµµννρρσσλλ. It would be wasteful to first gen-
erate the totally symmetric high-rank tensors, only to
subsequently contract indices down to lower-rank sym-
metric tensors. Instead, the contraction formulae

(pk)µ1{[p1]n1 · · · [pN ]nN [g]r}µ1...µP

=

N∑
`=1

pk · p`{[p̂`][p1]n1 · · · [pN ]nN [g]r}µ2...µP

+ (nk + 1){[pk][p1]n1 · · · [pN ]nN [g]r−1}µ2...µP (5)

gµ1µ2
{[p1]n1 · · · [pN ]nN [g]r}µ1...µP

=

N∑
i,j

pi · pj{[p̂i][p̂j ][p1]n1 · · · [pN ]nN [g]r}µ3...µP

+δ̄r,0(d+P−2+

N∑
k

nk){[p1]n1 · · · [pN ]nN [g]r−1}µ3...µP ,

(6)

are employed to carry out the self-contractions symboli-
cally before converting any remaining symmetric tensors
with free indices into explicit forms in terms of pµi and
gµν . The time to construct self-contracted tensors in this
way is reduced to follow a power law.

IV. LOOPREFINE: REDUCTION TO ELEMENTARY
FUNCTIONS

Once the covariant decomposition is made, and any on-
shell or kinematic conditions are applied, the final step is
to feed the results into LoopRefine, which replaces the
coefficient functions with explicit expressions. The basic
algorithm followed by LoopRefine is as follows:

Step 1: For each coefficient function (pvA, pvB, pvb, or
pvC) encountered by LoopRefine, symbols for in-
ternal masses are recorded (for Step 4), and the
appropriate reduction routine (see corresponding
subsections below) is called.

Step 2: The reduction of C functions for more general
kinematic configurations end with the scalar func-
tion C0. If the C0 function is IR-divergent or has
an explicit form that is sufficiently compact (as
controlled by the option ExplicitC0), the explicit
form is substituted.

Step 3: All instances of the spacetime dimension d is re-
placed by 4− 2ε, and Mathematica’s built-in func-
tion Series is called to keep the leading terms in
the ε expansion. UV-divergences appear as 1/ε
poles, and IR-divergences appear as 1/ε and/or
1/ε2 poles.

Step 4: Combine and simplify logarithms, organize the
expression by the logarithms, and group the ’t
Hooft parameter µ2-dependent logarithm with the
1/ε pole in the expression (see section VI).

In the following subsections, the algorithms and ac-
companying formulae used by LoopRefine to reduce the
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coefficient functions are summarized. It should be noted
that nearly all algorithms are drawn from the 2005 pa-
per by Denner and Dittmaier [9], and will be referenced
henceforth as [DD]. The only formulae not taken directly
from their paper are those for the auxiliary bξ functions
in Section IV B (which is only a slight modification of
the reduction formulae for B functions), and those of
two additional algorithms for the reduction of C func-
tions in special kinematic configurations (Cases 2 and 4
in section IV C).

A. Reduction of A and B functions

The Passarino-Veltman coefficient A functions are sim-
ple enough to be obtained by direct integration (eqn 3.4
of [DD]):

A 0...0︸︷︷︸
2r

(m0) =
(m2

0)r+1

2r(r + 1)!

(1

ε̄
+ ln(

µ2

m2
0

) +Hr+1

)
, (7)

where 1/ε̄ = 1/ε−γE+ln(4π), andHn is the nth harmonic
number.

The B0...0 1...1 functions, with at least one pair of 00
indices are obtained iteratively in terms of those with
fewer number of 00 indices using (eqn 4.5 of [DD]):

B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n

(p2;m0,m1) =
−1

2(n+ 1)

[
(−1)n+1A 0...0︸︷︷︸

2(r−1)

(m1)

+ (p2 −m2
1 +m2

0)B 0...0︸︷︷︸
2(r−1)

1...1︸︷︷︸
n+1

(p2;m0,m1)

+ 2p2B 0...0︸︷︷︸
2(r−1)

1...1︸︷︷︸
n+2

(p2;m0,m1)
]
, r ≥ 1 (8)

Then the B1...1 integrals (with no 00 index pairs) are
obtained by explicit integration over the single Feynman
parameter in (B2). Results are given in (eqn 4.8 of [DD]),
but the form that tends to generate most compact expres-
sions is

B 1...1︸︷︷︸
n

(p2;m0,m1) =
(−1)n

n+ 1

[1

ε̄
+ ln

( µ2

m2
1

)
+

n∑
k=0

2

n+ 1

bn−k2 c∑
j=0

(
n− k
j

)(
p2 +m2

0 −m2
1

2p2

)n−k−2j (
λ(p2,m2

0,m
2
1)

4(p2)2

)j

−
bn−1

2 c∑
k=0

(
n+ 1

2k

)(
p2 +m2

0 −m2
1

2p2

)n+1−2k (
λ(p2,m2

0,m
2
1)

4(p2)2

)k
ln

(
m2

0

m2
1

)

+

bn2 c∑
k=0

(
n+ 1

2k + 1

)(
p2 +m2

0 −m2
1

2p2

)n−2k (
λ(p2,m2

0,m
2
1)

4(p2)2

)k
Λ(p2;m0,m1)

]
. (9)

Here λ(a, b, c) = a2 + b2 + c2 is the Källén function, implemented as Kallenλ[a, b, c], and Λ(p2;m0,m1) is the
abbreviation

Λ(p2;m0,m1) =

√
λ(p2,m2

0,m
2
1)

p2
ln
( 2m0m1

−p2 +m2
0 +m2

1 −
√
λ(p2,m2

0,m1)
+ iε

)
, (10)

implemented as DiscB[s, m0, m1]. In order to access B1...1(p2;m0,m1) at its singular points, a limiting procedure would
need to be made at runtime in order to avoid errors such as 0/0 or 0× ln(0). While Mathematica’s function Limit
can eventually generate an expression, computation time is long, and output expressions are always unwieldy. Instead,
a catalog of explicit expressions (also obtained by direct integration) of B1...1 at all its singular points (see Table I) is
included in the source code. They may be accessed directly within Package-X using LoopRefine[pvB[0, n, s,m0,m1]].

B. Reduction of auxiliary bξ functions

In covariant gauges, the propagator for massless vector
fields

iD̃µν(k) =
−i
k2

[
gµν − (1− ξ)k

µkν

k2

]
, (11)

contains a gauge term that leads to an additional fac-
tor in the denominator of one-loop integrals. Package-X
can handle such propagators inside bubble integrals, with
the coefficient functions given by the auxiliary Passarino-

Veltman bξ functions [10]. For example,

(
i

16π2

)−1
µ2ε

∫
ddk

(2π)d
kµkνkρ

[k2]2[(k + p)2 −m2]

= {[p][g]}µνρbξ001 + {[p]3}µνρbξ111 .

The reduction formulae for these functions essentially
mirror those for the standard B functions. Auxiliary

bξ0...0 1...1 functions with at least one pair of 00 indices are
iteratively determined in terms of functions with fewer
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00 index pairs using

bξ0...0︸︷︷︸
2r

1...1︸︷︷︸
n

(p2;m) =
−1

2(n+ 1)

[
B 0...0︸︷︷︸

2(r−1)

(p2; 0,m)

+ (p2 −m2)bξ0...0︸︷︷︸
2(r−1)

1...1︸︷︷︸
n+1

(p2;m)

+ 2p2bξ0...0︸︷︷︸
2(r−1)

1...1︸︷︷︸
n+2

(p2;m)
]
, r ≥ 1 , (12)

and the bξ1...1 functions with no 00 index pairs are ob-
tained by direct integration over the single Feynman pa-
rameter in (B3). The integral is finite if n ≥ 1, with the
result

bξ1...1︸︷︷︸
n

(p2;m) =

(−1)n−1

p2

[
− 1

n
+
n−1∑
k=1

1

n− k
m2

p2 −m2

(
p2 −m2

p2

)k
+

m2

p2 −m2

(
p2 −m2

p2

)n
ln

(
m2

m2 − p2
+ iε

)]
.

If n = 0 (a case that is not met in practice since the gauge
part of the spin-1 propagator guarantees two powers of
momenta in the numerator), the auxiliary bξ function is
IR-divergent.

Explicit expressions at the various singular points of

bξ1...1 (see Table I) are included in the Package-X source
code.

C. Reduction of C functions

The reduction of coefficient C functions is significantly
complicated by its numerous singular points. Although
the standard Passarino-Veltman reduction algorithm is
applicable at almost all points (Case 1 below), differ-
ent formulae are needed to handle the various singular
cases (Cases 2 – 6 ). LoopRefine identifies the nature of
the kinematic configuration and applies the appropriate
reduction method.

Cases 1, 3, 5 and 6 are taken from [DD]. Note that
since the emphasis of [DD] is on numerical stability and
not on generating analytic expressions, the algorithms
presented there do not automatically give compact ex-
pressions. The algorithm under Case 2 is new, and while
technically it is covered by Case 1, it leads to more com-
pact expressions. Furthermore, an algorithm to handle
the reduction at physical thresholds (applied in Case 3
below) is not completely covered by [DD]. This gap is
filled by the formulae under Case 4.

The arguments of the coefficient C functions are or-
dered differently in Package-X as compared to those used
by other authors. See Appendix A for details.

In the reduction formulae below, the following kine-
matic abbreviations are used (which differ slightly from
[DD] by numeric factors):

fj = p2
j −m2

j +m2
0 , j = {1, 2}

Z =

(
p2

1 p1.p2

p2.p1 p2
2

)
(Gramian matrix)

q2 = p2
1 + p2

2 − 2p1.p2

detZ = 1
4λ(q2, p2

1, p
2
2)

Z̃ =

(
p2

2 −p1.p2

−p1.p2 p2
1

)
(cofactor matrix)

X̃0j =

(
p2

2f1 − p1.p2f2

−p1.p2f1 + p2
1f2

)
j = {1, 2}

(13)

Furthermore, hatted indices on coefficient functions (e.g.
Bk̂0...0 1...1) indicate the removal of those indices. Co-
efficient B functions derived by canceling denominators
from three-point integrals are abbreviated by

B...(D̂1) =B...(p
2
2;m0,m2) (14)

B...(D̂2) =B...(p
2
1;m0,m1) . (15)

If the denominator (k2−m2
0)−1 independent of an exter-

nal momentum vector is cancelled, a shifted form of the
B function is used:

B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0) =

(−1)n1

n1∑
j=0

(
n1

j

)
B 0...0︸︷︷︸

2r

1...1︸︷︷︸
n2+j

(q2;m1,m2) . (16)

Whenever n1 > n2 the invariance property

B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0) = B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n2

2...2︸︷︷︸
n1

(D̂0)
∣∣∣
m1↔m2

(17)

is used to keep the number of terms in the sum to a
minimum. Cases 2 and 4 require expressions for the B
functions with the number of 00 index pairs continued to
r = −1. Details of this function are found in Appendix
E.

Finally, formulae for Cases 1, 3 and 5 below contain
explicit dependence on spacetime dimension d = 4 − 2ε
appearing in denominators of certain prefactors. In the
course of reduction, the O(ε) part multiplying any lower
coefficient functions combines with their UV 1/ε poles1,
and gives rise to finite polynomials in kinematic variables.
Although this can be automatically handled by Series
at Step 3, the reduction algorithm performs much faster
if these polynomials are explicitly supplied. They are
obtained by integration over the Feynman parameters as
described at the end of Appendix B.
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Case 1: detZ 6= 0

At non-singular kinematic configurations with detZ 6= 0, the original [4] Passarino-Veltman reduction formula is
used (eqns 5.10, 5.11 of [DD]):



C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
1

2 detZ

2∑
k=1

Z̃jk

[
δnk,δjkB 0...0︸︷︷︸

2r

1...1︸︷︷︸
n
k̄−δ

k̄1

(D̂k)−B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1−1

2...2︸︷︷︸
n2

(D̂0)

− fkC 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1−1

2...2︸︷︷︸
n2

(D̂0)− 2(nk − δjk)Ck̂ 0...0︸︷︷︸
2r+2

1...1︸︷︷︸
n1−1

2...2︸︷︷︸
n2

]
, n1 ≥ 1

C 0...0︸︷︷︸
2r

=
1

2(d− 4 + 2r)

[
B 0...0︸︷︷︸

2r−2

(D̂0) + 2m2
0C 0...0︸︷︷︸

2r−2

1 + f2C 0...0︸︷︷︸
2r−1

2

]
, r ≥ 1

(18)

where k̄ =

{
1 , k = 2

2 , k = 1
. In the first equation, j = 1 is taken, although the choice j = 2 would give equivalent results.

If n1 = 0 with n2 > 0, then the relation (B5) is used and the first equation is applied.

Case 2: Ellis-Zanderighi triangle 6

Coefficient C functions for which arguments are (m2
0, s,m

2
2;m2, 0,m0)—or an equivalent permutation thereof—are

already covered by Case 1. However, final expressions obtained from it tend not to give the most compact formulae
for this kinematic configuration. More compact formulae are obtained by directly integrating over the Feynman
parameters in (B4); see Appendix C for derivation. It is of note that the corresponding scalar function C0 is the
IR-divergent three-point function, ‘triangle 6’, as classified by Ellis and Zanderighi [11]. In Eqs. (19) and (20), it is
assumed that at least one of r, n1 or n2 is nonzero.

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(m2
0, s,m

2
2;m2, 0,m0) =

(−1)n1

2

n1!(n2 + 2r − 1)!

(n1 + n2 + 2r)!

(
1 + 2ε(Hn1+n2+2r −Hn2+2r−1)

)
B 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n2

(s;m0,m2) ,

n2 6= 0 or r 6= 0

C 1...1︸︷︷︸
n1

(m2
0, s,m

2
2;m2, 0,m0) =

(−1)n1

[
C0(m2

0, s,m
2
2;m2, 0,m0)− 1

2

(
Hn1

+ ε(H2
n1

+H(2)
n1

)
)
B 0...0︸︷︷︸
−2

(s;m0,m2)
]

(19)

where H
(r)
n is the nth harmonic number of order r. If the arguments take the form (s,m2

0,m
2
2; 0,m2

2,m0), then the
identity (B5) is applied, and the equations above are valid.

A different formula is needed if the off-shell momentum s is in the third position:

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(m2
2,m

2
0, s;m0,m2, 0) =

(−1)n2

2

1

n1 + n2 + 2r

n2∑
k=0

(
n2

k

)(
1+

2ε

n1 + n2 + 2r

)
B 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n1+k

(s;m0,m2) (20)

To apply Eqs. (19) and (20) above, explicit forms of the scalar B function with the number of 00 index pairs taken
to r = −1 is occasionally needed. These functions are discussed in Appendix E.

1 For the argument that they are only of UV origin (and not IR),
see the argument in Sec. 5.8 of [DD]
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Case 3: detZ = 0 but X̃0j 6= 0

With detZ = 0, the primary reduction formulae are rearranged to give: (eqns 5.38 and 5.40 of [DD])

C 0...0︸︷︷︸
2r

=
1

d+ 2r − 3

(
B 0...0︸︷︷︸

2r−2

(D̂0)−m2
0C 0...0︸︷︷︸

2r−2

)
+

1

2(d+ 2r − 3)Z̃kl

2∑
n,m=1

(
δkmδnl − δklδnm

)

×
{ 2∑
j=1

Znj

[
(1− δmj)B 0...0︸︷︷︸

2r−2

1(D̂m)−Bj 0...0︸︷︷︸
2r−2

(D̂0)
]

+
1

2
fm

[
−B 0...0︸︷︷︸

2r−2

(D̂n) +B 0...0︸︷︷︸
2r−2

(D̂0) + fnC 0...0︸︷︷︸
2r−2

]}
r > 0

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
1

X̃0j

2∑
k=1

Z̃jk

(
δnk0B 0...0︸︷︷︸

2r

1...1︸︷︷︸
nk̄

(D̂k)−B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0)− 2nkCk̂00 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

)
(21)

The value of j chosen (1 or 2) is the one for which the corresponding X̃0j is non-vanishing. If both elements are
vanishing, then Case 4 is applied. Note that the second relation is valid even when either n1 = 0 or n2 = 0. In
particular, when r = n1 = n2 = 0 the final term in that relation vanishes, and leads to the reduction of the scalar C0

function in terms of scalar B0 functions.

Case 4: vanishing detZ and X̃0j

When the physical threshold (corresponding to X̃0j = 0 for both j = {1, 2}) coincides with the boundary of
the physical region (detZ = 0), then Cases 1—3 are inapplicable. For this kinematic configuration, the reduction
formulae in [DD] eqns (5.49) and (5.53) can be used provided at least one element of

X̃ij =

(
4m2

0p
2
2 − f2

2 −2m2
0(p2

1 + p2
2 − q2) + f1f2

−2m2
0(p2

1 + p2
2 − q) + f1f2 4m2

0p
2
1 − f2

1

)
is non-vanishing. However, no reduction methods are presented in [DD] that are valid when all four elements of X̃ij

are vanishing, because an expansion around that point is not known2. This exceptional configuration is needed for the
computation of elastic form factors at zero momentum such as electron g − 2. To fill this gap, a new set of reduction
formulae are used that is valid regardless of the form of X̃ij , provided at least one of p2

1, p2
2 or q2 is non-vanishing.

These formulae are derived in Appendix D.
If p2

2 6= 0,

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
(−1)n1+n2

2

n2∑
j=0

(
n2

j

)
αn2−j

{
n1!(n2 − j)!

(n1 + n2 − j + 1)!

j∑
k=0

[(
j

k

)
(−α)j−k(−1)kB 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
k

(D̂1)

]

+

n1∑
k=0

(−1)n2

n2 − j + k + 1

(
n1

k

)[
(1− α)j+1(−1)n2B 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n2+k+1

(D̂0)− (−α)j+1B 0...0︸︷︷︸
2r−2

1...1︸︷︷︸
n2+k+1

(D̂2)
]}

, (22)

where α = −q2 + p2
1 + p2

2/(2p
2
2).

If p2
2 = 0, then detZ = 0 implies q2 = p2

1, and the formula

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
(−1)n1+1

2(n2 + 1)

n1∑
k=0

(
n1

k

)
B 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n2+k+1

(D̂2) (23)

is used. If p2
1 = p2

2 = q2 = 0, then these formulae are inapplicable and Case 5 is needed. Note that when r = 0 in
either (22) or (23), the B functions continued to r = −1 are needed (see Appendix E).

2 A. Denner, private correspondence
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Case 5: All elements of Z vanishing

If all external invariants are vanishing p2
1 = p2

2 = q2 = 0, then the following are applied (eqns 5.62 and 5.63 of
[DD]): 

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
1

d+ 2(n1 + n2 + r − 1)

[
B 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0) +m2
0C 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

]
, r ≥ 1

C 1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
1

fk

[
δnk0B 1...1︸︷︷︸

n
k̄

(D̂k)−B 1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0)− 2nkCk̂00 1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

] (24)

In the second equation, the index k is chosen such that fk is non-vanishing. As in Case 3, the second relation is valid
for vanishing n1 or n2, and is used to reduce the scalar C0 function to B0 functions for n1 = n2 = 0.

Case 6: All elements of Z and fk vanishing

Finally, if also the fk’s are vanishing, the following formulae are used (eqns 5.71 and 5.72 of [DD]):
C 0...0︸︷︷︸

2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
−1

2(nk + 1)
Bk 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0) , r ≥ 1

C 1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

=
1

m2
0

[
(d+ 2n1 + 2n2)C00 1...1︸︷︷︸

n1

2...2︸︷︷︸
n2

−B 1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(D̂0)
] (25)

Equivalent results are obtained for k = 1 or 2 in the first equation. The choice k = 1 is used in Package-X. Note that
when r = n1 = n2 = 0, these relations together permit the reduction of the scalar C0 function in terms of scalar B0

functions.

V. THE SCALAR C0 FUNCTION: ANALYTIC
EXPRESSIONS AND NUMERICAL

IMPLEMENTATION

The algorithms for the reduction of coefficient C-
functions for which detZ 6= 0 (Cases 1 and 2 in the
previous section) end with the UV-finite scalar func-
tion C0(p2

1, p
2
2, q

2,m2,m1,m0). To complete the compu-
tation of the one loop integral and to make the final out-
put useable, the scalar function must be replaced. For
this purpose, a complete catalog of analytic expressions
for C0 where detZ 6= 0—each one obtained by direct
integration—is included in the source file (see Table I).
Many such expressions are scattered throughout the lit-
erature. The general formula with non-zero kinematic
variables appears in [12]. All IR-divergent three-point
formulae are given in [11], and some special cases appear
in unpublished notes [13].

Although a complete catalog of analytic expressions
of C0 is available, not all cases are automatically sub-
stituted by LoopRefine at Step 2. The functions that
are substituted are only those that are IR-divergent (to
faithfully display the 1/ε poles in the final output), and
those for which a sufficiently simple/compact expression
is known. For more complicated finite cases, LoopRefine

simply outputs3 pvC0[. . .], with the function itself imple-
mented numerically, (summarized below). The reason for
this design choice is as follows:

Firstly, in cases for which no simple form is known, the
general formula [12] in terms of 12 dilogarithms would
have to be given. This expression for C0 alone would
occupy a very large part of the output overwhelming the
remainder of the expression, thus defeating the original
purpose of producing compact expressions. Secondly, the
dilogarithm function is computationally very expensive.
When numerics are required, a brute-force evaluation of
all the dilogarithms is grossly inefficient, leading to ex-
cessively slow numerical evaluations.

The main features of the code for the rapid numeri-
cal evaluation of the three-point scalar function for real
masses and external momenta are as follows:

• The imaginary part of C0 in the physical region
(defined by λ(q2, p2

1, p
2
2) > 0) is obtained by ap-

plying Cutkosky’s rule, and with a straightforward
continuation into the unphysical region (defined by
λ(q2, p2

1, p
2
2) < 0) [14, 15]. Its computation requires

the evaluation of a single logarithm.

3 If the explicit analytic form is desired, the option
ExplicitC0→ All can be supplied to LoopRefine.



9

B-functions — Section IV A

B1...1(0; 0, 0) B1...1(p2; 0, 0) B1...1(m2
0;m0, 0) B1...1(p2;m0, 0)

B1...1(m2
0;m0,m0) B1...1(0;m0,m0) B1...1(0;m0,m1) B1...1((m0+m1)2;m0,m1)

B1...1(0; 0,m1) B1...1(m2
1; 0,m1) B1...1(p2; 0,m1) B1...1((m0−m1)2;m0,m1)

B1...1(0;m0, 0)

B-functions with r = −1 — Appendix E

B1...1(0; 0, 0) B1...1(p2; 0, 0) B1...1(m2
0;m0, 0) B1...1(p2;m0, 0)

B1...1(0; 0,m1) B1...1(0;m0,m0) B1...1(0;m0,m1) B1...1((m0+m1)2;m0,m1)
B1...1(0;m0, 0) B1...1(m2

1; 0,m1) B1...1(p2; 0,m1) B1...1((m0−m1)2;m0,m1)

Auxiliary bξ-functions — Section IV B

bξ1...1(0, 0) bξ1...1(p2, 0)

bξ1...1(0,m) bξ1...1(m2,m)

Scalar C-functions — Section V

C0(0, 0, 0; 0, 0, 0) C0(0, 0, q2; 0,m0,m0) C0(m2
0, 0, q

2; 0, 0,m0) C0(0, p22, q
2;m2, 0, 0)

C0(0, 0, q2; 0, 0, 0) C0(0, 0, q2; 0,m1,m0) C0(0,m2
2, q

2;m2, 0, 0) C0(p21, 0, q
2;m2,m1,m0)

C0(0, 0,m2
2;m2, 0, 0) C0(0, 0, q2;m0,m0,m0) C0(m2

0, 0,m
2
2;m2, 0,m0) C0(m2

0,m
2
0, q

2; 0, 0,m0)
C0(0, 0, q2;m2, 0, 0) C0(0, 0, q2;m2,m0,m0) C0(p21, p

2
2, q

2;m2,m1,m0) C0(m2
0, p

2
2,m

2
0;m0, 0,m0)

C0(0, 0, q2; 0, 0,m0) C0(0, 0, q2;m2,m1,m0) C0(0,m2
0, q

2; 0,m0,m0) C0(m2
0, p

2
2,m

2
2;m2, 0,m0)

C0(0, 0,m2
0;m0,m0,m0) C0(p21, 0, q

2; 0, 0, 0) C0(0, p22, q
2;m0,m0,m0) C0(p21, p

2
2, q

2; 0, 0, 0)

TABLE I. Special kinematic cases of the Passarino-Veltman coefficient functions B, bξ and C for which explicit expressions are
included in the source file OneLoop.m. Further information for these functions is found in the indicated sections

• The real part of C0 requires evaluations of only
the real part (in the physical region) or only the
imaginary part (in the unphysical region) of the
dilogarithm, but not both. Calling PolyLog would
lead to needless computation of both parts by the
Mathematica Kernel. Following [16], the real and
imaginary parts of the dilogarithm function are im-
plemented separately.

• For the real part of C0 in the physical region, the
+iε prescription is irrelevant (since it influences
only the imaginary part which is anyway evaluated
using Cutkosky’s rule). Then, either the arguments
of the 12 dilogarithms come in complex-conjugate
pairs (for which the real part of the dilogarithms
are identical and are added reducing the number
of dilog evaluations), or the arguments are purely
real (for which the real parts of the dilogarithms
are rapidly evaluated using real arithmetic).

• The code is compiled to the Wolfram Virtual Ma-
chine (using Compile), leading to a substantial
boost in computation speed.

In the physical region, up to a 200-fold increase in
speed is achieved compared to brute-force Mathematica
evaluation by the Kernel. In the unphysical region, up
to a 20-fold increase in speed is obtained. If the op-
tion CompilationTarget→“C” to Compile is set, its per-
formance rivals that of the Fortran implementation in

LoopTools, with Package-X generating results approx-
imately twice as fast.

VI. HANDLING THE +iε PRESCRIPTION AND
SIMPLIFYING LOGARITHMS

The +iε prescription appearing in the denominators
of propagator functions enforce causality in the time-
ordered Green functions of a relativistic quantum field
theory. In one-loop computations, it determines the
branch on which the logarithms are to be evaluated. All
output expressions of LoopRefine observe the +iε pre-
scription and are consistent with the analytic conventions
of the built-in Mathematica functions Log and PolyLog,
which are

Log[x] −→ lim
ε→0+

ln(x+ iε) , and

PolyLog[2, x] −→ lim
ε→0+

Li2(x− iε) .

Because Package-X assumes real external invariants and
internal masses, almost all analytic formulae can be ex-
pressed compactly in terms of the built-in functions.

Whenever LoopRefine generates a logarithm contain-
ing the ratio of two internal masses, the ratio may be
flipped to bring the logarithm to ‘canonical form’, e.g.

Log
[m12
m02

]
−→ −Log

[m02
m12

]
. (26)
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Since internal masses are assumed to be positive real,
this is allowed, and helps to keep the logarithmic parts
compact.

In the course of reduction, regardless of whether the
final expression is divergent or finite, multiple logarithms
of ratios of several scales with the ’t Hooft parameter µ2

are typically generated, e.g.

a Log
[µR2
−s

]
+ b Log

[µR2
m2

]
+ c Log

[ µR2

m2 − s

]
. (27)

It is found that by consistently keeping µ2 in the numera-
tor, the +iε prescription is always observed – even when
the other scales are external invariants that may become
time-like. The µ2 from each logarithm are brought into a
single logarithm by forming the ratio with a variable that
is known to be positive (which were recorded at step 1):

(27) = a Log
[ m2
−s

]
+ (a + b + c) Log

[µR2
m2

]
+ c Log

[ m2

m2 − s

]
. (28)

That way, the coefficient—(a+b+c) in this example—of
the µ2-dependent logarithm always matches that of the
1/ε pole elsewhere in the expression, and are grouped
before presenting the results. If the final expression were
in fact finite without a 1/ε pole, the coefficient would
cancel exactly.

In more complicated cases, expressions cannot be given
compactly assuming a universal sign for the infinitesi-
mal imaginary part. In this case, Mathematica’s built-in
functions Log and PolyLog are unsuitable. For this pur-
pose, two new analytic functions are defined in Package-X
(within OneLoop‘):

Ln[x,a] −→ lim
ε→0+

ln(x+ iaε) , and

DiLog[x,a] −→ lim
ε→0+

Li2(x+ iaε) .

The (real part of the) second argument a controls the side
of the branch on which these functions evaluate. A simple
example that uses DiLog in its output can be found by
running

LoopRefine[pvC0[0, m2, s, 0, m, m]] .

VII. SPUR: COMPUTATION OF TRACES OF
DIRAC MATRICES

To assist in the evaluation of one-loop integrals with
internal (closed) fermion lines, Package-X includes the
rudimentary function Spur (inside the module Spur‘) to
evaluate traces over products of Dirac gamma matrices
appearing in numerators. The function Projector helps
to handle loop integrals with open fermion lines and is
described in the next section. Because the primary func-
tion of Package-X is to compute loop integrals, with the

computation of traces being a secondary feature, only
a cursory description of the algorithms are given in the
following two sections.

As with the rest of the algorithms in Package-X, the
calculation of traces is rule-based at its core, and bears
some resemblance to that of a much earlier Mathematica
package Tracer[17]. However there are a number of
differences listed below that lead to greater computation
speed.

• Throughout the evaluation of the trace, expres-
sions can grow very large containing many terms.
Groups of terms are temporarily enclosed within a
List to prevent the Mathematica kernel from au-
tomatically simplifying the large expression at each
step of the computation process.

• While more complicated trace formulae such as
those for products of numerous gamma matrices are
recursive, non-iterative rules are used for simpler
tasks such as for collecting γ5 and P̂L/P̂R within
each term.

• Products of gamma matrices with repeated Lorentz
indices (such as γµγνγργµ) are related to products
with fewer gamma matrices. With more gamma
matrices interposed between contracted matrices,
the number of terms in the identity grows. On
account of the cyclic property of the trace, these
contraction identities may be applied in one of two
directions. Additional rules are included so as to
apply the identity in the direction with fewer num-
ber of interposed gamma matrices.

• Traces that multiply γ5 are tagged differently to
set it apart from those without it. This way, rules
for computing traces with γ5 and those without γ5

are separated, and saves some time when the kernel
searches for the appropriate rules.

When compared to the other Mathematica packages
FeynCalc and Tracer, Package-X generally gives re-
sults around 10 times faster. As an example, the trace

Tr
[
(/k − /p1

− /p2
+m)γν(gLP̂L + gRP̂R)(/k − /p2

+m)

γρ(gLP̂L + gRP̂R)(/k +m)γµ(gLP̂L + gRP̂R)
]

(29)

was calculated with each package and computation times
were recorded (with Timing). The results on a 2.93 GHz
Intel i7 processor are:

Package-X 0.096 s
FeynCalc 8.2.0 1.03 s
Tracer 1.1 0.81 s

Part of the motivation for refining the trace-taking al-
gorithms is due to the inclusion of fermion projectors
described in the next section. When a Projector is in-
cluded inside Spur, the number of terms within the trace
is increased to an extent that a noticeable slowdown is ob-
served. However, with the refinements described above,
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projections onto form factors are nearly instantaneous on
a modern computer.

VIII. PROJECTOR: PROJECTION ONTO FERMION
FORM FACTORS

Package-X does not directly handle expressions involv-
ing open fermion chains that are relevant for fermion self
energy and form factor calculations. In order to provide
some support for such computations, Package-X comes
equipped with a set of projectors. The projectors permit
the projection of a loop integral with an open fermion
line onto specific form factors functions.

For example, the one-loop expression for the off-shell
fermion self-energy function takes the form

I(/p) = µ2ε

∫
ddk

(2π)d
M(k, p)

[k2 −m2][(k + p)2]
, (30)

where M(k, p) is a Dirac matrix structure that depends
on the integration variable k and external momentum p.
Parity conservation and Lorentz covariance allow I to be
written in the form

I(/p) = A(p2)/p+B(p2)m, (31)

where the form factors A and B depend on Lorentz in-
variants p2 and m2 only. By multiplying the appropriate
projectors

F [A](p,m) =
1

4p2 /p and F [B](p,m) =
1

4m2

with the numerator of (30), and taking the trace, the
form factors are obtained:

A(p2) = µ2ε

∫
ddk

(2π)d
Tr[M(k, p)F [A](p,m)]

[k2 −m2][(k + p)2]

B(p2) = µ2ε

∫
ddk

(2π)d
Tr[M(k, p)F [B](p,m)]

[k2 −m2][(k + p)2]
.

The trace over the projectors convert the expressions into
ordinary tensors integrals that are readily computed with
Package-X.

A large set of pre-programmed projectors for off-
shell self energy functions and on-shell scalar- and
vector-vertex functions in various bases (L/R-chiral or
Vector/Axial-vector) are available (as Projector) to
streamline the computation of such integrals. These pro-
jectors are generalizations of those used in [18] for the cal-
culation of lepton anomalous magnetic moments, and in
[19] for dipole moments. A comprehensive list of available
projectors is given in the built-in documentation files.

IX. CROSSCHECKS AND FURTHER
DEVELOPMENT

The verification of loop integrals obtained by Package-
X is divided into two parts: checking the reduction algo-
rithms in Section IV, and checking the basis functions in

Table I. The reduction routines for A and B coefficient
functions and the basis B1...1 functions were compared
against another (unpublished) computer program devel-
oped by Huaike Guo. The reduction of C functions for
Cases 1, 3, 5 and 6 were checked against explicit for-
mulae for the low rank functions listed in [DD]. Each
C0 scalar function was derived by hand and compared
against explicit formulae in the literature where they ex-
ist [8, 11, 13, 20]. In cases where they did not exist,
the analytic expressions were checked by comparing with
the results of numerically integrating the corresponding
Feynman parameter representations given in Appendix
B.

Finally, as a combined check of the various algorithms
in Package-X, the following well known physical quan-
tities were computed and verified: H → gg and γγ
standard model decay rates [21], electron g − 2, and the
neutrino electric and magnetic moments [22]. Each was
found to be in agreement with literature.

There are a number of important limitations of Pack-
age-X, listed below, that guides its current line of devel-
opment.

1. An analytic series expansion of the loop integral in
kinematic variables is not generally possible. Cur-
rently, the only available method is to use Math-
ematica’s Series on the output of LoopRefine.
However, if the result of loop integral contains spe-
cially defined function like pvC0, then Series will
not work. Given that much information about a
loop-integral can be gleaned from its expansion, the
omission of this feature is most conspicuous.

2. Package-X currently supports loop integrals with
up to only three denominator factors. But, as the
number of denominator factors increases, so does
the complexity of their analytic forms. Thus, it
would not be so practical to work with such ex-
pressions for higher-point functions even if Pack-
age-X were to provide them. However, at special
kinematic points such as at zero external momenta
or at thresholds compact expressions could be ob-
tained.

3. Gamma-5 is implemented naively in dimensional
regularization. This means that the VVA or AAA
three-point functions may not automatically satisfy
Ward identities appropriate to the physical prob-
lem. However, the versatility of Package-X makes
it easy to apply Adler’s method [23] (see also [24])
to enforce the Ward identities.

4. Loop integrals with open fermion chains are not
directly supported. As explained in Section VIII,
there is no way to input an open string of Dirac
matrices. Instead, the computation of fermion form
factors can be done by projecting out the needed
form factors.
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Appendix A: Conventions

For reference, the conventions for spacetime quanti-
ties are summarized in Table II. Conventions for the
Passarino-Veltman functions are displayed in Table III.
Note that a slightly-unconventional ordering and form
for the arguments of the Passarino-Veltman functions is
taken. However, this choice makes the invariance prop-
erty under their pairwise interchange clear:

C0(p2
1, p

2
2, q

2,m2,m1,m0)

= C0(p2
2, p

2
1, q

2,m1,m2,m0)

= C0(q2, p2
2, p

2
1,m0,m1,m2) . (A1)

Appendix B: Feynman parameter integral
representations of Passarino-Veltman coefficient

functions

In this section, the Feynman parameter integral repre-
sentation of the Passarino-Veltman coefficient one, two,
and three point functions are given. They are obtained

Quantity Convention

Metric signature gµν = diag(+,−,−,−)

Spacetime dimension d = 4− 2ε

Dirac matrix commutator σµν = i
2
[γµ, γν ]

Fifth gamma matrix γ5 = iγ0γ1γ2γ3

Chiral projectors P̂L = 1
2
(1− γ5), P̂R = 1

2
(1 + γ5)

Levi-civita symbol ε0123 = +1

TABLE II. Conventions for spacetime quantities

Function Diagram

A0(m0)
m0

B0(p2,m0,m1),

and bξ0(p2,m0, 0)

m0

m1

p2

C0(p21, p
2
2, q

2,m2,m1,m0) ,

q2 = (p2 − p1)2
m2

m0

m1

q2

p22

p21

TABLE III. Conventions for the arguments of the Passarino-
Veltman functions

[25] by writing tensor integrals as derivatives of the in-
tegral representation of the corresponding scalar integral
with respect to external momenta, and then matching the
result to the respective covariant tensor decomposition.

A 0...0︸︷︷︸
2r

(m0) = (4πµ2)ε
(−1)1+r

2r
Γ(−1+ε−r)m1−ε+r

0 (B1)

B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n

(p2;m0,m1) = (4πµ2)ε
(−1)2+r+n

2r
Γ(ε− r)

×
∫ 1

0

dxxn(
p2x2 + (−p2 +m2

1 −m2
0)x+m2

0 − iε
)ε−r (B2)

bξ0...0︸︷︷︸
2r

1...1︸︷︷︸
n

(p2;m) = (4πµ2)ε
(−1)3+r+n

2r
Γ(1 + ε− r)

×
∫ 1

0

dxxn(1− x)(
p2x2 + (−p2 +m2)x− iε

)1+ε−r (B3)
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C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(p2
1, p

2
2, q

2;m2,m1,m0) = (4πµ2)ε
(−1)3+r+n1+n2

2r
Γ(1 + ε− r)

×
∫ 1

0

dy

∫ 1−y

0

dz yn1zn2
[
p2

1y
2 +p2

2z
2 + (−q2 +p2

1 +p2
2)yz+ (−p2

1 +m2
1−m2

0)y+ (−p2
2 +m2

2−m2
0)z+m2

0− iε
]−1−ε+r

(B4)

The coefficient C function exhibits an invariance under the simultaneous interchange of indices n1 ↔ n2, external
momenta p2

1 ↔ p2
2 and internal masses m1 ↔ m2,

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(p2
1, p

2
2, q

2;m2,m1,m0) = C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n2

2...2︸︷︷︸
n1

(p2
2, p

2
1, q

2;m1,m2,m0) (B5)

and is frequently employed during its reduction in the most general kinematic case (detZ 6= 0).
In certain reduction formulae of C-functions, some terms are multiplied by ε, which in the ε → 0 limit, pick up

the UV-divergent parts of the coefficient functions in those terms. The UV divergent parts are readily obtained from
the integral representation. They are controlled by the leading gamma function which for large enough r develops a
1/ε pole as ε → 0. When r is large, the integrand becomes polynomial in the Feynman parameters and are readily
integrated with the help of the multinomial theorem. The needed UV-divergent parts are those of the B and C
functions, shown below.

B 0...0︸︷︷︸
2r

1...1︸︷︷︸
n

(p2;m0,m1)
∣∣∣
UV-
Div.

=
(−1)n

2rr!

∑
k1+k2+k3=r

(
r

k1, k2, k3

)
ak1bk2ck3

2k1 + k2 + n+ 1

1

ε̄
, (B6)

where a = p2, b = −p2 +m2
1 −m2

0, and c = m2
0, are polynomial coefficients of the integrand in (B2).

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(p2
1, p

2
2, q

2;m2,m1,m0)
∣∣∣
UV-
Div.

=
(−1)n1+n2

2r(r − 1)!

∑
k1+...+k6=r−1

(
r − 1

k1, . . . , k6

)
ak1bk2ck3dk4ek5fk6

(2k1 + k3 + k4 + n1)!(2k2 + k3 + k5 + n2)!

(2k1 + 2k2 + 2k3 + k4 + k5 + n1 + n2 + 2)!

1

ε̄
, (B7)

where a, b, c, d, e, and f are polynomial coefficients of the integrand in (B4) in the order displayed.

Appendix C: Derivation of reduction formulae for C functions Case 2

The derivation of the first equation in (19) begins with the Feynman parameter representation of the coefficient C
function,

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(m2
0, s,m

2
2;m2, 0,m0) = (4πµ2)ε

(−1)3+r+n1+n2

2r
Γ(1 + ε− r)

×
∫ 1

0

dy

∫ 1−y

0

dz yn1zn2
[
m2

0y
2 + sz2 + (−m2

2 +m2
0 + s)yz + (−m2

0 +m2
2 − s)z +m2

0 − iε
]−1−ε+r

. (C1)

Upon making a change of integration variables y = 1− y′ and z = y′z′, the nested integrals are factored:

integrals =

∫ 1

0

dy′ y′−1+n2−2ε+2r(1− y′)n1

∫ 1

0

dz′ z′n2
[
sz′2 + (−s+m2

2 −m2
0)z′ +m2

0 − iε
]−1−ε+r

. (C2)

The y′ integral gives the Euler Beta function, while the z′ integral is identified as the integral representation of
coefficient B-function (B2).

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(m2
0, s,m

2
2;m2, 0,m0) =

(−1)n1

2
B(n2 − 2ε+ 2r, n1 + 1)B 0...0︸︷︷︸

2r−2

1...1︸︷︷︸
n2

(s;m0,m2) (C3)
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As long as one of n2 or r is non-zero, the Beta function is finite, and its expansion to O(ε) may be inserted yielding
the first equation in (19).

On the other hand, if n2 = r = 0, the Beta function develops a 1/ε pole, so that to O(ε),

B(−2ε, n1 + 1) = −1
2ε −Hn1 − ε

(
H2
n1
−H(2)

n1

)
. In this case, (C1) is written as

C 1...1︸︷︷︸
n1

(m2
0, s,m

2
2;m2, 0,m0) = (4πµ2)ε(−1)n1Γ(1 + ε)

1

2ε

∫ 1

0

dz′
(
sz′2 + z′(−s+m2

2 −m2
0) +m2

0 − iε
)−1−ε

+ (4πµ2)ε(−1)n1Γ(1 + ε)
(
Hn1

+ ε(H2
n1
−H(2)

n1
)
) ∫ 1

0

dz′
(
sz′2 + z′(−s+m2

2 −m2
0) +m2

0 − iε
)−1−ε

. (C4)

While the z′ integral in the second line can be identified with the integral representation of the coefficient B function,
the first line is identified4 as the integral representation of the scalar function C0(m2

0, s,m
2
2;m2, 0,m0) classified by

Ellis and Zanderighi [11] as IR-divergent triangle 6. These identifications lead to the second equation of (19).
If the off-shell momentum s is in the third argument, the derivation starts with the change of variables z = 1−y−x

in (B4) followed by an interchange of the x and y integrals to give

C 0...0︸︷︷︸
2r

1...1︸︷︷︸
n1

2...2︸︷︷︸
n2

(m2
2,m

2
0, s;m0,m2, 0) = (4πµ2)ε

(−1)3+r+n1+n2

2r
Γ(1 + ε− r)

×
∫ 1

0

dx

∫ 1−x

0

dy yn1(1− x− y)n2
[
m2

0x
2 + sy2 + (s+m2

0 −m2
2)xy − 2m2

0x+ (−s−m2
0 +m2

2)y +m2
0 − iε

]−1−ε+r
.

(C5)

The nested integrals are factored by making a further change of variables x = 1− x′ and y = y′x′ to give

integrals =

∫ 1

0

dx′ x′n1+n2+2r−1−2ε

∫ 1

0

dy′ y′n1(1− y′)n2
[
sy′2 + (−s+m2

2 −m2
0)y′ +m2

0 − iε
]−1−ε+r

. (C6)

The x′ integral is straightforward. The y′ integral can be brought to a recognizable form after expanding the factor
(1− y′)n2 as a binomial series

=
1

n1 + n2 + 2r − 2ε

n2∑
k=0

(
n2

k

)
(−1)k

∫ 1

0

dy′ y′n1+k
[
sy′2 + (−s+m2

2 −m2
0)y′ +m2

0 − iε
]−1−ε+r

. (C7)

The y′ integral is now identified as the integral representation of the coefficient B function, yielding (20).

Appendix D: Derivation of reduction formulae for C functions Case 4

Two cases are distinguished for Case 4 (detZ = 0, X̃0j = 0) depending on whether p2
2 is vanishing. Although

the steps below leading to (22) and (23) appear complicated, they essentially follow that of [12] for the evaluation of
the scalar function C0. Beginning with the integral representation (B4), a change of integration variables y = 1− y′
brings the Feynman integrals to the form

integrals =

∫ 1

0

dy′
∫ y′

0

dz (1− y′)n1zn2
[
a y′2 + b z2 + c y′z + d y′ + e z + f

]−1−ε+r
(D1)

where a = p2
1, b = p2

2, c = q2 − p2
1 − p2

2, d = −p2
1 +m2

0 −m2
1, e = p2

1 − q2 −m2
0 +m2

2, and f = m2
1 − iε.

Under the assumption that p2
2 6= 0, a second change of variables is made z = z′ +αy′, with α = −c

2b chosen to make

the coefficient of y′2 in square brackets vanish.

integrals =

∫ 1

0

dy′
∫ (1−α)y

−αy
dz′ (1− y′)n1(z′ + αy′)n2

[
bz′2 + (c+ 2bα)y′z′ + (d+ eα)y′ + e z′ + f

]−1−ε+r
(D2)

4 see http://qcdloop.fnal.gov/tridiv6.pdf

http://qcdloop.fnal.gov/tridiv6.pdf
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The choice for α implies that c + 2bα vanishes, and the kinematic relations detZ = X̃0j = 0 imply that d + eα
vanishes, yielding

integrals =

∫ 1

0

dy

∫ (1−α)y

−αy
dz (1− y)n1(z + αy)n2

[
bz2 + e z + f

]−1−ε+r
, (D3)

where the primes have been omitted. The binomial theorem is applied to the factor (z+αy)n2 =
∑
j

(
n2

j

)
αn2−jyn2−jzj ,

and the order of integrations is interchanged so that

integrals =

n2∑
j=0

(
n2

j

)
αn2−j

[ ∫ 1−α

0

dz

∫ 1

z/(1−α)

dy −
∫ −α

0

dz

∫ 1

−z/α
dy
]
(1− y)n1yn2−jzj

[
bz2 + e z + f

]−1−ε+r
. (D4)

The y integrals in both terms yield terminating hypergeometric series most compactly written in terms of the incom-
plete Beta function: ∫ 1

X

dy(1− y)n1yn2−j =
n1!(n2 − j)!

(n1 + n2 − j + 1)!
− BX(n2 − j + 1, n1 + 1)

=
n1!(n2 − j)!

(n1 + n2 − j + 1)!
−

n1∑
k=0

(−1)kXn2−j+k+1

(n2 − j + k + 1)

(
n1

k

)
. (D5)

Since the first term of (D5) is common to both integrations in (D4), they are combined to yield a total of three terms:

integrals =

n2∑
j=0

(
n2

j

)
αn2−j

[ n1!(n2 − j)!
(n1 + n2 − j + 1)!

∫ 1−α

−α
dz

zn2+j

(bz2 + ez + f)1+ε−r

−
∫ 1−α

0

dz
Bz/(1−α)(n2 − j + 1, n1 + 1) zj

(bz2 + ez + f)1+ε−r +

∫ −α
0

dz
B−z/α(n2 − j + 1, n1 + 1) zj

(bz2 + ez + f)1+ε−r

]
(D6)

A change of integration variables is carried out in each term to stretch their ranges to 0 → 1: In the first integral,
z = z′ − α, in the second integral z = (1 − α)z′, and in the third integral z = −αz′. Consequently, the polynomials
bz2 + ez + f take the shape of integrands for the B functions5:

First term: p2
2z
′2 + (−p2

2 +m2
2 −m2

0)z′ +m2
0 − iε := P2(z′)

Second term: q2z′2 + (−q2 +m2
2 −m2

1)z′ +m2
1 − iε := P12(z′)

Third term: p2
1z
′2 + (−p2

1 +m2
0 −m2

1)z′ +m2
1 − iε := P1(z′)

Upon inserting the series representation of the incomplete Beta function (D5) the result is (after dropping the primes
on z)

integrals =

n2∑
j=0

(
n2

j

)
αn2−j

{
n1!(n2 − j)!

(n1 + n2 − j + 1)!

∫ 1

0

dz(z − α)jP2(z)−1−ε+r

+

n1∑
k=0

(−1)k

n2 − j + k + 1

(
n1

k

)[
− (1− α)j+1

∫ 1

0

dz zn2+k+1P12(z)−1−ε+r + (−α)j+1

∫ 1

0

dz zn2+k+1P1(z)−1−ε+r
]}
(D7)

In the first term, the binomial theorem is applied to (z−α)j =
∑
k

(
j
k

)
(−α)j−kzk, and the three z integrals are finally

identified as integral representations of the coefficient B functions upon which (22) is obtained.
If p2

2 = 0, equation (22) breaks down and another formulae is needed. In this case, detZ = 0 implies p2
1 = q2 and

X̃0j = 0 implies m0 = m2 provided p2
1 6= 0. With these relations, the integrals in (D1) are already factored:

integrals =

∫ 1

0

dy′
∫ y′

0

dz (1− y′)n1zn2
[
p2

1y
′2 + (−p2

1 +m2
0 −m2

1)y′ +m2
1 − iε

]−1−ε+r
. (D8)

5 These quadratic polynomials may be recognized as the ‘pinch
functions’ originating from the three cut channels of the triangle

graph.
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The z integration gives a factor 1/(n2 +1), and the factor (1−y′)n1 =
∑
k

(
n1

k

)
(−y)k is expressed as a binomial series.

integrals =
1

n2 + 1

n1∑
k=0

(
n1

k

)
(−1)k

∫ 1

0

dy′y′n2+k+1
[
p2

1y
′2 + (−p2

1 +m2
0 −m2

1)y′ +m2
1 − iε

]−1−ε+r
. (D9)

Eqn (23) is obtained after identifying the y′ integration as the integral representation of the coefficient B function. If
all external invariants are vanishing p2

1 = p2
2 = q2 = 0 then neither (22) nor (23) are valid, and Case 5 is needed.

Appendix E: Coefficient B functions with r = −1

The two new reduction algorithms for C functions
(Cases 2 and 4 ) require extending the set of basis func-
tions to include B functions in which the index r in (B2)
is continued to −1. In a certain sense, these new re-
duction formulae may be closely related to those in [26].
There, the authors present different reduction formulae
for coefficient functions which likewise require extending
the set of basis functions to scalar functions with repeated
propagators.

A set of explicit expressions for the general case and at
singular points is constructed and included in the Pack-
age-X source file (see Table I). The integration is straight-
forward in most cases. The functions are UV-finite for
all n ≥ 0, but with many kinematic configurations devel-
oping IR-divergent 1/ε poles.

However, there are three kinematic cases, all corre-
sponding to physical threshold for which the Feynman
parameter integral nominally diverges even for finite but
infinitesimal ε. To handle these cases, ε is taken suffi-
ciently large and negative so that the integral converges,
and then analytically continued to ε→ 0. The results of
these integrations are given below:

B 0...0︸︷︷︸
r=−1

1...1︸︷︷︸
0

(m2
1; 0,m1)

=
−2

m2
1

(4πµ2

m2
1

)ε
Γ(1 + ε)

∫ 1

0

dxx−2−2ε

=
2

m2
1

(E1)

B 0...0︸︷︷︸
r=−1

1...1︸︷︷︸
n

(m2
0;m0, 0)

=
2

m2
0

(4πµ2

m2
0

)ε
(−1)n+1Γ(1 + ε)

∫ 1

0

dxxn(x− 1)−2−2ε

=


(−1)n+1

m2
0

n
(

1
ε̄ + ln

(
µ2

m2
0

)
+ 2Hn−1 − 2

)
, n ≥ 1

2
m2

0
, n = 0

(E2)

B 0...0︸︷︷︸
r=−1

1...1︸︷︷︸
n

(
(m0+m1)2;m0,m1

)
=

2(−1)n+1

(m0+m1)2

×
( 4πµ2

(m0+m1)2

)ε
Γ(1 + ε)

∫ 1

0

dx
xn[(

x− x+

)2]1+ε

=
2(−1)n+1

(m0+m2
1)

[ n−2∑
k=0

xn−2−k
+

k + 1
+ nxn−1

+ ln
(
1− 1

x+

)
− 1

1− x+
− δn,0

x+

]
, x+ =

m0

m0 −m1
(E3)

Among these integrals, only (E3) gives numerical results
that are related to limiting values as threshold is reached:
the real part of (E3) corresponds to the limiting value of
ReB(s;m0,m1) when approached from above threshold,
and the imaginary part corresponds to the limiting value
of ImB(s;m0,m1) when approached below threshold.

That the integrals (E1-E3) give numerical results that
do not match their limiting values as threshold is reached
are not of any concern. The results above should be
viewed as ill-defined divergent integrals arising at inter-
mediate stages in the reduction of coefficient C functions.
They serve to facilitate the analytic cancellation of these
integrals at the end of a physically meaningful computa-
tion, such as for the electromagnetic contribution to the
electron anomalous magnetic moment.
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