
 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

PENGEOM – A general-purpose geometry package

for Monte Carlo simulation of radiation transport in

material systems defined by quadric surfaces

Julio Almansaa, Francesc Salvat-Pujolb, Gloria Dı́az-Londoñoc, Artur
Carnicerd, Antonio M. Lallenae, Francesc Salvatd,∗

a Servicio de Radiof́ısica y P.R., Hosp. Univ. Virgen de las Nieves, Avda. de las Fuerzas

Armadas 2, 18014 Granada, Spain
b Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1,

60438 Frankfurt am Main, Germany
c Departamento de Ciencias F́ısicas, Universidad de La Frontera, Av. Francisco Salazar,

01145 Temuco, Chile
d Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain

e Departamento de F́ısica Atómica, Molecular y Nuclear, Universidad de Granada, 18071

Granada, Spain

Abstract

The Fortran subroutine package pengeom provides a complete set of tools to
handle quadric geometries in Monte Carlo simulations of radiation transport.
The material structure where radiation propagates is assumed to consist of
homogeneous bodies limited by quadric surfaces. The pengeom subroutines
(a subset of the penelope code) track particles through the material struc-
ture, independently of the details of the physics models adopted to describe
the interactions. Although these subroutines are designed for detailed simula-
tions of photon and electron transport, where all individual interactions are
simulated sequentially, they can also be used in mixed (class II) schemes for
simulating the transport of high-energy charged particles, where the effect of
soft interactions is described by the random-hinge method. The definition
of the geometry and the details of the tracking algorithm are tailored to
optimize simulation speed. The use of fuzzy quadric surfaces minimizes the
impact of round-off errors. The provided software includes a Java graphical

∗Corresponding author.
E-mail address: francesc.salvat@ub.edu

Preprint submitted to Computer Physics Communications May 21, 2015

*Manuscript

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

user interface for editing and debugging the geometry definition file and for
visualizing the material structure. Images of the structure are generated
by using the tracking subroutines and, hence, they describe the geometry
actually passed to the simulation code.

Keywords: Constructive quadric geometry; Monte Carlo particle transport;
Ray tracing; Geometry visualization

PROGRAM SUMMARY

Manuscript Title: PENGEOM – A general-purpose geometry package for Monte
Carlo simulation of radiation transport in complex material structures
Authors: Julio Almansa, Francesc Salvat-Pujol, Gloria Dı́az-Londoño, Artur Car-
nicer, Antonio M. Lallena, and Francesc Salvat
Program Title: pengeom

Journal Reference:

Catalogue identifier:

Licensing provisions: none
Programming language: Fortran, Java
Computer: PC with Java Runtime Environment installed.
Operating system: Windows, Linux.
RAM: 210 MiB
Supplementary material: Java editor and viewer (PenGeomJar), geometry exam-
ples, translator to POV-RayTM format, manual.
Keywords: Constructive quadric geometry; Monte Carlo particle transport; Ray
tracing; Geometry visualization.
Classification: 21.1 Radiation Physics, 14 Graphics
Nature of problem: The Fortran subroutines perform all geometry operations in
Monte Carlo simulations of radiation transport with arbitrary interaction models.
They track particles through material systems consisting of homogeneous bodies
limited by quadric surfaces. Particles are moved in steps (free flights) of a given
length, which is dictated by the simulation program, and are halted when they cross
an interface between media of different compositions or when they enter selected
bodies.
Solution method: The pengeom subroutines are tailored to optimize simulation
speed and accuracy. Fast tracking is accomplished by the use of quadric surfaces,
which facilitate the calculation of ray intersections, and of modules (connected
volumes limited by quadric surfaces) organized in a hierarchical structure. Optimal
accuracy is obtained by considering fuzzy surfaces, with the aid of a simple algo-
rithm that keeps control of multiple intersections of a ray and a surface. The Java
GUI PenGeomJar provides a geometry toolbox; it allows building and debugging

2

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

the geometry definition file, as well as visualizing the resulting geometry in two
and three dimensions.
Restrictions: By default pengeom can handle systems with up to 5,000 bodies and
10,000 surfaces. These numbers can be increased by editing the Fortran source file.
Unusual features: All geometrical operations are performed internally. The con-
nection between the steering main program and the tracking routines is through
a Fortran module, which contains the state variables of the transported particle,
and the input-output arguments of the subroutine step. Rendering of two- and
three-dimensional images is performed by using the pengeom subroutines, so that
displayed images correspond to the definitions passed to the simulation program.
Additional comments: The Fortran subroutine package pengeom is part of the
penelope code system. [1]
Running time: The running time much depends on the complexity of the material
system. The most complicated example provided, phantom, an anthropomorphic
phantom, has 264 surfaces and 169 bodies and modules, with different levels of
grouping; the largest module contains 51 daughters. The rendering of a 3D image
of phantom with 1680×1050 pixels takes about 25 seconds (i.e., about 1.5·10−5
seconds per ray) on an Intel Core I7-3520M CPU, with Windows 7 and subroutines
compiled with gfortran.

[1] F. Salvat, J. M. Fernández-Varea, J. Sempau, penelope-2011: A code System

for Monte Carlo Simulation of Electron and Photon Transport, OECD/NEA
Data Bank, Issy-les-Moulineaux, France, 2011. Available from http://www.nea.

fr/lists/penelope.html.

1. Introduction

Monte Carlo simulation has become a useful tool for solving radiation
transport problems. In the simulations, each particle trajectory is generated
as a sequence of free flights, each of them ending with an interaction where
the particle loses energy, changes its direction of movement, and occasionally
produces secondary particles. The length of the free flights and the effects of
the interactions are determined by numerical random sampling from proba-
bility distributions that are defined by the set of differential cross sections
(DCS) of the relevant interaction mechanisms.

Practical simulations involve two different kinds of numerical operations,
namely physical (determination of the path length to the next interaction,
random sampling of the different interactions) and geometrical (spatial dis-
placements, interface crossings, etc.) Geometry operations are normally

3

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

performed by dedicated subroutine packages, whose characteristics depend on
the type of algorithm used to track particles. The evolution of particles within
each homogeneous body is dictated by the physical simulation subroutines,
which operate as if particles were moving in an infinite medium with a given
composition. The job of the geometry subroutines is to steer the simulation of
particle histories in the material system. These subroutines must determine
the active medium where a particle is moving, and change it when the particle
crosses an interface (i.e., a surface that separates two different media). In
the case of material systems with complex geometries, geometrical operations
can take a large fraction of the simulation time.

Random particle trajectories can be generated by following different strate-
gies. The so-called detailed simulation scheme produces random trajectories
by sampling all individual interactions undergone by a particle in chronological
succession. Detailed simulation, however, is feasible only when the number of
interactions occurring on each particle trajectory is small or moderate (say,
up to a few hundred). This is the case for photons, for electrons with energies
up to about 50 keV, and for electrons with higher energies (and other charged
particles) transported in thin foils. Simulations of charged particles in “thick”
media are more time consuming because of the large number of interactions
undergone by these particles before being brought to rest (on average, an
electron or positron reduces its energy by a few tens of eV at each individual
interaction). To cope with this difficulty, charged particles are usually tracked
by using condensed simulation schemes (class I schemes in the terminology
of Berger [2]) in which each particle trajectory is decomposed into a number
of steps (either of fixed or random lengths), and the global effect of all the
interactions that occur along each step is described approximately by using
multiple scattering theories. Because these theories apply to homogeneous
infinite media, a limitation of class I schemes occurs when a particle is close
to an interface: the step length must be kept smaller than the distance to
the nearest interface, to prevent the particle from entering the next medium.
Therefore, in class I simulations the geometry subroutines must keep control
of the proximity of interfaces. Class II schemes, also called mixed schemes,
combine detailed simulation of hard events (i.e., interactions involving energy
transfers and polar scattering angles larger than prescribed cutoffs) with
condensed simulation of the effect of all soft interactions (with sub-cutoff
energy losses and angular deflections) that take place between each pair of
successive hard events. Evidently, class II schemes are more accurate than
purely condensed simulation because hard events are simulated exactly from

4

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

the corresponding differential cross sections.
Most general-purpose Monte Carlo codes for high-energy radiation (e.g.,

etran [3; 4; 5], its3 [6], egs4 [7], geant3 [8], egsnrc [9], mcnp [10], geant4
[11; 12], fluka [13], egs5 [14] mcnp6 [15]) utilize detailed simulation for
photons, while charged particles are simulated by means of a combination of
class I and class II schemes. These codes normally incorporate combinatorial
geometry packages (see, e.g., Ref. [16]) which, to ensure proper treatment of
interface crossings by charged particles, should provide the distance from the
particle’s position to the nearest interface.

The electron-photon code penelope [17; 1], as well as an associated
code for proton transport [18], makes systematic use of class II schemes
for all interactions of charged particles. The accumulated energy loss and
angular deflection caused by all soft interactions that occur along a trajectory
step are simulated as if they were caused by a single artificial interaction (a
hinge), which occurs at a random position within the step. This random-hinge

method [19] was initially designed to allow the code to operate as in detailed
simulations, i.e., the transported particle is moved in straight steps, and the
energy and direction of movement change only through discrete interactions
(hard interactions and hinges). Kawrakow and Bielajew [20] and Bielajew
and Salvat [21] have shown that the random-hinge method provides a quite
accurate description of spatial displacements in class I simulations, giving
results close to those from detailed simulation. The method works even
better for class II schemes, where it only has to account for the effect of soft
interactions. A modification of the random hinge method, the so-called dual
random hinge method, is employed in EGS5 [14].

Aside from the general-purpose codes mentioned above, many Monte Carlo
programs have been developed for specific applications in microdosimetry
(see, e.g., Ref. [22], and references therein), x-ray emission and electron-probe
microanalysis [23; 24], electron microscopy [25], surface electron spectroscopies
[26; 27; 28], and others. In addition, Monte Carlo simulation has been used
to assess the reliability of theoretical interaction models through comparisons
with measurements under multiple-scattering conditions (see, e.g., [29; 30]).
Most of these codes are used only for simple geometries, typically multilayered
structures, where geometry operations can be handled easily. Generally, they
are not utilized for more complex material structures because of the lack
of flexible geometry tools. An exception is the code of Ritchie [24], which
implements combinatorial geometry.

In the present article we describe the Fortran subroutine package pengeom

5

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

and complementary tools for Monte Carlo simulation of particle transport
in complex geometries. The tracking subroutines are the same as those
employed in penelope. These subroutines are both robust and flexible
enough to represent quite complex quadric geometries, and they are tailored
to optimize simulation speed. They can be utilized in detailed and class II
simulations. Note that to determine interface crossings we only need to
calculate intersections of particle rays with interfaces, which is much easier
than computing the distance of the particle to the nearest interface as required
by class I schemes (see, e.g., Ref. [31]). Furthermore, with detailed and class
II schemes, physical and geometrical operations are effectively decoupled, so
that the pengeom subroutines can be used with arbitrary interaction models.

Except for trivial cases, the correctness of the geometry definition is difficult
to verify and, moreover, three-dimensional structures with inter-penetrating
bodies cannot be easily visualized. We present a Java application named
PenGeomJar, a graphical user interface (GUI) that eases the definition of
the geometry, allows direct debugging of the geometry definition file, and
displays two- and three-dimensional images of the geometry on the computer
screen. As the images are generated by pengeom, which is run in the
background, PenGeomJar is a helpful tool for checking the correctness of
the geometry definition.

The present article is organized as follows. Section 2 is devoted to relevant
features of quadric surfaces and of the algorithm adopted for ray tracing with
fuzzy quadric surfaces. Section 3 describes the general strategy adopted for
describing complex material systems, and the use of a genealogical tree of
modules for optimization. The geometry is defined by means of a formatted
text file; the contents and format of this file are described in Section 4. Section
5 describes the structure and operation of the pengeom subroutines, and the
use of impact detectors to facilitate the control of particle histories from the
steering main program. The Java editor/viewer PenGeomJar is presented
in Section 6. Finally, Section 7 describes the distribution package, which
contains Fortran source files, the Java application pengeom.jar, examples
of geometry files, and a manual (file pengeom-manual.pdf). The manual
provides further information on the numerical algorithm and methods, and
on the operation and options of the GUI.

6

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2. Quadric surfaces and ray tracing

The pengeom subroutines operate with arbitrary units of length. The
only assumption is that the input step lengths and the geometry parameters
are expressed in the same units. All the geometry elements, as well as the
position r and the direction of movement d̂ of particles, are referred to the
laboratory coordinate system, a right-handed Cartesian reference frame which
is defined by the position of its origin of coordinates and the unit vectors
x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1) along the directions of the frame
axes.

Surfaces can be defined in implicit form, i.e., by means of an equation
of the type F (r) = 0, where the function F (r) is assumed to be continuous
and differentiable. A surface divides the space into two exclusive regions that
are identified by the sign of F (r), the surface side pointer, SP. A point with
coordinates r is said to be inside the surface if F (r) < 0 (SP = −1), and
outside it if F (r) > 0 (SP = +1). The surface itself [i.e., the set of points
such that F (r) = 0] is the boundary of the two regions. It is worth noting
that the equation −F (r) = 0 defines the same surface, but with the inside
and the outside interchanged. Consequently, one must be careful with the
global sign of the surface function F (r).

The material systems considered in pengeom consist of a number of
homogeneous bodies Bk determined by their limiting surfaces Si and com-
positions (materials). Each surface Si is specified by giving its equation
Fi(r) = 0. The volume of an elementary body can be defined by giving the
side pointers SPi of all the surfaces Si that limit that volume at an arbitrary
point within it. However, using only limiting surfaces may not be convenient
for defining complex bodies. In pengeom we adopt a more expedient method
and consider that bodies are defined in “ascending” exclusive order so that
previously defined bodies effectively limit the new ones.

The “location” of a particle is specified by giving its position coordinates
r = (x, y, z) and the label k of the body Bk where it is moving. Given the
initial position of a particle, r0, in order to determine the body that contains
it, we should calculate the SPs of all limiting surfaces and explore the set
of bodies in ascending order to find the (first) one with the right SPs. For
complex systems, with a large number of limiting surfaces, this blind search
may be quite lengthy. The grouping of bodies into modules (see Section 3)
serves to reduce the number of surfaces that need to be considered to locate
a point.

7

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

As indicated above, the trajectory of a particle is simulated as a sequence
of connected straight free flights, each of which ends with an interaction
of the particle or with a hinge. When the particle reaches an interface
(i.e., a surface limiting two adjacent volumes of different compositions), the
simulation has to be halted and restarted with the interaction cross sections of
the medium beyond the interface. The most basic geometry operation, which
is to be performed millions of times in the course of a simulation run, is the
calculation of intersections of particle track segments with limiting surfaces.
Let us assume that a particle starts a free flight of length s0 from a point r0
in body Bk moving in the direction d̂. We wish to determine whether the
track segment intersects any of the surfaces F (r) = 0 that limit that body.
The intersections of the ray r0 + sd̂ with a surface occur at distances s from
r0 that are solutions of the following “master” equation

f(s) ≡ F (r0 + sd̂) = 0, (1)

where f(s) is the value of the surface function along the ray. In the course of
a free flight of length s0 the particle will cross the surface only if this equation
has a root s such that 0 < s ≤ s0. Notice that we need to consider only
intersections ahead of the ray (s > 0).

To simplify the calculation of surface crossings it is convenient to use
surfaces expressed by simple analytical functions such that the master equation
(1) can be solved analytically. In the pengeom subroutines, all limiting
surfaces are assumed to be real quadrics defined by the implicit equation

F (r) = Axxx
2 + Axyxy + Axzxz + Ayyy

2 + Ayzyz + Azzz
2

+ Axx+ Ayy + Azz + A0 = 0, (2)

which includes planes, spheres, cylinders, cones, ellipsoids, paraboloids, hy-
perboloids, etc. It is useful to express the generic quadric equation (2) in
matrix form,

F (r) = rTA r+ATr+ A0 = 0, (3)

where

A ≡

Axx
1
2
Axy

1
2
Axz

1
2
Axy Ayy

1
2
Ayz

1
2
Axz

1
2
Ayz Azz

(4)

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

is a symmetric matrix. Here vectors such as r and A ≡ (Ax, Ay, Az) are
considered as one-column matrices. The gradient of the quadric surface
function is the vector

∇F (r) = 2Ar+A . (5)

The advantage of using quadric surfaces is that the master equation (1) is
quadratic,

f(s) = as2 + bs+ c = 0 (6)

with

a = d̂TAd̂ , b = 2d̂TAr0 + d̂TA = d̂T∇F (r0) , c = F (r0) , (7)

and its roots are

s =
−b±

√
∆

2a
with ∆ ≡ b2 − 4ac. (8)

If the discriminant ∆ is positive, there are two real roots and the ray intersects
the surface twice; if ∆ = 0, there is a real root of multiplicity two and the
ray grazes the surface; finally, if ∆ is negative, there are no real roots and
the ray misses the surface. When A = 0, the surface is a plane and there is
only one root, s = −c/b.

It is worth mentioning that surfaces defined by cubic or four-degree poly-
nomials in x, y and z also allow the analytical calculation of ray intersections,
because the associated function f(s) is a cubic or fourth-degree polynomial
in s. However, the calculation is more complicated than for quadric surfaces.
Since lengthy geometrical operations may severely impair the efficiency of
Monte Carlo simulation, only quadric surfaces are considered in pengeom.

To facilitate the definition of the geometry, pengeom allows the spec-
ification of a surface by giving its “shape” (reduced form) and a set of
transformation parameters. The reduced form of a real quadric is given by
the expression

Fr(r) = I1x
2 + I2y

2 + I3z
2 + I4z + I5 = 0, (9)

where the coefficients (indices) I1 to I5 can only take the values −1, 0, or 1.
There are 10 possible reduced forms, which define real quadric surfaces of
various shapes with “standard” position and orientation. Any real quadric
surface can be obtained from its reduced form by means of the following
sequence of transformations:

9

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

• A scaling along the directions of the axes, defined by the scaling factors
X-SCALE, Y-SCALE and Z-SCALE.
• A rotation, defined by the Euler angles OMEGA, THETA, and PHI (see, e.g.,
[32]). This rotation is the result of a sequence of three right-handed rotations
about the coordinate axes: first a rotation of angle OMEGA about the z-axis,
followed by a rotation of angle THETA about the y-axis and, finally, a rotation
of angle PHI about the z-axis.
• A translation, defined by the components of the displacement vector
(X-SHIFT, Y-SHIFT, Z-SHIFT).
Note that these are active transformations (they transform the surface, leaving
the coordinate axes unaltered) and are applied in the quoted order.

2.1. Fuzzy quadric surfaces

Even with quadric surfaces, we can find numerical ambiguities when locating
a particle that is very close to a surface: because of the limited accuracy of
floating-point numbers in the computer, we may be unable to assert with
confidence whether the particle is inside or outside the surface. Indeed, this
kind of ambiguity occurs whenever a particle crosses an interface; due to round-
off errors, the values of the surface function at the calculated intersection
point may have either sign, although in this case we do know that the particle
has just passed the surface. To get rid of numerical ambiguities, all surfaces
are considered fuzzy, that is, a surface swells or shrinks very slightly when
the particle crosses it so as to ensure that the particle is on the correct side of
the surface. Of course, surfaces are not altered; instead, we define the SP of
a given surface at the particle position r0 by considering the relative motion
of the particle with respect to the surface.

For quadric surfaces, side ambiguities can be readily solved by considering
only the values of the parameters of the master equation (6). The coefficient
c is the value of the surface function at r0 and, in principle, its sign gives the
side pointer: SP = sign(c), where sign(c) = +1 if c ≥ 0, and = −1 if c < 0.
Ambiguities may occur only when |c| is smaller than a certain small value ǫ,
the “fuzziness” level, which will be specified below. The coefficient b is the
projection of the gradient of F (r) at r0 along the direction of flight, i.e., the
directional derivative of F (r). Hence, if b > 0 the particle “leaves” the surface
(moving from inside to outside). Conversely, if b < 0 the particle “enters” the
surface (moves from outside to inside). The surface is made fuzzy by simply
defining the SP at an ambiguous point r0 (i.e., such that |c| = |F (r0)| < ǫ)
to be the same as the SP at a position slightly advanced along the ray, where

10

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

the sign of F (r) is unambiguous. That is, we set SP = −1 (inside) if b < 0
and SP = +1 (outside) if b > 0. Summarizing, the side pointer of a fuzzy
quadric surface at the point r0, ambiguous or not, is given by the following
simple prescription,

if |c| > ǫ, then

SP=sign(c)
else

SP=sign(b)
end if

(10)

To move a particle from its current position r0 in body Bk, first the length
s0 of the free flight to the next interaction is sampled by using the cross
sections of the material in the current body. The particle then “flies” to a new
position, which will be either the end of the step (r0+ s0d̂) or the intersection
of the ray with one of the surfaces that limit the current body, whichever
occurs first. That is, we must calculate the distances s to the intersections
with the limiting surfaces, by solving the corresponding master equations (6),
and compare them with the free-flight length s0. Incidentally, we can use the
SPs defined by the calculated c values to verify that the particle effectively is
in the assumed body and apply appropriate corrections when this is not the
case.

After an interface, defined by the Eq. F (r) = 0, is crossed, the particle is
placed at a certain point r′ and the tracking subroutine has to identify the
new body by computing the SPs of its limiting surfaces at r′. Although the
particle has just crossed one of these surfaces, because of round-off errors,
its numerical position coordinates may be at either side of the mathematical
surface, and even at a distance such that |F (r′)| > ǫ. When r′ is ambiguous
with respect to the surface (i.e., when |F (r′)| < ǫ), the algorithm (10) gives
the correct SP. The difficulty arises when r′ is not ambiguous, in which
case the numerical position may be either before the mathematical surface
(undershot) or beyond it (overshot). In the case of overshooting, the value
of F (r′) has the correct sign, and the program will give the correct SP. On
the contrary, when there is an undershot, the wrong SP will be assigned.
While a slight error in the position coordinates is tolerable, altering the SP
implies changing the body and material where the particle moves. With
mathematical surfaces, wrong SPs have to be corrected by keeping track of
the surfaces that are crossed by the particle, which complicates the tracking
algorithm. An advantage of using fuzzy surfaces is that, in the case of an

11

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

s

f(s)

A DC B

b > 0 b > 0b < 0

a < 0 a > 0

b < 0

−1 −1 −1+1 +1 +1SP:

s
1

s
1

s
2

s
2

r0

g g/

/

A C

D Bd̂ d̂r0

0

Figure 1: Top: Intersections of rays r0+ sd̂ with two quadric surfaces, which for simplicity
are represented as spheres; the solid triangles indicate the outside of the surfaces (SP = +1).
The two surfaces differ only in their orientation (i.e., their defining functions differ by a
global negative factor) and, consequently, their gradient vectors g = ∇F (r) are in opposite
directions. The solid blocks (labelled A, B, C and D) indicate the ray segments (not to
scale) where the SP of the surface may be ambiguous, i.e., such that |F (r)| < ǫ. Bottom:
Ray intersections described in terms of the master function, f(s) = as2 + bs+ c, Eq. (6).
The path length s increases to the right. The roots s1 and s2 of the equation f(s) = 0 are
the distances at which the ray intersects the surface, sorted in increasing order (s1 < s2).
The signs of the coefficients a and b depend on the initial position r0 of the particle in the
ray, as indicated.

undershot, the program usually corrects itself because one additional jump
of negligible length places the particle at an ambiguous position where the
correct SP will be assigned.

As indicated above, the tracking subroutine must determine the distances
s from the initial position r0 of the particle to the intersections of the ray
r0 + sd̂ with the limiting surfaces of the current body. Non-trivial situations
can arise when r0 is ambiguous with respect to the surface, as it may occur
just after a surface crossing, or when the ray intersects the surface twice and
the intersections are very close to each other (e.g., when the ray is almost

12

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

tangent to the surface or when the ray crosses a cone near its tip). In such
situations, the tracking subroutine has to evaluate the SP of the surface and
also discriminate whether the surface is going to be crossed again or not.
If the surface is a plane (a = 0), there is only one intersection; the SP is
determined by the signs of c and b, and after updating it we can proceed
as if the particle had effectively passed the surface. For non-planar quadric
surfaces, we need to consider only the case in which the ray does cross the
surface (i.e., when the discriminant ∆ is strictly positive). We can therefore
assume that Eq. (6) has two different roots, s1 and s2, sorted in increasing
order (s1 < s2). The general situation is sketched in Fig. 1, which shows
a ray crossing a quadric surface and the corresponding “master” function,
f(s) = as2 + bs + c. Because the master functions for two r0 points in the

same ray differ only by a global displacement in s, the graph of this function
is a characteristic of the ray. However, the values of the coefficients a, b, and
c do depend on the initial position r0 in the ray. The lower plot in Fig. (1)
shows the signs of a and b corresponding to different initial positions along the
ray. We note that for an ambiguous point |c| = |F (r0)| < ǫ and either s1 or s2
is close to zero. When s1 is negative and s2 ∼ 0, the ray has just crossed the
surface and there are no intersections ahead. When s1 ∼ 0 and s2 is positive,
the ray crosses the surface again at s2. Unfortunately, round-off errors may
still lead to ambiguities when both |s1| and |s2| are small. Therefore, to reveal
the existence of a second intersection ahead, it is preferable to consider some
global property of the master function f(s) that is less sensitive to round-off
errors. Figure 1 shows that we may have four different situations, which are
characterized by the signs of b and a:

A) b > 0 and a < 0: SP = +1, second crossing at s2.
B) b ≥ 0 and a > 0: SP = +1, no more crossings.
C) b ≤ 0 and a < 0: SP = −1, no more crossings.
D) b < 0 and a > 0: SP = −1, second crossing at s2.

When the product ab is negative (cases A and D), s1 ∼ 0 and the second
root is positive, that is, the ray does intersect the surface again at a certain
distance from the initial point r0, even if the numerical value of s2 turns
out to be negative due to round-off errors. In the latter case, we can simply
consider that the intersection is at s2 = 0 because the surface is fuzzy. On
the other hand, when ab > 0 (cases B and C with b 6= 0), s2 ∼ 0 and the first
root is negative so that there are no intersections beyond r0. Summarizing,
SP ambiguities are resolved by considering the sign of b [i.e., of the derivative

13

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

of f(s) at s = 0], while the existence of a second crossing ahead is readily
recognized from the sign of a.

To complete the description of the tracking algorithm, we only have to
specify the value of the fuzziness level ǫ, so as to make sure that all points r
such that |F (r)| > ǫ are assigned the correct SP. Let δ denote the distance
that the fuzzy surface will swell or shrink along the direction of the ray. When
the surface is not a plane, δ should be much smaller than the distance between
the two crossings of the ray, s2 − s1 = ∆1/2/|a|. Recalling that the slope of
the master function at the intersections is f ′(si) = 2asi + b = ±∆1/2, we set
δ = 10−12(s2 − s1) and

ǫ = f ′(si)δ = 10−12
∆

|a| . (11a)

In the case of planes (a = 0), the fuzziness level is assumed to be a constant,
i.e.,

ǫ ≡ 10−12 . (11b)

so that the interval of ambiguous points has a half-length δ = ǫ/|f ′(si)| =
10−12/|b|, which increases when the angle between the ray and the normal to
the plane increases. Note that when b = 0 (and a = 0) the ray is parallel to the
plane and does not intersect it. Numerical experiments, using double-precision
arithmetic, confirm that the prescriptions (11) do work well. The precise
value of the numerical constant 10−12 is not critical; when it is increased,
say by a factor of 100, the ambiguity interval widens by approximately that
factor (i.e., surfaces become fuzzier), but we have not observed any harmful
consequences.

The tracking algorithm is described in Table 1. This algorithm is robust,
in the sense that it consistently assigns a SP to ambiguous points r0 and
determines the distance to the next crossing, if there is one. Note, however,
that two fuzzy surfaces may not be correctly resolved if they are too close
to each other. As a measure of the accuracy of the algorithm we may use
the resolution, defined as the minimal distance between two surfaces that are
neatly resolved. The resolution is determined by the fuzziness level and by
the accumulated numerical round-off errors from the coefficients of the master
equation and from the calculation of distances to interfaces. In general, the
resolution worsens when the distance to the origin of coordinates increases.
That is, a small geometrical structure, which is correctly resolved when placed
near the origin, may become distorted or invisible when it is translated to a

14

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Table 1: Algorithm for computing the intersections of a ray, r0 + sd̂, with a fuzzy quadric
surface. It solves the master equation f(s) = as2 + bs + c = 0 and gives the number
n of intersections ahead of the ray. If there are any, the algorithm also provides the
corresponding distances sk (k = 1 if n = 1; k = 1, 2 if n = 2) sorted in increasing order.
Planes are treated separately to avoid unnecessary calculations.

n = 0

if |a| < 10−36, then [the surface is a plane]
if |b| > 0, then

ǫ = 10−12

if |c| < ǫ, then [the point r0 is ambiguous]
SP = sign(b)

else

SP = sign(c)
t = −c/b
if t > 0, set n = 1, s1 = t

end if

else [ray parallel to the plane]
SP = sign(c)

end if

else [the surface is not a plane]
∆ = b2 − 4ac, ǫ = 10−12∆/|a|
if |c| < ǫ, then [the point r0 is ambiguous]

ambig = 1, SP = sign(b)
else

ambig = 0, SP = sign(c)
end if

if ∆ < 10−36, exit [no “true” intersections]

t1 =
−b
2a
−
√
∆

2|a| , t2 =
−b
2a

+

√
∆

2|a|
if ambig = 0, then

if t1 > 0, set n = 1, s1 = t1
if t2 > 0, set n = n+ 1, sn = t2

else

if ab < 0, set n = 1, s1 = max{t2, 0}
end if

end if

15

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

further position. With the adopted value of the fuzziness parameter, 10−12,
our algorithm is capable of resolving a sphere of unit radius located at a
distance of 107 length units from the origin.

3. Modules and genealogical tree

During simulation, when a particle attempts to fly a given distance s0
(step length) in a direction d̂ from a given position r0 within a body B0,
we need to check whether the particle leaves the body in the course of its
flight and, when this occurs, we should halt the particle just after leaving B0

and resume the simulation with the cross sections of the new material. This
requires determining the intersections of the particle ray r0 + sd̂ (0 < s ≤ s0)
with all the surfaces that limit the body B0 (including those that define any
other bodies that limit B0), and checking whether the final position r0 + sd̂
remains within B0 or not. Because bodies may be concave, we must consider
the intersections with all the limiting surfaces even when the final position of
the particle lies within B0. Furthermore, when the particle leaves the initial
body, say after travelling a distance s′ (< s0), we need to locate the point
r′ = r0 + s′d̂.

The straightforward method to locate a point would be to compute the
SPs for all surfaces and, then, explore the bodies in ascending order looking
for the first one that matches the given SPs. This procedure is robust and
easy to program, but it becomes too slow for complex geometries. We can
speed it up by simply disregarding those elements of the geometry that cannot
be reached in a single step (e.g., bodies that are “screened” by other bodies
or too far apart). Unfortunately, as a body can be limited by all the other
bodies that have been defined previously, the algorithm can be improved only
at the expense of providing it with additional information. We adopt a simple
strategy that consists of grouping different bodies together to form modules.

A module is defined as a connected volume, limited only by quadric
surfaces, that contains one or several bodies. A module can contain other
modules, which will be referred to as submodules of the first. The volume of
a module is filled with a homogeneous material, which automatically fills the
cavities of the module (i.e., volumes that do not correspond to a body or to
a submodule); these filled cavities are considered as a single new body. A
body that is connected and limited only by surfaces can be declared either as
a body or as a module. For the sake of simplicity, modules are required to
satisfy the following conditions: 1) the bodies and submodules of a module

16

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

must be completely contained within the parent module (i.e., portions of
bodies or submodules that lie outside the module are not allowed) and 2) a
submodule of a module cannot overlap with other submodules and bodies of
the same module (this is necessary to make sure that a particle can only enter
or leave a module through its limiting surfaces). The bodies of a module are
still assumed to be defined in ascending order, i.e., a body is limited by its
surfaces and by the previously defined bodies of the same module, so that
inclusions and interpenetrating bodies can be easily defined.

A module (with its possible submodules) can represent a rigid part (e.g.,
a radioactive source, an accelerator head, a detector, a phantom, etc.) of a
more complex material system. To facilitate the definition of the geometry,
pengeom allows free translations and rotations of individual modules. Thus,
the definition of a module (see Table 2 below) includes the parameters of a
rotation (defined by its Euler angles) and a translation, which are optional
and serve to modify the position and orientation of the module (and all its
bodies and submodules) with respect to the laboratory reference frame. As
in the case of surfaces in implicit form, the rotation is applied first. It is
worth noticing that the translation or rotation of a module affects its defining
surfaces and bodies; the original definitions of these elements are lost. If these
surfaces and bodies are further used to define other bodies or modules they
will be employed in their transformed forms.

In practical simulations with finite geometries, the tracking of a particle
should be discontinued when it leaves the material system. In pengeom this
is done automatically by assuming that the complete system is contained
within a single convex module, the enclosure, which comprises the whole
system. It is also convenient (but not necessary) to require that the enclosure
has a finite volume, so that all rays starting from any point within the volume
of the enclosure do intersect one of its limiting surfaces at a finite distance.
When the whole geometry is contained inside a single module, pengeom
identifies this module as the enclosure and assumes that it is convex. When
an enclosure is not defined by the user (i.e., when the geometry consists of
several separate modules and/or bodies that are not inside a single module),
pengeom defines the enclosure as a large sphere of radius 107 length units,
centered at the origin of coordinates. It is assumed that there is a perfect
vacuum outside the enclosure, and in any inner volume that is not a body or a
filled module. If the geometry definition contains bodies that extend beyond
the enclosure, they are truncated and only the parts inside the enclosure are
retained. Hence, particles that leave the enclosure will never return to the

17

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

material system.
For programming purposes, it is useful to consider each module as the

mother of its bodies and submodules, and as the daughter of the module
that contains it. We thus have a genealogical tree with various generations of
modules and bodies. The first generation reduces to the enclosure, which is
the only motherless module. The n-th generation consists of modules and
bodies whose mothers belong to the (n− 1)-th generation. The structure of
each module is defined by its limiting surfaces (which determine the border
with the external world) and those of their descendants (which determine the
module’s internal structure).

The benefit of using modules is that, while a particle is moving within a
module, the only accessible bodies are the daughters (bodies and submodules)
of that module. This effectively limits the number of surfaces that need to be
analyzed at each move. Only when the particle crosses one of the limiting
surfaces of the current module, do we need to consider the outer geometry.
In addition, when a particle leaves a module, it remains within the volume
of either the parent module or one of its ancestors. The numerical work
needed to locate and track particles may thus be largely reduced by defining a
well-ramified genealogical tree of modules. Optimal organization is obtained
when each module has a relatively simple inner structure with a small number
of daughters. Practical experience indicates that tracking particles through
complex quadric geometries may be faster than with elaborate ray-tracing
methods, such as octree encoding [33; 34], provided that the tree of modules
is finely ramified.

4. Geometry definition file

The geometry is defined from a formatted input text file, which consists
of a series of blocks defining the different elements (surfaces, bodies and
modules). A definition block consists of a number of strictly formatted text
lines; it starts and ends with a separation line filled with zeros (see Table 2).
The first line in a block starts with one of the defining 8-character strings
“SURFACE ”, “SURFACE*”, “BODY ”, “MODULE ”, CLONE ”, “INCLUDE ”,
“INCLUDE*” or “END ”. A line with the string “END ” after a separation
line discontinues the reading of geometry data. Each element is identified by
its type (surface, body or module) and a four-character string, the user label,
which designates the elements within the definition file. In the pengeom

subroutines, geometry elements are identified with a numerical label: elements

18

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

of a given type are numbered consecutively, according to their input order.
Bodies and modules are considered as elements of the same type (i.e., assigning
the same user label to a body and to a module will cause an error of the
reading routine).

In the input file, numerical quantities must be written within the parenthe-
ses in the specified format. Lengths are in arbitrary units; angles can be given
in either degrees (DEG) or radians (RAD). When angles are in degrees, it is not
necessary to specify the unit. Numerical parameters are assigned the default
values indicated in Table 2; lines that define parameters with their default
values can be removed from the definition file. Each numerical parameter is
followed by an I4 value, which must be set equal to zero or negative to make
the parameter value effective. When this field contains a positive integer, the
parameter value can be modified through the initialization subroutine GEOMIN.
This permits the user to modify the geometry from the main program (e.g.,
translate or rotate a module).

Surfaces can be defined either in reduced or implicit form. Surface param-
eters are optional and can be entered in any order. The keyword SURFACE*

serves to define “fixed” surfaces, which will not be affected by possible trans-
lations or rotations in subsequent stages of the geometry definition. These
surfaces are useful, e.g., to define aligned modules.

Bodies can be delimited by previously defined surfaces, bodies and modules.
The material number (2nd line in the block, an integer) must agree with the
convention adopted in the simulation. Void inner volumes can be described
as material bodies with MATERIAL set equal to 0 (or a negative number). A
line is required to define each limiting surface, with its side pointer, and each
limiting body or module.

The definition of a module (see Table 2) consists of its limiting surfaces and
side pointers, and the set of inner bodies and submodules. The inner cavities
(if any) are filled with the declared material. Rotation and translation are
optional and apply to all elements of the module, except the starred surfaces.
The line filled with 1’s ends the definition of elements and starts that of
transformation parameters; it can be omitted if no transformation parameters
are entered. The CLONE operation automatically clones a module (with its
submodules and inner bodies) and changes the position and orientation of
the cloned module. This operation is helpful to define systems with repeated
structures, such as array detectors and multi-leaf collimators. Notice that the
cloned module cannot overlap any of the previously defined bodies.

The INCLUDE option allows a predefined structure (e.g., a scintillation

19

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Table 2: Formats of the geometry definition blocks and default parameter values.

00
SURFACE (A4) reduced form
INDICES=(I2,I2,I2,I2,I2)
X-SCALE=(E22.15 , I4) (DEFAULT=1.0)
Y-SCALE=(E22.15 , I4) (DEFAULT=1.0)
Z-SCALE=(E22.15 , I4) (DEFAULT=1.0)

OMEGA=(E22.15 , I4) DEG (DEFAULT=0.0)
THETA=(E22.15 , I4) DEG (DEFAULT=0.0)

PHI=(E22.15 , I4) RAD (DEFAULT=0.0)
X-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
Y-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
Z-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
00
SURFACE (A4) implicit form
INDICES=(0, 0, 0, 0, 0)

AXX=(E22.15 , I4) (DEFAULT=0.0)
AXY=(E22.15 , I4) (DEFAULT=0.0)
AXZ=(E22.15 , I4) (DEFAULT=0.0)
AYY=(E22.15 , I4) (DEFAULT=0.0)
AYZ=(E22.15 , I4) (DEFAULT=0.0)
AZZ=(E22.15 , I4) (DEFAULT=0.0)
AX=(E22.15 , I4) (DEFAULT=0.0)
AY=(E22.15 , I4) (DEFAULT=0.0)
AZ=(E22.15 , I4) (DEFAULT=0.0)
A0=(E22.15 , I4) (DEFAULT=0.0)

11
OMEGA=(E22.15 , I4) DEG (DEFAULT=0.0)
THETA=(E22.15 , I4) DEG (DEFAULT=0.0)

PHI=(E22.15 , I4) RAD (DEFAULT=0.0)
X-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
Y-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
Z-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
00
BODY (A4) Text describing the body ...
MATERIAL(A4)
SURFACE (A4), SIDE POINTER=(1)
BODY (A4)
MODULE (A4)
00
MODULE (A4) Text describing the module ...
MATERIAL(A4)
SURFACE (A4), SIDE POINTER=(1)
BODY (A4)
MODULE (A4)
11

OMEGA=(E22.15 , I4) DEG (DEFAULT=0.0)
...

Z-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
00
CLONE (A4) Copies a module and moves it
MODULE (A4) Original module
11

OMEGA=(E22.15 , I4) DEG (DEFAULT=0.0)
...

Z-SHIFT=(E22.15 , I4) (DEFAULT=0.0)
00
INCLUDE

FILE=(filename.ext)
00
END 000

20

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

detector, an encapsulated radioactive source, . . .) to be inserted within the
geometry file. The inserted structure is defined by a complete definition file
(i.e., ending with an “END ” line). The inserted structure cannot overlap
any of the existing bodies.

pengeom admits up to 10,000 surfaces and 5,000 bodies and modules. A
single surface can be used to define several bodies and/or modules. Conversely,
the same surface can be defined several times, e.g., to keep the definition
of a body or module complete and independent of those of other bodies
and modules. The unnecessary duplication of a surface does not affect the
simulation speed, because pengeom identifies “redundant” surfaces and
effectively removes them.

5. The subroutine package pengeom

The Fortran subroutine package pengeom consists of several subroutines,
which perform geometrical operations guided by a steering main program.
Most of the input/output of these subroutines is through the Fortran module
TRACK mod, which contains the coordinates of the particle, r = (X, Y, Z), the
direction cosines of the direction of movement, d̂ = (U, V, W), the label of the
current body, IBODY, and the material MAT (the code number employed in the
physics simulation program) in that body.

The subroutines to be invoked from the main program are the following;
• SUBROUTINE GEOMIN

Reads the geometry definition file and initialises the geometry package. It
labels the various kinds of elements (surfaces, bodies, and modules) in strictly
increasing order; it also allows redefining some of the geometry parameters.
During simulation, geometry elements are identified by the labels assigned
by pengeom, which may be different from the user labels in the geometry
definition file.
• SUBROUTINE LOCATE

Determines the body IBODY that contains the point with coordinates (X,Y,Z),
and the material MAT in that body. The output value MAT = 0 indicates that
the particle is in a void region.
• SUBROUTINE STEP(DS,DSEF,NCROSS)

This subroutine performs the geometrical part of the track simulation under
the guidance of the steering main program, which determines the direction
of motion (U,V,W) and the length DS of each free flight. STEP moves that
particle from its initial position (X,Y,Z) in the direction (U,V,W) and stops

21

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

it at the end of the step, or just after entering a new material (particles are
not halted at “interfaces” between bodies of the same material). The output
values DSEF and NCROSS are, respectively, the distance travelled within the
initial material and the number of interface crossings (NCROSS=0 if the particle
does not leave the initial material, greater than 0 if the particle enters a
new material or leaves the enclosure). If the particle enters a void region,
STEP continues the particle track, as a straight segment, until it penetrates
a material body or leaves the system (the path length through inner void
regions is not included in DSEF). When the particle arrives from a void region
(MAT = 0), it is stopped just after entering the first material body. At output,
(X,Y,Z) are the coordinates of the final position and IBODY and MAT are the
corresponding body and material. The output value MAT = 0 indicates that
the particle has escaped from the system.

In its normal operation mode, STEP does not stop particles at surfaces
that limit adjacent bodies of the same material, because this would slow
down the simulation unnecessarily. Therefore, these surfaces are “invisible”
from the main program. To extract information about particle fluxes within
the geometrical structure, the user can define impact detectors. Each impact
detector consists of a set of material bodies, which are assigned the same
detector label. When a transported particle enters a body from vacuum or
from another body that is not part of the detector, subroutine STEP halts
the particle at the surface of the active body and control is returned to the
main program. Thus, if two adjacent bodies of the same material pertain
to different detectors, their common limiting surface becomes visible. In
practical simulations of radiation transport, impact detectors can be used to
tally the energy spectrum and the angular distribution of “detected” particles
(i.e., particles that enter an active body) or, more specifically, to generate a
phase-space file, where the state variables of particles at the detector entrance
are recorded.

6. The Java graphical user interface PenGeomJar

The reliability of simulations with complex material systems rests heavily
on the correct specification of the geometry, which can only be verified by
direct visual inspection. Elaborate graphics tools capable of rendering quadric
geometries are freely available [e.g., POVRay (http://www.povray.org/),
OpenGL (http://www.opengl.org/), ...], although most of them implement
a logical structure based on surfaces rather than solid volumes. Because

22

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

pengeom uses bodies as basic geometry elements, and the definition sequence
and organization is tailored to optimize simulation speed, the translation of
the geometry to the format of other programs is not easy and, moreover, it
implies a risk of introducing distortions (such as overlaps of different material
bodies and incorrect material assignments).

To ensure a faithful graphical representation, and to help the user to
debug the definition files, we have developed specific software which performs
the geometry rendering by using the pengeom subroutines. Thus, the images
shown on the screen correspond to the geometry actually passed to the
simulation program. The distribution packages of the various versions of
the penelope code include a pair of executable binaries named gview2d

and gview3d that generate two- and three-dimensional 24-bit colour images
of pengeom geometries. These binaries run on personal computers under
Microsoft Windows, or on other platforms with a Windows emulator.

Aiming at a wider portability, we have written a Java program, named
PenGeomJar, which provides a graphical user interface (GUI) from where we
can edit the geometry definition files and run the two- and three-dimensional
viewers. The main window of the GUI contains a menu bar, a text panel, a
block-definition area, and rendering buttons (see Fig. 2). The right panel of
the window is the definition area, with tabs for the various definition blocks
(surface, body, module, clone, and include). The left panel is the editing area,
it displays the actual contents of the geometry definition file, where it can be
edited automatically or manually.

The GUI allows the user to generate two- and three-dimensional images of
the geometry during edition of the definition file. Rendering stops either when
an input format is incorrect (reading error) or when a clear inconsistency in
the definition file is found (e.g., when the element that is being defined and
the furnished information do not match). The GUI displays error messages
and, in addition, indicates the line of the geometry definition file where the
error has been found. Typical syntax errors can be readily corrected by
editing the geometry file. Once the structure of the input file is correct, the
program does not stop and the geometry is displayed for further analysis.

Figure 3 shows 2D and 3D images of an example quadric geometry in-
cluded in the distribution package, a mathematical anthropomorphic phantom
representing an adult, in which organs with the average shapes and dimensions
are defined by quadric surfaces [35; 36; 37; 38]. This kind of phantom is used
in Monte Carlo dosimetry studies [39] because it allows fast calculation of

23

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 2: Main window of the GUI PenGeomJar.

ray-surface intersections1

The method used to generate a two-dimensional image (2DView) consists
of following a particle that moves on a plane perpendicular to an axis of the
reference frame, which is mapped on the window. The particle starts from a
position that corresponds to the leftmost pixel of each row and moves along
a straight trajectory to the right of the window. To do this, subroutine STEP
is called repeatedly, maintaining the direction of movement and with a large
value of the step length DS (so that each body is crossed in a single step). A
colour code is assigned to each material or body, and pixels are lit up with
the active colour when they are crossed by the particle trajectory. The final
picture is a map of the bodies or materials intersected by the window plane
(Fig. 3). The orientation of the window plane, as well as the position and size
of the window view, may be changed interactively. The body labels shown on

1More elaborate computational phantoms of the human body utilize boundary repre-
sentation methods, with organs limited by smooth surfaces described either by means of
non-uniform rational B-splines or polygon mesh surfaces (see, e.g., [40]).

24

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 3: Top: 2DView transverse section of the anthropomorphic phantom, perpendicular
to the z axis at the level of the heart and breast. Bottom: 3DView of the same phantom
with the materials air, skin and soft tissue made transparent, i.e., showing only the skeleton
and the inner organs.

25

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

the screen are the ones assigned by pengeom. These labels are needed for
defining impact detectors, and for scoring purposes (e.g., to determine the
distribution of energy deposited within a particular body). A text block in
the graphics window shows the material and body at the cursor position.

The renderer 3DView generates three-dimensional pictures of the geom-
etry by using a simple ray-tracing algorithm, with the source light and the
camera at the same position. Images can be modified by using the context
menu or by entering one-character commands directly from the graphics
window. Bodies and materials are displayed with the same colour code as in
2DView and the intensity of each pixel is determined by the angle between
the vision line (which starts at the camera position and goes through the pixel
centre) and the normal to the limiting surface that is intersected first. This
method does not produce shadows and disregards light diffusion, but makes
fairly realistic three-dimensional images and is quite fast. To reveal the inner
structure of the system, the program can eliminate a wedge (limited by two
vertical planes that intersect in the z-axis); alternatively, the user can select
specific materials and make them transparent. The different surfaces and
bodies shown in the image can be identified by clicking with the mouse (their
labels are displayed in the lower left corner of the graphics window when the
information bar is active). It is worth noting that 3DView generates the
image pixel by pixel, whereas 2DView does it by drawing straight lines on
the render window; as a result, 2DView is much faster.

It should be mentioned that the use of fuzzy quadric surfaces in the current
version of pengeom improves the resolution over previous versions of the
subroutines which used static surfaces. As a protection against round-off
errors, at each surface crossing the old subroutines shifted the particle about
10−8 length units beyond the surface; this extra shift blurred all surfaces and
limited the resolution. The viewers 2DView and 3DView now correctly
render very small objects (e.g., a spherical shell with inner radius of 10−9

units and a thickness of 5× 10−11 units) as well as large structures with small
details (e.g., a spherical shell of 106 radius and 10−5 thickness), which were
not correctly resolved by older versions of pengeom.

7. Distribution package

The code system is distributed in two separate zip-compressed files. The
first of these files, pengeom.zip, has a root folder named pengeom that
contains the pdf file of the manual (pengeom-manual.pdf) and the following

26

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

subfolders:
1) source: contains the source file pengeom.f and a layout geometry file.
2) examples: examples of geometry definition files.
3) pen2pov: contains tools for translating pengeom definition files to POV-

Ray format, and for rendering realistic three-dimensional geometry images
with POV-Ray. More information on these tools is given in the manual.
4) src: This directory contains a complete set of source files to generate the
libraries used by the executable pengeom.jar for any UNIX-like platform
having the corresponding compilers and Java Development Kit installed.
Instructions for compiling the Fortran subroutines and the linking C code are
provided in the file readme.txt.

Because PenGeomJar links Java methods to the pengeom Fortran
subroutines, different executable binaries are provided for Windows (32 bits
and 64 bits) and Linux operating systems. The distribution package con-
tains a set of zip-compressed files, one for each supported operating sys-
tem, named PenGeomJar OSver.zip or PenGeomJar OSver.tar.gz. Each
of these files contains a single folder named PenGeomJar with the Java program
pengeom.jar generated for the corresponding operating system, a subfolder,
and a number of auxiliary files. The program is stand-alone (it does not need
installation) and only requires the Java Runtime Environment (JRE) to be
installed on the computer. Once the contents of the appropriate distribution
file is copied in the computer disk, the program is started either by running a
simple batch file (run.bat and run.sh in Windows and Linux, respectively),
by issuing the command “java -jar pengeom.jar”, or by double-clicking
on the pengeom.jar icon if the extension .jar is associated to Java.

Acknowledgements

We are indebted to Josep Sempau for his work in the early development of
pengeom and for many valuable suggestions that have led to improvements
of the tracking algorithm. Financial support from the Spanish Ministerio
de Economı́a y Competitividad and ERDF (project no. FPA2013-44549-P)
and from the Generalitat de Catalunya (grant 2014 SGR 846) is gratefully
acknowledged. F. S.-P. appreciates support from the Alexander von Humboldt
Foundation through a Humboldt Research Fellowship.

27

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Refrences

[1] F. Salvat, J. M. Fernández-Varea, J. Sempau, penelope-2011: A code
System for Monte Carlo Simulation of Electron and Photon Transport,
OECD/NEA Data Bank, Issy-les-Moulineaux, France, 2011, available
from http://www.nea.fr/lists/penelope.html.

[2] M. J. Berger, Monte Carlo calculation of the penetration and diffusion
of fast charged particles, in: B. Alder, S. Fernbach, M. Rotenberg (Eds.),
Methods in Computational Physics, Vol. 1, Academic Press, New York,
1963, pp. 135–215.

[3] M. J. Berger, S. M. Seltzer, An overview of ETRANMonte Cario methods,
in: T. M. Jenkins, W. R. Nelson, A. Rindi (Eds.), Monte Carlo Transport

of Electrons and Photons, Plenum, New York, 1988, Ch. 7.

[4] M. J. Berger, S. M. Seltzer, Applications of ETRAN Monte Cario codes,
in: T. M. Jenkins, W. R. Nelson, A. Rindi (Eds.), Monte Carlo Transport

of Electrons and Photons, Plenum, New York, 1988, Ch. 9.

[5] M. J. Berger, S. M. Seltzer, ETRAN — Experimental Benchmarks, in:
T. M. Jenkins, W. R. Nelson, A. Rindi (Eds.), Monte Carlo Transport of

Electrons and Photons, Plenum, New York, 1988, Ch. 8.

[6] J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer,
M. J. Berger, ITS version 3.0: the integrated TIGER series of coupled
electron/photon Monte Carlo transport codes, Tech. Rep. SAND91-1634,
Sandia National Laboratories, Albuquerque, NM (1992).

[7] W. R. Nelson, H. Hirayama, D. W. O. Rogers, The EGS4 Code System,
Tech. Rep. SLAC-265, Stanford Linear Accelerator Center, Stanford,
California (1985).

[8] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, P. Zanarini, GEANT3,
Tech. Rep. DD/EE/84–1, CERN, Geneva (1989).

[9] I. Kawrakow, D. W. O. Rogers, The EGSnrc code system: Monte Carlo
simulation of electron and photon transport, Tech. Rep. PIRS-701, Na-
tional Research Council of Canada, Ottawa (2001).

28

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[10] X-5 Monte Carlo Team, MCNP—A general Monte Carlo N-particle
transport code, version 5, Report LA-UR-03-1987, Los Alamos National
Laboratory, Los Alamos, NM, 2003.

[11] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,
M. Asai, Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506
(2003) 250–303.

[12] J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce Dubois, M. Asai,
Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006)
270–278.

[13] A. Ferrari, P. R. Sala, A. Fassò, J. Ranft, Fluka: a multi-particle transport
code, Tech. Rep. CERN200500X, INFN TC 05/11, SLACR773, CERN,
Geneva (2005).

[14] H. Hirayama, Y. Namito, A. F. Bielajew, S. J. Wilderman, W. R. Nelson,
The EGS5 Code System, Tech. Rep. SLAC-R-730 (KEK 2005-8), Stanford
Linear Accelerator Center, Menlo Park, California (2006).

[15] J. T. Goorley, M. R. James, T. E. Booth, F. B. Brown, J. S. Bull,
L. J. Cox, J. W. D. Jr., J. S. Elson, Initial MCNP6 Release Overview -
MCNP6 version 1.0, LA-UR-13-22934, Los Alamos National Laboratory,
Los Alamos, NM, 2013.

[16] T. M. Jenkins, W. R. Nelson, A. Rindi, Monte Carlo Transport of
Electrons and Photons, Plenum, New York, 1988.

[17] J. Baró, J. Sempau, J. M. Fernández-Varea, F. Salvat, PENELOPE: An
algorithm for Monte Carlo simulation of the penetration and energy loss
of electrons and positrons in matter, Nucl. Instrum. Meth. B 100 (1995)
31–46.

[18] F. Salvat, A generic algorithm for Monte Carlo simulation of proton
transport, Nucl. Instrum. Meth. B 316 (2013) 144–159.

[19] J. M. Fernández-Varea, R. Mayol, J. Baró, F. Salvat, On the theory
and simulation of multiple elastic scattering of electrons, Nucl. Instrum.
Meth. B 73 (1993) 447–473.

29

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[20] I. Kawrakow, A. F. Bielajew, On the condensed history technique for
electron transport, Nucl. Instrum. Meth. B 142 (1998) 253–280.

[21] A. F. Bielajew, F. Salvat, Improved elctron transport mechanics in the
PENELOPE Monte Carlo model, Nucl. Instrum. Meth. B 173 (2001)
332–343.

[22] H. Nikjoo, S. Uehara, I. G. Khvostunov, F. A. Cucinotta, W. E. Wilson,
D. T. Goodhead, Monte Carlo track structure for radiation biology and
space applications, Physica Medica XVII, Supplement 1 (2001) 38–43.

[23] R. Gauvin, E. Lifshin, H. Demers, P. Horny, H. Campbell, Win X-ray:
A new Monte Carlo program that computes x-ray spectra obtained with
a scanning electron microscope, Microsc. Microanal. 12 (2006) 49–64.

[24] N. W. M. Ritchie, A new Monte Carlo application for complex sample
geometries, Surf. Interface Anal. 37 (2005) 1006–1011.

[25] R. Shimizu, Z.-J. Ding, Monte Carlo modelling of electron-solid interac-
tions, Rep. Prog. Phys. 55 (1992) 487–531.

[26] M. Dapor, Monte Carlo simulation of backscattered electrons and energy
from thick targets and surface films, Phys. Rev. B 46 (1992) 618–625.

[27] W. S. M. Werner, Electron transport in solids for quantitative surface
analysis, Surf. Interface Anal. 31 (2001) 141–176.

[28] A. Jablonski, C. J. Powell, S. Tanuma, Monte Carlo strategies for simu-
lations of electron backscattering from surfaces, Surf. Interface Anal. 37
(2005) 861–874.

[29] K. O. Jensen, A. B. Walker, Monte Carlo simulation of the transport of
fast electrons and positrons in solids, Surf. Sci. 292 (1993) 83–97.

[30] J. M. Fernández-Varea, D. Liljequist, S. Csillag, R. Räty, F. Salvat,
Monte Carlo simulation of 0.1–100 keV electron and positron transport
in solids using optical data and partial wave methods, Nucl. Instrum.
Meth. B 108 (1996) 35–50.

[31] A. F. Bielajew, HOWFAR and HOWNEAR: Geometry modeling for Monte Carlo
particle transport, Tech. Rep. PIRS-0341, National Research Council of
Canada, Ottawa (1995).

30

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

[32] A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press, Princeton, NJ, 1960.

[33] D. Meagher, Geometric modeling using octree encoding, Computer
Graphics and Image Processing 19 (1982) 129–147.

[34] A. S. Glassner, Space subdivision for fast ray tracing, IEEE Computer
Graphics and Applications 4 (1984) 15–22.

[35] M. Cristy, K. F. Eckerman, Specific absorbed fractions of energy at vari-
ous ages from internal photon sources I. Methods, Tech. Rep. ORNL/TM
8381/Vi, Oak Ridge National Laboratory, Oak Ridge, TN (1987).

[36] A. V. Ulanovsky, K. F. Eckerman, Absorbed fractions for electron and
photon emissions in the developing thyroid: fetus to five years old,
Radiation Protection Dosimetry 79 (1998) 419–424.

[37] A. V. Ulanovsky, K. F. Eckerman, Modifications to the ORNL phantom
series in simulation of the responses of thyroid detectors, Radiation
Protection Dosimetry 79 (1998) 429–431.

[38] L. G. Bouchet, W. E. Bolch, D. A. Weber, H. L. Atkins, J. W. B. sr,
MIRD Pamphlet No. 15: radionuclide S values in a revised dosimetric
model of the adult head and brain, The Journal of Nuclear Medicine 40
(1999) 62S–101S.

[39] G. Dı́az-Londoño, S. Garćıa-Pareja, F. Salvat, A. M. Lallena, Monte Carlo
calculation of specific absorbed fractions: variance reduction techniques,
Phys. Med. Biol. 60 (2015) 2625–2644.

[40] Y. Na, B. Zhang, J. Zhang, P. F. Caracappa, X. G. Xu, Deformable adult
human phantoms for radiation protection dosimetry: anthropometric
data representing size distributions of adult worker populations and
software algorithms, Phys. Med. Biol. 55 (2010) 3789–3811.

31

