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Abstract

We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to
compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in
small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied
into the wien2wannier framework and allows including a many-body self energy, e.g. from dynamical mean-field theory (DMFT).
Wannier functions and dipole matrix elements are computed with the DFT package Wien2k and Wannier90. For illustration, we show
DFT results for fcc-Al and DMFT results for the correlated metal SrVO3.
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1. Introduction

The theoretical description of crystalline solids is greatly
simplified by their periodicity. The Bloch theorem for non-inter-
acting electrons allows one to replace a sum over infinitely many
discrete lattice vectors by an integral over a continuous k-vector
restricted to the Brillouin zone (BZ). A similar simplification is
possible in interacting systems where the crystal momentum k
is a conserved quantity for a variety of excitations. This makes
BZ-integration an indispensable part of any numerical technique
for periodic solids. To evaluate the integral numerically, we must
discretize the BZ in some way. The usual methods used in band-
structure calculations rely on an a priori choice of the k-mesh
which covers the BZ uniformly; e.g. using a straightforward
summation [1–3], or the more sophisticated tetrahedron method
[4]. This is a natural choice for the calculation of quantities
such as the charge density, to which all k-points contribute. On
the other hand, the transport or low-energy spectral properties
are usually dominated by certain regions of the BZ, e.g. the
vicinity of the Fermi surface. To compute such quantities, an
inhomogeneous k-mesh adapted to a particular material may be
a better choice.

In the present article, we describe a technique to recur-
sively generate an inhomogeneous k-mesh for periodic solids
in three dimensions. Our implementation, the woptic package,
is designed to calculate the optical conductivity, dc conduc-
tivity, and thermopower of interacting electrons. However, the
adaptive k-mesh management is encapsulated in a subprogram
(refine tetra) which may easily be adapted to other quanti-
ties.

∗Corresponding author
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Woptic operates in the context of dynamical mean-field the-
ory (DMFT) [5, 6] for real materials. This “DFT+DMFT” ap-
proach [7, 8] uses the band structure from density-functional
theory (DFT) in the local-density or generalized gradient approx-
imations (GGA) to construct an effective multiband Hubbard
model, which is analyzed using the DMFT technique.1 Calcula-
tion of the optical conductivity represents a post-processing step
in this scheme. In the present implementation, we use inputs gen-
erated by the Wien2k [10], wien2wannier [11], and Wannier90
[12] codes and a self energy (on the real-ω axis) from any DMFT
solver. So far, only local self energies Σ(ω) are implemented, but
the approach allows including any self energy on top of Wien2k.
In particular, extension to a non-local Σ(k, ω) (e.g. from GW
[13, 14], or from extensions of DMFT [15–17]) is simple as long
as Σ(k, ω) may be obtained at any k.

When vertex corrections are neglected (they are strongly sup-
pressed in DMFT, see Sec. 2), the optical conductivity involves
a BZ sum of contributions obtained from the k-resolved one-
particle spectral functions and dipole matrix elements between
the corresponding wave functions. We start by evaluating the
optical conductivity on a uniform tetrahedral k-mesh. Next, we
offer a refinement, test the sensitivity of the studied quantity and
decide, for each tetrahedron, whether the refinement should be
accepted. Accepting a refinement leads to the recursive genera-
tion of additional k-points in a way that ensures the numerical
stability of the algorithm.

While the band structure part of the calculation uses aug-
mented plane waves, the Hubbard model is naturally formu-
lated in terms of localized orbitals. The transformation between

1The calculations reported in this article use the GGA in the form of the PBE
functional [9].
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Figure 1: Schematic work flow of the woptic algorithm with an adaptive tetra-
hedral mesh for the Brillouin zone integration. The algorithm is implemented
in two main programs woptic main (evaluates the optical conductivity for a
given k-mesh) and refine tetra (adaptively refines the k-mesh) which are
called by the driver script woptic, together with several support programs. Wan-
nier90 provides the real space hopping matrix H(R), whereas the dipole matrix
elements are computed either by the Wien2k programs lapw1 and optic, or
by the woptic program convert vr. See woptic user’s guide for more detailed
work flow diagrams.

the two bases is accomplished by the Wannier construction
[11, 18, 19].

An overview of the work flow of the adaptive refinement
program called woptic can be found in Fig. 1. The work flow
can be summarized as

0. Choose an initial k-mesh and set iteration ` = 0 (see
Sec. 3.1 for the formal definition of the mesh).

1. Compute the dipole matrix elements v(`)(k) of Eq. (2) (see
Sec. 4 for details).

2. Compute the optical conductivity σ(`) for a given k-mesh
(see Sec. 2 for the formula used to obtain σ(`)). Extract the
information which regions of k-space have a large contri-
bution to the integration error (see Sec. 3.2 for details on
the numerical quadrature and how the error is estimated).

3. Stop if the change of the optical conductivity with respect
to the previous iteration σ(`−1) is below a given tolerance,2

otherwise refine the k-mesh where necessary, thus obtain-
ing a new k-mesh, and return to step 1 with ` ← `+ 1 (see
Sec. 3.1 for information on the refinement process).

A more detailed version of the work flow, with a description of
available modes, can be found in Sec. 4.2.

This paper is structured as follows: First, in Sec. 2, we give
a description of the specific numerical problem to compute the
optical conductivity. In Sec. 3, we specify the tetrahedral mesh
and the refinement strategy. Furthermore, we survey the esti-
mation of the integration error necessary to mark tetrahedra for
refinement in Sec. 3.2 and depict methods to increase the numer-
ical performance in Sec. 3.3. In Sec. 4, we focus on practical

2In the current version of the code, convergence has to be checked manually.

considerations such as the available modes in the program and
more details of the work flow and show numerical tests. Finally,
in Sec. 5 we present two applications, elementary aluminum and
the vanadate SrVO3.

2. Problem statement

The Kohn-Sham Hamiltonian H of DFT is diagonal in the
Bloch-wave basis. Hence, the corresponding optical conductivity
σ can be written in terms of the dipole matrix elements and δ-
functions [20], setting ~ = 1,

σαβ(Ω) = −
e2

(2π)2

∫
BZ

dk
∑
c,v

δ(εc(k) − εv(k) −Ω)
Ω

· vαv,c(k)vβv,c(k). (1)

Here, Ω is the external frequency, e is the electronic charge, the
sum is over conduction (c) and valence (v) electrons with energy
εc/v k, while

vαnm(k) = −
i

me
〈ψnk|∂α|ψmk〉 (2)

are the dipole matrix elements with the Bloch states ψnk, and
me denotes the electron mass. In general, the resulting value for
σ depends on the number of k-points used in the integration as
well as the applied quadrature rule. However, the evaluation of
the integrand in Eq. (1) is numerically cheap and one usually
proceeds to uniformly refine a given k-mesh until convergence.

In the following we assume that we have constructed a map-
ping U(k) from N Bloch states computed by Wien2k [21] to N
maximally localized Wannier functions (WFs) with Wannier90
[12]; thus we have the Hamiltonian in Wannier space

H(k) = U+(k)E(k)U(k) with Enm(k) = δnmεnk. (3)

This means that the electronic structure is not described in
terms of bands εnk, 1 ≤ n ≤ N, but by a Hamiltonian ma-
trix H(k) ∈ CN×N . This is appropriate, for example, when a
set of WFs is required as an input for many-body calculations
such as DFT+DMFT. Also in light of possible DFT+DMFT
applications of the algorithm, we will not consider the effects of
vertex corrections. In fact, while they can significantly affect the
DMFT results for other response functions like the spin/charge
susceptibilities [22, 23], their contribution to the DMFT optical
conductivity is strongly suppressed (and vanishes exactly in the
single-band case) due to the k-structure of the electronic current
operator [24, 25]. On the basis of these considerations, the fol-
lowing general expression for the optical conductivity [25, 26]
can be written

σαβ(Ω) = −
e2

(2π)2

∫
BZ

dk
∫ +∞

−∞

dω
f (ω + Ω) − f (ω)

Ω
·

Tr
[
vwα(k)A(k, ω + Ω)vwβ(k)A(k, ω)

]
. (4)

Here, f is the Fermi function at a given temperature,

vwα
rs (k) = U+

rn(k) vαnm(k) Ums(k) = −
i

me
〈wrk|∂α|wsk〉 (5)
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the dipole matrix rotated to the basis of k-space WFs wrk(r), and
A the matrix spectral function

Amn(k, ω) =
i

2π

[
Gret

mn(k, ω) −Gret,∗
nm (k, ω)

]
(6)

defined via the Green’s function

G(k, ω) =
[
ω − H(k) − Σ(k, ω)

]−1 (7)

and the corresponding electronic self energy Σ(k, ω), all of which
are also taken to be in the Wannier basis. Whereas in DFT,
Eq. (1) scales linearly with the number of included bands, the
general version, i.e., Eq. (4), scales quadratically with the num-
ber of orbitals. Thus, for a basis set in which H(k) is not diagonal,
such as WFs, it is useful to reduce the number of k-space evalu-
ations, while keeping the level of accuracy as close to the DFT
formalism as possible.

In the specific case of DFT+DMFT calculations, the (k, ω)-
resolution required to resolve all features of the integrand of
Eq. (4) depends in particular on the imaginary part of the self
energy Σ(k, ω) = Σ(ω) contained in the DMFT Green’s function
G(k, ω). For small =Σ(ω), a fine (k, ω)-mesh is needed, since

Tr
[
vw(k) A(k, ω + Ω) vw(k) A(k, ω)

]
(8)

becomes sharply peaked. In many systems, the values of =Σ(ω)
vary significantly between the different orbital manifolds, in par-
ticular when considering transitions between localized orbitals
(which have been treated, e.g., with DMFT) and itinerant orbitals
(whose description usually remains at the DFT or at the Hartree
approximation level). Hence, a useful approach is to adapt the
k-mesh to the problem under consideration and use a finer reso-
lution only where it provides a substantial increase of accuracy.
Though the present implementation assumes local self energies
Σ(ω), generalization to a k-dependent Σ(k, ω) is straightforward
as long as Σ(k, ω) can be obtained for any k-point in reciprocal
space.

3. Algorithmic details

3.1. Tetrahedral mesh
The non-uniform triangulation of a three-dimensional do-

main represents a formidable numerical task. The concepts sur-
veyed in this section are not new but combine various well-
known methods, and below, we will concentrate on the defini-
tions necessary for the rest of this paper. For a more formal
and complete introduction to tetrahedral triangulation see for
example Ref. [27].

We denote the set of k-points of a certain tetrahedral triangu-
lation by K and the corresponding set of tetrahedra by T . Then,
Nk = |K| is the total number of k-points, and K contains as
elements or nodes the 3D coordinates

nm =
[
kx ky kz

]
, 1 ≤ m ≤ Nk. (9)

Furthermore, T stores a list of vertices

Tm = [v1 v2 v3 v4] , 1 ≤ m ≤ NT (10)

(a) (b)

1 1

A
23

BB

Figure 2: An example of a 2D triangulation with a hanging node (a) shown in red
and marked 1 (in this example we only discuss the nodes interior to the picture).
Upon refinement of element A shown in (a), one arrives at the triangulation (b)
with two additional hanging nodes 2, 3. This triangulation violates the regularity
condition, since there are two hanging nodes 1, 2 on the same edge. To make
(b) regular we must also refine element B; this is the mesh closure for this
triangulation.

where v1, . . . , v4 ∈ K and NT = |T | is the total number of tetra-
hedra (in practice, we store more information for each tetrahe-
dron than just the vertices, see Sec. 3.2). Thus, the four vertices
v1, . . . , v4 are nodes that define a tetrahedron Tm ∈ T and are
themselves elements of K . We will use the term vertex only
in connection to a specific tetrahedron, while a node is a gen-
eral element of the set of k-points. A special type of node is a
so-called

hanging node: nh ∈ K is a hanging node if it lies on an edge
of an element T ∈ T without being a vertex of T .

In the 2D visualization Fig. 2(a), node 1 is not a vertex of
the central triangle B and hence a hanging node. Of course, a
hanging node is a vertex of other triangles (here, A).

We require T to fulfill the following two conditions:

regularity: No element T ∈ T has an edge with more than
one hanging node (see Fig. 2; otherwise, perform mesh
closure, see below).

shape stability: For all tetrahedra T ∈ T , there is a prede-
fined constant cS such that the radius of the circumscribed
sphere rT satisfies r3

T /|T | ≤ cS where |T | is the volume of
T .

A large amount of the algorithmic effort in woptic is focused
on keeping T shape stable and regular on refinement. If the ratio
r3

T /|T | becomes large this indicates a highly distorted tetrahedron
(also called a degenerate element) and the numerical error of the
integration rules may become large. A highly non-regular mesh,
on the other hand, means that nearby regions of k-space are
resolved very differently, see e.g. Fig. 2(b). This often leads to
unstable convergence rates since some features of the integrand
may not be fully resolved.

In contrast to the 2D case of triangles, the refinement of a
tetrahedron into 8 sub-tetrahedra of equal size is not unique and,
in general, the resulting elements cannot all be similar to the
original tetrahedron. In the following, we will depict Ong’s idea
[28] for a refinement strategy where the shape of the element
is at least confined to two classes, and shape stability is thus
guaranteed. This strategy is based on the triangulation of the

3



parallelepiped defined by the three reciprocal unit vectors of
the BZ into six tetrahedra of equal volume [Kuhn triangulation,
Fig. 3(a)]. The resulting tetrahedra fall into two classes, in the
following denoted by class 1 and 2. Specifically, it can be proven
[28, 29] that for the refinements shown in Fig. 3, the resulting
8 new elements of a tetrahedron will again belong to one of the
two classes. Of the 8 new elements, 4 will share a vertex with the
original tetrahedron and the other 4 will form a central octahe-
dron. The difference between the two refinement methods shown
in Fig. 3 is how the central octahedron is split into tetrahedra.
Since the triangulation of the central octahedron is not unique
there are other strategies to ensure shape stability, e.g. based on
the numbering of the vertices [27]. In practice, ensuring shape
stability of the mesh T amounts to book-keeping of the classes
of the tetrahedra upon refinement.

In order to satisfy the regularity of the mesh T upon refine-
ment, we add an additional step after the standard refinement of
elements: mesh closure [30]. This procedure refines the elements
with edges where regularity is violated (see Fig. 2(b) for a 2D
example of a case where mesh closure is required). This leads
to neighboring tetrahedra that will only differ by one level of
refinement, since any tetrahedron which is refined twice while
all of its neighbors remain in the initial state will automatically
produce two hanging nodes on an edge. In this case the second
refinement would trigger a refinement of the neighboring tetrahe-
dra as well. Thus, when moving through k-space, the refinement
level changes “smoothly”, i.e., regions with very fine resolution
will not adjoin regions with very coarse resolution. These ad-
ditional refinements lead to a higher number of total tetrahedra
with respect to runs without mesh closure. Experience shows
however that the price paid in performance is acceptable, since
mesh closure helps avoid unstable runs of the algorithm.

Summarizing, we obtain the following refinement strategy,
assuming we have a regular mesh T (`) from the `-th iteration of
woptic (see Fig. 1) and a list of tetrahedra marked for refinement
(see next section).

1. Refine all marked elements of T (`) according to Fig. 3(c)
and (e) for class 1 tetrahedra, and according to Fig. 3(b)
and (d) for class 2 tetrahedra to obtain a refined mesh T (`)

ref .

2. Scan T (`)
ref for hanging nodes.

3. Mark all elements of T (`)
ref for refinement whose edges

violate the regularity condition, i.e., have multiple hanging
nodes.

4. If there are marked elements return to 1 with T (`)
ref → T

(`),
otherwise continue with T (`+1) = T

(`)
ref .

This procedure gives a tree-like nested algorithm of refinement
steps, which allows us to store the hanging nodes of T (`)

ref and
pass them on to the next iteration of woptic. In woptic, the refine-
ment strategy described above is implemented by the program
refine tetra (see Fig. 1).

3.2. Integration error estimation and refinement
Having outlined the salient points of mesh management,

let us now discuss how elements of a mesh T are chosen for
refinement in the first place. Since we aim at minimizing the

Class 1
Class 2

(a)

(b) (c)

(d) (e)

Figure 3: (a) Kuhn’s refinement of a parallelepiped into eight tetrahedra as used
by the woptic program. Class 1 tetrahedra are marked by beige vertices while
class 2 tetrahedra are marked in blue. Note that every element of class 1 is
mapped onto an element of class 2 and vice versa if mirrored along the main
diagonal plane of the cube. The tetrahedra are first refined in 4 tetrahedra similar
to the original one (having therefore the same class) and in a central octahedron
denoted with black vertices, see panel (b) and (c). Depending on the class, the
central octahedron is further split into 4 tetrahedra where 2 elements fall into
the same class as the original tetrahedron and 2 in the respective other class, see
panel (d) and (e).

numerical integration error, we have to estimate the error εT

which an element T ∈ T contributes to the overall error

εtot =

∣∣∣∣∣∣∣∣
∫
BZ

dk g(k) −
∑
T∈T

gT

∣∣∣∣∣∣∣∣ , (11)

where g(k) denotes the integrand of the optical conductivity

σαβ(Ω) =

∫
BZ

dk
(
−

e2

(2π)2

) ∫ +∞

−∞

dω
f (ω + Ω) − f (ω)

Ω
·

Tr
[
vw(k)A(k, ω + Ω)vw(k)A(k, ω)

]
=:

∫
BZ

dk g(k) (12)

and gT denotes an adequate tetrahedral quadrature rule (in g(k)
we omitted the dependence on the external frequency Ω for
the moment, see below). For the integration over the internal
frequency ω, we use a straightforward summation, exploiting
only the weight factor f (ω + Ω) − f (ω) to limit the range of
integration. For the k-integration we use two different rules:
First, a linear 4-point rule

g4p
T =

1
4

4∑
i=1

g(vi) (13)
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with v1, . . . , v4 being the vertices of T . Second, rule (13) can
also be applied to the refined elements as

g4pr
T =

1
32

8∑
j=1

4∑
i=1

g(v ji), (14)

where v ji is the i-th vertex of the tetrahedron T j ( j = 1, . . . , 8)
obtained from a refinement of T as introduced in the previous
section. In the implementation, we evaluate the function g(k)
on the 10 points required to apply both rules Eq. (13) and (14).
The 4 vertices of T required for the rule 4p are also included in
T1, . . . ,T8. The latter additionally have 6 midpoints on the edges
of T . Thus, Tm ∈ T is represented by the 10 nodes plus the class
of the tetrahedron (which is required for the refinement strategy,
see previous section),

Tm = [v1 v2 v3 v4; n12 n13 n23 n14 n23 n34; 1 or 2] , (15)

where ni j is the midpoint between the vertices vi and v j. Note
that the nested nature of our quadrature rules allows us to re-use
values of g(k) in following iterations of the algorithm.

To estimate the contribution which T adds to the total er-
ror εtot, we compare the results of Eqs. (13) and (14), which
means that the same rule is compared for two different levels of
refinement [31]. Thus, our error estimator is

εT =

∣∣∣∣∣∣∣∣
∫
T

dk g(k) − g4pr
T

∣∣∣∣∣∣∣∣ ∼
∣∣∣∣g4p

T − g4pr
T

∣∣∣∣ . (16)

Since the rule (14) is obtained by applying the rule (13) to the
sub-elements T1, . . . ,T8 which would be new elements if T was
refined, the error estimate εT provides a measure of how much a
refinement of T would improve the numerical integration.

The dependence of the optical conductivity σαβ(Ω) on the
external frequency Ω and the directional dependence (αβ) have
been neglected so far. To take these dependencies into account,
all error estimates of an element are averaged,

ε̄T =
1
6

1
NΩ

∑
Ωαβ

ε
αβ
T (Ω), αβ ∈ {xx, xy, xz, yy, yz, zz}. (17)

To mark certain elements for refinement, we apply a standard
procedure for adaptive mesh algorithms [30]: an element T is
marked if

ε̄T ≥ Θ max
T ′∈T

ε̄T ′ , (18)

where Θ ∈ [0, 1] is a parameter determining the harshness of
the refinement. A value of Θ = 0 means that all elements sat-
isfy (18), i.e. uniform refinement, whereas large values of Θ

lead to highly adaptive meshes. In woptic, the error estimation is
partly performed by woptic main and partly by refine tetra

(see Fig. 1). The former computes the integrand, the latter calcu-
lates the error estimators ε̄T and marks the elements for refine-
ment according to Eq. (18).

In metallic cases, the optical conductivity σ(Ω) for Ω→ 0
has a Drude contribution corresponding to a Lorentzian at Ω = 0

which is broadened by =Σ(0). Thus, if =Σ(0) is small, the error
estimator (17) is often dominated by the values around the Fermi
level Ω = 0 and the algorithm mainly resolves the Fermi surface.
This behavior may be adequate when one is interested in the dc-
conductivity or the thermopower, but for the optical inter-orbital
transitions at higher energies one might favor a better description
in that region. In this case, another error estimator instead of
Eq. (17) is more appropriate:

ε̄′T =
1

6NΩ

∑
Ωαβ

Ω ε
αβ
T (Ω) αβ ∈ {xx, xy, xz, yy, yz, zz}, (19)

where the additional factor Ω attributes a larger weight to the
error at higher frequencies.

3.3. Performance and symmetry considerations

Given that one evaluation of the function g(k) from Eq. (12)
is numerically expensive, the number of total evaluations should
be kept as small as possible. For this reason, we use two tech-
niques: (i) re-using the data from previous iterations and (ii)
taking into account the symmetries of the crystal. The first point
is the main reason for choosing the two nested quadrature rules
Eqs. (13) and (14), since, as mentioned above, a refinement of an
element T ∈ T yields at most 6 new nodes. Moreover, neighbor-
ing elements with similar refinement level share nodes with T .
Thus, though our integration rules are of low order, they repre-
sent an efficient choice in terms of the number of total evaluation
points.

To understand (ii), i.e. how to increase the performance by
symmetry, let us define matrices S ⊂ R3×3 describing the sym-
metry operations of the crystal in a Cartesian coordinate system.
Furthermore, Ks ⊆ K denotes the symmetrized k-mesh, i.e. the
reduced mesh when the symmetry operations of S are exploited,
with the corresponding mapping ms : n 7→ ns such that n ∈ K
and ns ∈ Ks. If one replaces each vertex v of each element
of T by its reduced vertex ms(v), one formally obtains a new
tetrahedral mesh Ts. Note that Ts might include elements that
do not correspond to real tetrahedra but have e.g. equal nodes
when multiple vertices of an element of T have been mapped
onto the same k-point in the reduced set Ks. After the mapping
T → Ts there are in general multiple occurrences of an element
Ts. For simplicity, Ts in the following denotes the reduced sym-
metrized mesh, i.e. all elements Ts ∈ Ts are only considered
once and carry a weight wTs , which accounts for the volume and
multiplicity of Ts.

The numerical quadrature to yield the optical conductivity
according to Eq. (11) is given by

σ =
∑
T∈T

gT . (20)

It is important to stress here that one cannot simply replace
n ∈ K within the rule gT by ms(n) ∈ Ks, since σ and gT are
tensors. Hence, rotated quantities have to be used:

σ =
1
|S|

∑
Ws∈S

∑
Ts∈Ts

wTs W
+
s gTs Ws. (21)
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Figure 4: Possible optical transitions and corresponding Hamiltonians according
to Eq. (26) for various manifolds in a low energy model for SrVO3. In the
schematic visualization of the spectrum, the t2g manifold where the Wannier
projection is performed is marked HW (k) and other parts of the spectrum Ea/b(k).

In this approach it is sufficient to compute g(ns) for ns ∈ Ks and
this, depending on the symmetry of the problem, may yield a
considerable speed-up.

4. Practical usage

After the general description of the algorithm in the previous
section, let us now turn to the connections of woptic to the
program packages Wien2k and Wannier90, the available modes
of operation and a more detailed work flow. As a prerequisite
to start a woptic calculation, two other packages are needed:
Wien2k [21] (including wien2wannier [11]) and Wannier90 [12].
This set of programs allows constructing maximally localized
WFs from Wien2k (see Refs. [11, 32] for a detailed description).

To employ the adaptive integration described in the previ-
ous section, we have to be able to generate the dipole matrix
vw(k) and the Hamiltonian H(k) at arbitrary, a priori unknown,
k-points. Two approaches are implemented in woptic: (1) matrix
elements between WFs can be obtained by Fourier transforma-
tion from direct space — this is called called interp mode in
the program; or (2) these matrix elements can be recomputed by
Wien2k every iteration — optic mode.

Two issues are central in the following:

Gauge invariance of the optical conductivity (4) and other ob-
servables, i.e. the independence of the random gauge of
the Bloch states. While the trace in Eq. (4) is gauge in-
variant, its building blocks vw(k) and A(k, ω) are not. It
is therefore essential that they be expressed in the same
gauge.

Mixed transitions, dipole transitions between Wannier states
on the one hand, and Bloch states that are not included in
the initial Wannier projection on the other.

Gauge invariance is easily ensured if approach 1 (interp
mode) is available. The Wannier construction consists in finding
a k-smooth gauge on the initial k-mesh Kw. This amounts to
finding a set of unitary matrices U(k) which represent the trans-

formation from the initial, “random” gauge3 to the new gauge
[19]. One then expresses the Kohn-Sham Hamiltonian and the
dipole matrix elements in the new gauge using Eqs. (3) and (5),
to repeat:

H(k) = U+(k) E(k) U(k) with Enm(k) = δnmεnk,

vw(k) = U+(k) v(k) U(k).

The smoothness of the the Wannier gauge guarantees that the
corresponding basis functions (i.e. the WFs) are exponentially
localized, and hence that the Fourier transforms of the Hamilto-
nian

Hrs(R) =
1

Nk

∑
k∈Kw

H(k) e−ik·R = 〈wr0|Ĥ|wsR〉 (22)

and dipole matrix elements

vw
rs(R) =

1
Nk

∑
k∈Kw

vw(k) e−ik·R = −
i

me
〈wr0|∂α|wsR〉 (23)

converge rapidly with the mesh spacing of Kw. (Here and below,
wrR(r) is a direct-space WF.)

Thus we obtain direct space hopping and dipole parameters
for all the significant neighbor shells (exponentially small contri-
butions of the tails of the WFs are neglected). Having the direct
space representation allows us to compute the matrix elements
at an arbitrary k-point q outside Kw via

H(q) =
∑

R∈Rw

H(R) eiq·R, (24)

vw(q) =
∑

R∈Rw

vw(R) eiq·R. (25)

To emphasize, the R-sums run over Rw, the set of lattice vectors
dual toKw, but the localization of the WFs allows us to apply the
reverse Fourier transform for q < Kw with excellent accuracy.
This procedure is known as Wannier interpolation [33, 34].

Mixed transitions arise when we want to extend the optical
conductivity, which we have written in Eq. (4) in terms of a
trace over the WFs (inner or Wannier window), to include states
not covered by the Wannier projection (outer or Bloch window).
The motivation for the outer window is normally to compute the
optical conductivity over a larger frequency range (see Fig. 4 for
a visualization of the model and the possible transitions).

For a DFT+DMFT calculation, the self energy Σ(ω), describ-
ing correlation effects beyond GGA, has to be provided on the
real axis. In the following, this situation is referred to as inter-
acting. Woptic also provides the option to set the self energy to
a small imaginary constant Σ(ω) ≡ −iδ to mimic broadening,
e.g. from impurity scattering.4 We will refer to bands treated

3More precisely, the gauge determined by diagonalization of H(k) in the
electronic structure code.

4This means that in the non-interacting case, the lifetime broadening (result-
ing also in a finite width of the Drude peak) is added “by hand”, while in the
interacting case, it arises naturally from DMFT.
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in this way as non-interacting. By supposition, the Bloch states
in the outer window are adequately described in DFT and thus
non-interacting in this sense.

When an outer window is included, we split the Hamiltonian,
Wannier transformation, and dipole matrices into Wannier, Bloch,
and mixed parts. Likewise, the trace in the optical conductivity
(4) splits into Wannier–Wannier, Wannier–Bloch, and Bloch–
Bloch terms. Denoting the diagonal energy matrix connected to
the states above (below) the WFs in energy by Ea (b)(k), we can
write the “large” Hamiltonian, which is block-diagonal,

H(k) =

Eb(k)
H(k)

Ea(k)

 . (26)

Analogously, the large Wannier transformation matrix is

U(k) =

1 U(k)
1

 . (27)

It affects only the inner window and leaves the outer window un-
changed. Additionally, we have the large dipole matrixVα

mn(k) =

− i
me
〈ψmk|∂α|ψnk〉 with the indices n,m running now over all

bands in the outer window instead of only the inner window.
Inserting H(k) into Eqs. (7) and (6) yields the block-diagonal
matrix spectral functionA(k, ω) of the large system. Together
with the large dipole matrix in the Wannier basis

Vw(k) = U+(k)V(k)U(k)

=


(vαi j) (vu

r j) (vαk j)
(vu

is) (vw
rs) (vu

ks)
(vαil) (vu

rl) (vαkl)

 , (28)

this spectral function can be used in Eq. (4) to give a more
complete description of optical transitions in the system.

Approach 1 (interp) is straightforward for the Wannier–
Wannier transitions, but not directly applicable to the mixed
dipole matrix elements

vu
ri(k) =

∑
n

U+
rn(k) vαni(k) = −

i
me
〈wrk|∂α|ψik〉 (29)

because their Fourier transform vu
ri(R) does not decay with |R|.

To salvage Wannier interpolation in the presence of an outer
window, we define the quantity

wαβ
rs (k, ω) =

∑
i

vuα
ri Aa,b

ii (k, ω)vuβ
is (30)

where the index i runs over all non-Wannier states (which are
non-interacting, hence their matrix spectral function Aa,b is di-
agonal). Its Fourier transform wαβ(R, ω) decays with |R|, albeit
more slowly than vw(R) [35].

With these two interpolated quantities, and using the Wien2k
programs lapw1 and optic [20] to compute the Bloch energies
Ea,b(q) and Bloch–Bloch dipole matrix elements vαi j(q), we can

evaluate the trace (8) at any new k-point. On the other hand,
the interpolation errors from wαβ(q, ω) may get large, see next
section and Ref. [35] for tests. (Interpolation errors from vw(q)
are insignificant so long as properly localized WFs are found.)

As an alternative in the mixed case, we turn to approach 2
(optic mode): computingV(q) and Ea,b(q) at new k-points us-
ing lapw1 and optic. (The Hamiltonian H(q) is still computed
using Eq. (24).) Because the (inner-window) spectral function
A(q, ω) is computed in the Wannier basis, but optic yields the
dipole matrix elements in the Bloch basis, we need the Wannier
transformation U(q) on the new k-points to mediate between
them. Since the Bloch basis is the one in which the Hamiltonian
is diagonal, we can obtain U(q) by diagonalizing H(k) (inverting
Eq. (3)).

The problem with approach 2 (optic) lies in the arbitrari-
ness of the Bloch gauge. Since the U(q) obtained via Wannier
interpolation are computed by diagonalization, they are deter-
mined only up to the phases of the respective eigenvectors. In
the non-interacting case, where the matrix spectral functions are
diagonal, these phases evidently cancel in the trace (8); in fact,
this reasoning can be extended to the interacting case as long as
the Wannier self energy is a scalar (diagonal in and independent
of the orbital index), e.g., because of crystal symmetry.

From a different point of view, the Bloch states ψnk, obtained
as solutions of independent eigenproblems at each k-point, carry
“random” phases. The original U(k) from Wannier90 take these
phases into account in constructing smooth functions wrk(r) =∑

n Unr(k)ψnk(r) of k. These phases are included both in U(k)
and vα(k) and hence cancel when calculating the dipole matrix
elements in Wannier space using Eq. (28).

However, if the adaptive k-mesh algorithm now selects a new
point q, the phase of ψnq is included in the recalculated vα(q) but
not in U(q) obtained as explained above. Hence, the “random”
phase may enter into the trace (8) both through the Wannier–
Wannier and the mixed transitions (for the Bloch–Bloch transi-
tions it cancels). The resulting random-gauge problem leads to
errors in the results whose magnitude is a priori unknown.

So far we have assumed that the transformation between
the Bloch and Wannier states at each k-point is accomplished
by a unitary matrix U(k). This excludes the disentanglement
procedure [36] implemented in Wannier90, where additionally
a rectangular matrix V(k) intervenes. In fact, woptic supports
disentanglement only in interp mode without an outer win-
dow (Wannier–Wannier transitions only). It is not clear how the
method may be extended to the general disentangled case [35].

4.1. Benchmarks of interpolation and random-gauge errors

In Fig. 5, we compare the optical conductivity of SrVO3
from the optic and interp modes, including a self energy
from DMFT on the V-t2g states (see Sec. 5.2 for details on
the DMFT calculation). Since in this material the self energy
is orbital independent by symmetry, there is no random-gauge
problem, and this case can be regarded as a test for the Wannier
interpolation of vw and wαβ.

In order to quantify the random-gauge errors, we require a
test case which is complementary to the one of Fig. 5, i.e., where
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Figure 5: Optical conductivity of SrVO3 computed in the optic (red curve)
and interp (blue curve) modes. For this model, whose self energy is orbital-
independent due to the cubic symmetry, optic mode can be considered exact.
Thus the difference between the curves reflects the interpolation errors afflicting
the mixed (Wannier–Bloch) transitions in interp mode. Note that the outer
window of included bands is smaller here than in Fig. 9, which is why the optical
conductivity starts to drop off above ω ≈ 7 eV. Here, the Wannier projection
comprises the 3 V-t2g bands and 14 bands are included in the outer window,
corresponding to O-p and V-d states.

interpolation is reliable, but the gauge problem is in effect. To
this end, we construct a Wannier projection covering exactly
those bands of SrVO3 included in Fig. 5, and apply the V-t2g

self-energy from Fig. 5 to the t2g-derived orbitals of this larger
projection.5 Since all included transitions are now between WFs,
we need to interpolate only vw, and can rely on interp mode
as a reference; but since we apply a non-trivial self energy only
to the t2g orbitals, Σi(ω) is now strongly orbital-dependent and
optic mode suffers from the gauge problem. The results are
shown in Fig. 6.

Comparing Figs. 5 and 6, we find that the errors from wαβ

interpolation and from the random-gauge problem are similar in
magnitude. In both cases, the qualitative features are preserved.
The quantitative differences must be viewed in relation to other
sources of uncertainty in these calculations. Most importantly,
in DMFT the self energy on the real-ω axis is typically obtained
through analytic continuation from the imaginary-ω axis. This
leads to uncertainties which can easily be comparable to the
errors observed in Figs. 5 and 6. It also bears mentioning that the
orbital symmetry which protects optic mode from the random-
gauge problem is broken especially sharply in the 14-band model
used above (nontrivial Σ(ω) on the t2g orbitals, Σi = −iδ on the
others).

Fig. 6 contains a third curve, which corresponds to interp

mode on a model constructed with disentanglement. At the R
point of the BZ, the V-eg bands are entangled with Sr-s bands,
as seen in the band structure of Fig. 4. These unwanted bands
can be removed using disentanglement [36]. The corresponding
curve in Fig. 6 is practically identical to the one without disen-
tanglement, except for the region around 7 eV, where transitions
involving the entangled states are relevant.

5This is unphysical but yields a convenient test case.
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Figure 6: Optical conductivity of a model derived from SrVO3 by imposing the
self energy from the 3-band model on the t2g-like orbitals in a 14-band Wannier
projection, which includes the same bands as in Fig. 5: O-p, V-t2g, and V-eg. For
this model without mixed transitions, interp mode can be considered exact, thus
the difference reflects the random-gauge errors in optic mode. The dashed blue
curve is from interp mode using a Wannier projection with disentanglement of
the Sr-s bands crossing the V-eg bands at the R point of the Brillouin zone [35].
Since this corresponds to a somewhat different model, complete agreement with
the solid blue curve cannot be expected.

For details on the issues discussed in the preceding para-
graphs (to wit: the random-gauge problem in optic mode, in-
terpolation of vw and wαβ, and disentanglement in relation to
woptic), we refer to Ref. [35].

4.2. Program details
To summarize, woptic offers two main choices for the ma-

trix element mode (corresponding to the program parameter
matelmode). This choice determines the method to compute
the dipole matrix elements v(k). The modes and corresponding
keywords in the woptic input file are:

Wannier interpolated dipole matrix elements (interp):
Apply Wannier interpolation (25) to the dipole matrix
elements vwα

rs (k) in the Wannier gauge (5), as well as to
the Hamiltonian (3). In the presence of an outer window,
the mixed transitions are calculated from the quantity
wrs(k, ω) (30), which is likewise interpolated [35].

Ab initio dipole matrix elements (optic): Obtain the dipole
matrix elements vαi j(q) in the Bloch gauge (2) from the
Wien2k programs lapw1 and optic; the Hamiltonian
H(q) from Wannier interpolation; and the transformation
U(q) to the Wannier gauge by diagonalization of H(q).

Interp mode is reliable for the Wannier–Wannier and Bloch–
Bloch transitions, but the Wannier–Bloch terms acquire interpo-
lation errors. Optic mode is reliable whenever the self-energy in
the Wannier gauge is diagonal and orbital independent (by sym-
metry, or in the non-interacting case), but the Wannier–Wannier
and Wannier–Bloch terms acquire errors due to the random-
gauge problem when it is not. In our tests, the errors from these
two issues are comparable.

We conclude this section with a summary of the detailed
work flow of woptic.

8



0. A preliminary run of refine tetra prepares the initial k-
meshK (0) and the initial set of tetrahedra T (0). In interp
mode, obtain vw(R) and wαβ(R, ω) (if mixed transitions
are requested) from Eqs. (5) & (30). Set ` = 0.

1. Determine which k-points of K (`) were not in K (`−1), i.e.,
find K (`) \ K (`−1).

2. Obtain the Hamiltonian H(k) for all k-points in K (`) \

K (`−1) via Eq. (24).
3. Obtain the dipole matrix vmn(k) for all k-points in K (`) \

K (`−1), from the Wien2k programs lapw1 and optic in
optic mode, or from Eq. (25) in interp mode.

4. Call woptic main

(a) Rotate v(k) to the Wannier basis (Eq. (5)).
(b) Load the self energy Σ(ω) and determine the Green’s

function G(k, ω) according to Eq. (7) for all k-points
in K (`) \ K (`−1).

(c) Evaluate the contributions to the optical conductivity
g(k) from Eq. (12) for all k-points in K (`) \ K (`−1)

and load the old data g(k) for K (`−1).
(d) Perform tetrahedral integration for T (`) using Eq.

(21) and obtain the optical conductivity σ(`)(ω)
5. Call refine tetra

(a) Determine the error estimators ε̄T for T ∈ T (`) via
Eqs. (13 & 14) and (16 & 17), respectively.

(b) Mark the elements of T (`) for refinement if they
satisfy the criterion (18), obtaining T (`)

m ⊆ T (`).
(c) If T (`)

m is empty, i.e. no elements have been marked,
set T (`+1) = T (`) (and K (`+1) = K (`)) and exit from
refine tetra.

(d) Refine the marked tetrahedra T (`)
m according to their

class and the rules shown in Fig. 3, leading to the
refined mesh T (`)

ref of T (`) and a new set of k-points
K

(`)
ref .

(e) Perform mesh closure: Mark the non-refined tetrahe-
dra of T (`)

ref for refinement if they violate the regular-
ity condition, i.e. if they have more than one hanging
node on an edge, and obtain T̃ (`)

m . If T̃ (`)
m is empty,

the mesh is regular: set T (`+1) = T
(`)
ref , K (`+1) = K

(`)
ref

and exit. Otherwise set T (`)
m = T̃

(`)
m , T (`) = T

(`)
ref ,

K (`) = K
(`)
ref and return to step 5d.

6. If ` < `max return to step 1; otherwise, exit.

The key difference between the modes is in step 3, where the
matrix elements for the new k-points are computed.

5. Applications

5.1. Aluminum
As a simple example to show that our adaptive procedure can

reproduce standard Wien2k results at much lower computational
cost we have chosen fcc-Al. As shown before [20, 38], there is a
strong dependency of the optical properties on the quality of the
BZ integration. Using a regular grid and the tetrahedron method
as implemented in Wien2k’s optic module, up to 20 000 k-
points in the irreducible wedge of the BZ are necessary to obtain
converged results for the optical conductivity. With our adaptive

mesh the number of k-points can be greatly reduced. Note that
σ(ω) also depends crucially on the applied broadening scheme,
and small differences may appear between the two methods,
because they are somewhat different in the way the broadening
is introduced. The optic module in Wien2k first calculates the
imaginary part of the unbroadened dielectric function, ε2(ω),
due to interband transitions and the plasma frequency due to
intraband transitions, and adds smearing later (using Lorentzian
broadening). On the other hand, the Green’s function method
uses a related broadening constant δ for the self energy Σ(ω) ≡
−iδ which enters into the Green’s function (7).

The reason for the slow convergence of σ with the number
of k-points is quite obvious when one inspects the band structure.
Consider the first interband peak at ω ≈ 1.5 eV (Fig. 7(a)). In
the relevant energy range, only a narrow region of the BZ around
W contributes, as seen in the k-resolved contributions to σ(ω)
(Fig. 7(b)). Comparison with the bandstructure (Fig. 7(c)) shows
that these contributions stem from four bands near the Fermi
level at W (two particle and two hole bands). A regular mesh
must be quite dense to properly sample these small portions of
the BZ, while our adaptive scheme is much more efficient. This
is illustrated in Fig. 8, where one can see that the regions around
the W-point are refined most and have the smallest tetrahedra.

5.2. Strontium vanadate
As a second application of the method, we present in this

section calculations for SrVO3. Its low-energy electronic struc-
ture is dominated by the degenerate 3d-t2g orbitals of vanadium
and it constitutes a textbook example of a strongly correlated
metal, perfectly suited for illustrating the intermediate steps and
the final results of the woptic package. Specific details about the
crystal and electronic structures of SrVO3 can be found, e.g., in
Refs. [26, 32]. In fact, SrVO3 is a good example of a situation
where DFT cannot accurately describe the low-energy optical
response of the system,6 necessitating the inclusion of local cor-
relation effects, e.g. by means of DMFT. In this work, we focus
on the workings of the adaptive algorithm rather than physical
implications of our results; see Ref. [26] for a discussion about
the latter.

In Fig. 9, the intermediate (` = 1) and final (` = 5) results for
the optical conductivity of SrVO3 are reported, in each case for
an interacting and a non-interacting calculation. Experimental
results from Ref. [39] are reproduced for comparison. Here,
the DMFT calculations have been performed using a Kanamori
interaction [42] with parameters U = 5.05 eV, U′ = 3.55 eV
and J = 0.75 eV, consistent with the setup used in Ref. [26].
Since the random-gauge problem is absent in this case due to
the cubic symmetry (see Sec. 4), we use optic mode for the
interacting optical conductivity. One immediately notes the role
of the electronic correlations, as evidenced by a significant shift
of optical spectral weight from the Drude peak and the frequency
window between 3 and 5 eV to higher energies as compared to

6Another prototypical situation is the analysis of the optical spectroscopy
experiments in V2O3 [26, 32, 40, 41], where the corrections generated by the
inclusion of electronic correlation in DFT+DMFT are even larger than for the
SrVO3 case.
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Figure 7: The non-interacting optical conductivity of Al computed by woptic compared to corresponding results from the Wien2k optic package and experimental
data [37] in panel (a). For convergence of the uniform Wien2k calculation a large number of (symmetrized) k-points is required, while due to the adaptivity, woptic
converges for a much smaller number of k-points. After convergence both programs yield similar results, in particular the experimental peak position is reproduced.
(An arbitrary scaling has been applied to the experimental results.) The contributions to the optical conductivity σ resolved in (k, ω)-space (b). Only a small part of
k-space around W contributes to σ and the contributions can be understood by identifying possible transitions in the band structure (c).
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Figure 9: The interacting and non-interacting optical conductivity of SrVO3 computed by the adaptive algorithm woptic (optic mode) compared to experiment [39]
in panel (a). While the interacting result is much closer to experiment, the convergence of the algorithm requires far fewer iterations than for Al both in the interacting
and in the non-interacting case. This indicates that larger regions of k-space contribute to the optical conductivity, as also suggested by the contributions to σ resolved
in (k, ω)-space (b). (Note also the different scales of the contributions here and in Fig. 10.) A significant part of the optical conductivity in the energy window under
investigation stems from O-p→V-d transitions, which can be understood by inspection of the band structure (c). In panels (a) and (b), the dashed line indicates the
restricted frequency window (0 to 5 eV), which has been considered for the illustration of the evolution of the tetrahedral mesh in Fig. 10. In the non-interacting
case, the broadening, in particular the finite width of the Drude peak, arises solely from the small imaginary self energy Σ = −iδ which is added for this purpose. By
contrast, in the interacting case, it is a direct result of DMFT.

k
z
-a

x
is

ky-axis kx-axis

k
z
-a

x
is

ky-axis kx-axis

Figure 10: The unsymmetrized initial tetrahedral mesh T (0) used in the non-interacting calculations for SrVO3 with 3072 tetrahedra and 4913 k-points (left). After 5
iterations, in the highly adaptive mesh regime (θ = 0.9), the mesh T (5) has 4920 elements and 9533 k-points (right); for the sake of visualization only the smallest
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the non-interacting calculations. Such many-body effects are
expected due to the correlated nature of the 3d-t2g orbitals of
SrVO3, and they significantly improve the match between theory
and experiment.

A more detailed analysis of the woptic results in Fig. 9 shows
that the convergence of the adaptive algorithm is much faster than
for the Al case of the previous section. This can be understood by
plotting the k-resolved contributions to σ(ω) (i.e., the integrand
of the k-summation of Eq. 4), as shown in Fig. 9(b): In the wide
energy range considered (i.e., up to 15 eV), the contributions
to the optical conductivity are spread over all of k-space. As a
consequence, the adaptivity of the woptic algorithm becomes
less important and the final adaptive mesh (not shown) essentially
coincides with one obtained in a uniform calculation. This would
be different when focusing on the low-energy region (e.g., up to
5 eV as marked by the dashed lines in Fig. 9) – as is usual when
comparing with optical spectroscopic experiments. In that case,
the predominant contribution to σ(ω) below 5 eV (apart from
the Drude peak) is from around the Γ point, and between Γ and
X. This corresponds to the peak in σ(ω) located at about 4 eV in
the non-interacting spectrum, which originates not from optical
transitions within the V-t2g orbitals, but rather from transitions
between the O-2p and the V-eg bands.

This situation is well reflected in the evolution of the tetrahe-
dral mesh, reported in Fig. 10 for a calculation in the window
up to 5 eV, and performed with a highly adaptive mesh (θ = 0.9)
for the sake of illustration. In the right panel of Fig. 10 the re-
sulting tetrahedral mesh after 5 iterations is visualized, showing
refinements essentially from Γ→ X, which is exactly the region
we identified in Fig. 9(b) and (c). Moreover, especially along
this k-path, the p and the eg orbitals mainly responsible for the
optical transitions are relatively flat and hence difficult to resolve
in (k, ω)-space, which explains woptic’s behavior in this case.

6. Summary

We have developed a flexible and efficient adaptive BZ inte-
gration algorithm based on a recursively generated tetrahedral
k-mesh. In regions where the numerical error would otherwise
be large, the k-mesh becomes fine, whereas it remains coarser
elsewhere. We apply this approach to the optical conductivity in
a Wannier basis, with the possibility to include a many-body self
energy Σ(ω) on top of the DFT band structure. The peakedness
of the contributions in k-space is determined mainly by the band
structure and by the imaginary part of the self energy, which
broadens the peaks. Thus, weakly interacting materials, where
=Σ is small, tend to have more sharply peaked contributions.

Results for Al and SrVO3 illustrate the algorithm and its
performance. These calculations would require much more com-
putational effort using uniform k-grids.

The woptic package, our implementation of the adaptive k-
mesh algorithm in the framework of Wien2k, Wannier90, and
DMFT, is available at http://woptic.github.io. In addi-
tion to the ready-made computation of the optical conductivity,
dc conductivity, and thermopower, the k-mesh management code
may easily be adapted to other quantities, in particular where a

conventional tetrahedron integration is impossible or impracti-
cal.

In order to include transitions involving bands beyond the
Wannier projection, an outer band window may be defined, al-
though this leads to certain numerical problems in some cases
(see Sec. 4). The outer bands will be described at the DFT level,
i.e. without a self energy. Apart from the physical, k-integrated
quantities, woptic also provides tools to examine the k-dependent
contributions (as in Figs. 7 and 9 (b)), which often provide valu-
able physical insight.
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