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Abstract

Theoretical spectroscopy is a powerful tool to describe and predict optical properties of materials. While nowadays routinely
performed, first-principles calculations only provide bulk dielectric tensors in Cartesian coordinates. These outputs are hardly
comparable with experimental data, which are typically given by macroscopic quantities, crucially depending on the laboratory
setup. Even more serious discrepancies can arise for anisotropic materials, e.g., organic crystals, where off-diagonal elements of
the dielectric tensor can significantly contribute to the spectral features. Here, we present LayerOptics, a versatile and user-
friendly implementation, based on the solution of the Maxwell’s equations for anisotropic materials, to compute optical coefficients
in anisotropic layered materials. We apply this tool for post-processing full dielectric tensors of molecular materials, including
excitonic effects, as computed from many-body perturbation theory using the exciting code. For prototypical examples, ranging
from optical to X-ray frequencies, we show the importance of combining accurate ab initio methods to obtain dielectric tensors,
with the solution of the Maxwell’s equations to compute optical coefficients accounting for optical anisotropy of layered systems.
Good agreement with experimental data supports the potential of our approach, in view of achieving microscopic understanding of
spectroscopic properties in complex materials.
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1. Introduction

First-principles methods represent a powerful tool to predict
optical properties of materials with high accuracy. In com-
bination with experimental data, they provide insight into the
features of the investigated systems. In solid-state physics,
many-body perturbation theory (MBPT) is the state-of-the-art
approach to compute dielectric properties [1]: electron-electron
correlation is included through the GW approximation [2, 3],
while excitonic effects are taken into account through the solu-
tion of the Bethe-Salpeter equation (BSE) [4, 5]. Implementa-
tions of MBPT are now available interfaced to the most popular
density-functional theory (DFT) packages, making these calcu-
lations routinely done. However, comparison with experimental
data is often not straightforward. Dielectric tensors computed
from ab initio codes are bulk quantities, relating to the coordi-
nate system of the unit cell. This hardly fits typical laboratory
conditions, where samples are usually thin films, including one
or more layers of materials and a dielectric substrate [6, 7, 8, 9].
In anisotropic materials, where dielectric tensors have non neg-
ligible off-diagonal components, some spectral features can be
completely missed, if only the diagonal terms are considered.
Finally, for a comparison with experimental data, calculations
should take into account additional degrees of freedom, such as
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incidence angle and polarization of the incoming beam, as well
as orientation and thickness of the sample.

In this paper, we present LayerOptics, an efficient com-
putational tool, based on the solution of Maxwell’s equations
for optically anisotropic media [10], to compute Fresnel coef-
ficients in layered materials. This formalism is a generaliza-
tion for anisotropic media of the 2×2 approach, commonly used
for isotropic layered systems [11]. In the current implementa-
tion, LayerOptics is a post-processing tool for dielectric ten-
sors obtained with the all-electron code exciting [12]. Due
to its simple and versatile structure, interfacing LayerOptics

to other ab initio codes is straightforward. After introducing
the theoretical background and the structure of the implementa-
tion, we present the capabilities of LayerOptics with a selec-
tion of examples concerning optical and X-ray absorption prop-
erties of molecular materials, such as oligothiophene crystals
and azobenzene self-assembled monolayers (SAMs). Our re-
sults indicate the importance of off-diagonal elements of dielec-
tric tensors in calculating optical properties of anisotropic thin
films. Significant changes in the Fresnel coefficients are ob-
served by varying the angle of incidence of the incoming light
as well as its polarization. We reproduce the spectra of a model
organic crystal, including two layers of materials with differ-
ent orientation of the molecules with respect to the substrate, as
expected in experimental growth conditions. Finally, we show
how LayerOptics can be used to determine the parameters re-
lated to the orientation of the molecules in a SAM. Good agree-
ment with experimental data supports the validity of our ap-
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Figure 1: Schematic setup of a layered system on an isotropic substrate with
dielectric tensor εS . Each layer of material is characterized by its thickness (t1
and t2) and dielectric tensor (ε1 and ε2). k is the wave vector of the incoming
light, with incidence angle Θ, defined with respect to the surface normal z. The
angle of polarization of the light in the medium (δ) is indicated with respect to
the y axis.

proach to reproduce optical absorption features in anisotropic
layered materials.

The paper is organized as follows: In Section 2 we provide
the theoretical background for the calculation of the Fresnel co-
efficients. In Section 3 we describe the adopted numerical pro-
cedure, and finally in Section 4 we present the application of
LayerOptics to selected examples.

2. Theoretical Background

2.1. Matrix formulation of Maxwell’s equations
The propagation of electromagnetic waves in an anisotropic

material is determined by Maxwell’s equation in momentum
space:

k × (k × E) +
ω2

c2 ε(ω)E = 0, (1)

where k is the wave vector with frequency ω, c the velocity of
light in vacuum, E the electric field and ε(ω) the frequency-
dependent dielectric tensor. In order to obtain non trivial so-
lutions for E, the determinant of the homogeneous and linear
system of equations (1) has to vanish. With fixed components
kx and ky, this condition yields four roots kz,σ (σ = 1, ..., 4), for
each ω. In well-behaved cases they correspond to two polariza-
tions in two propagation directions (pσ) [13] . We can write the
total electric field in the medium as:

E =

4∑
σ=1

Aσpσ exp
[
kxx + kyy + kz,σz − ωt

]
, (2)

and the corresponding magnetic-field vector as:

H =
1
µ0c

k × E. (3)

Transmission and reflection coefficients are obtained by impos-
ing the boundary conditions of the parallel components of the

electric (magnetic) field Ex and Ey (Hx and Hy) at the layer
interfaces. We assume the layered system to be infinitely ex-
tended in the xy-plane and stacked along the z direction, as
sketched in Fig. 1. The boundary between the top layer, which
is by default a semi-infinite vacuum layer, and the first material
layer is set at z = 0. Each layer n, characterized by a dielectric
tensor εn, has finite thickness tn = zn−1 − zn, with n = 1, ...,N,
where N is the total number of layers. A semi-infinite isotropic
substrate, S , is assumed as bottom layer (see Fig. 1). By adopt-
ing these conventions, we can write the total dielectric tensor of
the layered system as:

ε =



ε(0) z > 0
ε(1) 0 > z > z1
...

ε(n) zn−1 > z > zn
...

ε(N) zN−1 > z > zN

ε(S ) zN > z.

(4)

At the interface z = zn−1 this yields the matrix equation for the
electric amplitudes:

A1(n − 1)
A2(n − 1)
A3(n − 1)
A4(n − 1)

 = D−1(n − 1)D(n)P(n)


A1(n)
A2(n)
A3(n)
A4(n)

 , (5)

where D(n) and P(n) are 4×4 matrices. The matrix D(n) in-
cludes the electric and magnetic polarization vectors pσ(n) and
qσ(n):

D(n) =


px,1(n) px,2(n) px,3(n) px,4(n)
qy,1(n) qy,2(n) qy,3(n) qy,4(n)
py,1(n) py,2(n) py,3(n) py,4(n)
qx,1(n) qx,2(n) qx,3(n) qx,4(n)

 , (6)

while the matrix P(n) is formed directly from the kz,σ-
component:

P(n) =


eikz,1(n)tn 0 0 0

0 eikz,2(n)tn 0 0
0 0 eikz,3(n)tn 0
0 0 0 eikz,4(n)tn

 . (7)

These relations between the electric field vectors at each layer
boundary can be used to connect the amplitudes of the electric
fields in the vacuum layer and in the substrate as follows:

A(0) = D−1(0)D(1)P(1)D−1(2)P(1) . . .D−1(N)D(S )A(S ). (8)

Denoting the total transfer matrix T as the product of the single-
layer transfer matrices T(n):

T(n) = D(n)P(n)D−1(n), (9)

we can rewrite Eq. 8 as:

A(0) = D−1(0)T(1)T(2) . . .T(N − 1)T(N)D(s)︸                                            ︷︷                                            ︸
=T

A(S ).
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Figure 2: Euler rotations Z1X2Z3, as implemented in LayerOptics, for the
angles α, β and γ around the Cartesian axes z, x, and z, respectively. Rotations
are shown in the order they are applied: first γ, then β and finally α. The rotated
(fixed) frame is indicated in blue (black).

The 4 × 4 matrix equation (9) yields unique solutions A(0) and
A(S ), provided that four boundary conditions are fixed (see Eq.
17 below). In order to obtain the transmission coefficient for
the intensity, the Poynting vector for the substrate has to be cal-
culated. For an isotropic substrate, the time-averaged Poynting
vector 〈S〉 can be written as:

〈S〉 =
1
2
|p × q| =

|A|2

ωµ0
|p × (k × p)|. (10)

The transmittance in layer n is defined as:

T (n) =
〈|S(n)|〉
〈|S0|〉

= c µ0 |A(n)|2 |p(n) × q(n)|, (11)

where S0 is the Poynting vector in vacuum. Since transmittance
is typically measured in the substrate layer S , we write this co-
efficient as:

Tp = cµ0|A3(S )|2|p3(S ) × q3(S )|, (12)

Ts = cµ0|A1(S )|2|p1(S ) × q1(S )|, (13)

where p (s) is the parallel (perpendicular) component. The to-
tal transmission coefficient is the sum of p and s components:
Ttot = Tp + Ts. The absorbance A is directly related to the
transmittance through Beer’s law:

A = − ln(T ). (14)

This relation holds for the p and s components, as well as for
the total coefficient. Finally, parallel and perpendicular compo-
nents of the reflectance Rs,p are expressed, respectively, as:

Rp = |A4(0)|2, (15)

and
Rs = |A2(0)|2. (16)

The total reflection coefficient is Rtot = Rp + Rs.

3. Numerical Procedure

3.1. Setup
In this section, we describe the numerical procedure

to compute optical coefficients in layered materials with

LayerOptics. For this purpose, a number of preliminary steps
needs to be performed. This is reflected in the structure of
LayerOptics: Before executing the script, a setup tool has to
be run (see Appendix B). In the beginning, we have to define
the notation for the four-component vectors A, with respect to
the directions of light propagation in the birifringent medium.
According to the scheme presented in Fig. 1, with the interface
between the semi-infinite vacuum layer and the top dielectric
layer at z=0, we consider downwards motion along the (−z)-
direction, and upwards motion in (+z)-direction. Moreover, we
define the parallel polarization of the electric field in the zy-
plane, and the perpendicular one in the xz-plane. In this way,
we can index the four components as follows:

A =


A1 ← downwards perpendicular component
A2 ← upwards perpendicular component
A3 ← downwards parallel component
A4 ← upwards perpendicular component.

(17)
Full dielectric tensors, including off-diagonal components,

represent the main input of LayerOptics. In standard ab initio
codes dielectric tensors are expressed with respect to Cartesian
axes, which in case of non orthogonal unit cells may not coin-
cide with the lattice vectors. When dealing with anisotropic ma-
terials, it is crucial to express the dielectric tensor in terms of a
coordinate system that reflects the experimental setup. For this
purpose, we introduce the rotation matrix R = Z1X2Z3, defined
by the Euler angles α, β and γ (see Fig. 2). With these three
rotations any possible orientation of the sample with respect to
the reference coordinate system can be represented. Euler ro-
tations are performed in the following order (see Fig. 2): First
a rotation γ around the z-axis is considered, next a rotation β is
performed around x, and finally rotation α with respect to the
z-axis. Using the following standard notation:

s1 = sinα, c1 = cosα
s2 = sin β, c2 = cos β
s3 = sin γ, c3 = cos γ

the rotation matrix is expressed as:

R = Z1X2Z3 =

 c1c3 − c2s1s3 −c1s3 − c2c3s1 s1s2
c3s1 + c1c2s3 c1c2c3 − s1s3 −c1s2

s2s3 c3s2 c2

 ,
and the resulting transformed dielecric tensor ε′ is:

ε′ = RεR−1. (18)

Finally, a number of parameters related to the experimental
setup has to be chosen (see Fig. 1). Θ is the angle between the
incident beam, assumed in the zy-plane, and the plane of inci-
dence of the sample (xy). δ determines the angle of polarization
of the incoming light, with amplitude normed to one: δ = 0 cor-
responds to light fully polarized in the parallel direction, while
δ =

π

2
indicates incoming light with perpendicular polarization.

In addition to the (optionally rotated) full dielectric tensor ε(n),
the thickness t of each layer has to be provided in input.
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Figure 3: Flowchart of LayerOptics. Rectangles indicate solution of the
Maxwell’s equations in reciprocal space and elliptic shapes denote matrix con-
struction.

3.2. Calculation of Fresnel coefficients

Based on the equations presented in Section 2, optical co-
efficients are computed by LayerOptics, following the steps
indicated in the flowchart of Fig. 3. First, for each layer i, the
roots of the characteristic polynomial of Eq. 1 are calculated,
yielding the wave-vector components kz,σ (σ = 1, ..., 4). From
them, the corresponding electric and magnetic polarization vec-
tors, pσ and qσ, respectively, are obtained. These are the main
ingredients to determine the transfer matrices Ti (Eq. 9), after
Di and Pi are calculated from Eqs. 6 and 7. Special treatment is
required for vacuum and substrate layers. The matrices D−1(0)
and D(s) are needed in order to determine the total transfer ma-
trix Ttot of the entire layered system. To compute Ttot, Eq. 9
is solved for A1(0) and A3(0), representing the amplitude of the
incoming light set in input, and by fixing A2(s) = A4(s) = 0,
under the physical assumption that no light is emitted from the
substrate, at z = −∞. In the last step, Fresnel coefficients are
calculated, according to Eqs. 12-13 (transmittance), Eq. 14 (ab-
sorbance) and Eqs. 15-16 (reflectance).

4. Applications

In this section we present a selection of applications of
LayerOptics. We focus on molecular systems, namely olig-
othiophene crystals and azobenzene SAMs, where anisotropy
may induce pronounced effects. We apply LayerOptics to
optical and X-ray absorption spectra, at varying incidence and
polarization angle of the incoming light beam, as well as the
orientation of the organic thin film with respect to the substrate.
Dielectric tensors are computed from MBPT, through the solu-
tion of the BSE, as implemented in the exciting code [12]. In
all the examples presented below, the substrate is modeled with
the frequency-independent dielectric function of bulk silicon
(ε0=11.8 [15]). Since the frequency-independent background
is subtracted from the spectra shown in the following, the spe-
cific choice of the substrate does not play a role here.

4.1. Reflection coefficient of sextithiophene thin films

In the first example, we investigate the dependence of the re-
flection coefficient of a sextithiophene (6T) thin film on the an-
gle and polarization of the incoming light. In the so-called high
temperature phase, 6T is a monoclinic crystal with 2 molecules
per unit cell, lattice parameters a = 9.14 Å, b = 5.68 Å, and c
= 20.67 Å, and monoclinic angle β= 97.78◦ between a and c
[14] (see Fig. 4a). For this structure, the dielectric tensor has
non-zero off-diagonal components xz. We consider a sample of
thickness t = 2 nm.

According to the notation in Fig. 1, we analyze 4 config-
urations by varying the angle of incidence Θ of the incoming
light beam. In addition to Θ = 0◦, corresponding to normal
incidence, we consider Θ = 20◦, Θ = 40◦, and Θ = 60◦. The
deviation of the total reflection coefficient from the frequency-
independent background (∆Rtot) is shown in Fig. 4. From Fig.
4b, we notice that in the visible region (2 – 3 eV) ∆Rtot is very
low, almost independently of the value of Θ. At about 2.5 eV,
two bound intramolecular excitons appear, as described in Ref.
[16]. These excitons have weak oscillator strength: hence, the
incidence angle of the incoming beam has an almost negligible
effect. On the contrary, at higher energies (3.5 – 5 eV), more
intense excitations characterize the spectrum, and consequently
∆Rtot undergoes larger variations depending on Θ. At normal
incidence, ∆Rtot is always positive, and peaks are observed at
4, 4.5, and 5 eV. Similar features are observed for Θ = 20◦,
where, however, the shoulders turn into dips, with ∆Rtot < 0.
A different scenario appears for Θ = 40◦ and Θ = 60◦. In both
cases ∆Rtot is characterized by pronounced dips, and, except for
the intense feature at about 4 eV, it is constantly negative in the
region 3.5 – 5 eV.

Next, we consider the dependence of ∆Rtot on the polariza-
tion direction of the incoming light. For normal incidence, we
vary the polarization angle δ (see Fig. 1) from 0◦ (parallel to
the y axis) to 90◦ (parallel to the x axis). The corresponding
plot for ∆Rtot is shown in Fig. 4c. As mentioned above, for
Θ = 0◦ ∆Rtot is always positive. For parallel light polariza-
tion (δ = 0◦) we observe again an intense peak at 4 eV, with
a shoulder at about 4.3 eV. Additional peaks, with lower os-
cillator strength, appear between 4.5 eV and 5 eV. In case of
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Figure 4: a) Sexithiophene (6T) crystal structure. Deviation of the total reflection coefficient from the background (∆Rtot) at varying angle Θ of the incoming beam
(b), and polarization angle δ of the incident light (c).

Figure 5: a) Unit cell of a bithiophene (2T) crystal. b) Layered structure of the
2T thin film: in the bulk-like layer, the molecules are oriented as in a), with
the ab plane of the unit cell at the interface, while in the flat configuration the
unit cell is rotated such that the long molecular axis is parallel to the substrate
surface. c) Parallel and perpendicular components of the absorbance for each
setup, ranging from I to V (see Table 1). The contribution of the frequency-
independent substrate is subtracted.

perpendicular light polarization (δ = 90◦), ∆Rtot exhibits differ-
ent features. The most intense peak is now found at ∼3.9 eV,
with a shoulder at ∼3.8 eV. Also at higher energies, in the re-
gion 4.25 – 4.75 eV, peaks appear for δ = 90◦ where dips are
observed for parallel polarization of the incoming light. Only
the peak at 5 eV is present, regardless the value of δ. For in-
coming light with δ=45◦, ∆Rtot shows a combination of the
features observed in the previous cases (δ = 0◦ and δ = 90◦).
This is especially evident in the excitation band around 4 eV,
where two peaks and two shoulders appear, corresponding to
the respective features observed for parallel and perpendicular
polarization angles. The same holds also for the peaks between
4.25 and 4.75 eV.

4.2. Optical absorption of layered bithiophene thin films

In the second example we consider a layered thin film of a
bithiophene (2T) crystal. Like 6T, also 2T has a monoclinic
unit cell, with lattice parameters a = 7.73 Å, b = 5.73 Å, and

Setup t f lat tbulk−like

I 20 0
II 15 5
III 10 10
IV 5 15
V 0 20

Table 1: Different setups of a layered 2T thin film, with total thickness of 20 nm.
The thickness t f lat (tbulk−like), in nm, is referred to the flat (bulk-like) orientation
of the molecules with respect to the substrate (see Fig. 5a-b).

c = 8.93 Å and monoclinic angle β= 106.72◦ between a and c
[17], hosting 2 molecules (see Fig. 5a). We consider a system
with total thickness ttot = 20 nm, consisting of two layers of
2T. Each layer is characterized by a different orientation of the
molecules with respect to the substrate, as sketched in Fig. 5b.
In the lower layer, at the boundary with the isotropic substrate,
the molecules lie flat, with their long axis oriented parallel to
the surface. This is typically the situation of organic thin films
grown on a metal substrate (see e.g. Ref. [7]). Such config-
uration is obtained by applying a rotation (Fig. 5a) of -52.4◦

around the y axis of the unit cell. In the upper layer, the 2T
thin film lies in the ab plane of its unit cell: We refer to this
as bulk-like configuration. No Euler rotation is applied in this
case.

We consider overall 5 setups, keeping ttot = 20 nm fixed,
and varying the thickness of the flat and bulk-like layers with
steps of 5 nm (see Table 1). For each setup, we compute par-
allel (p) and perpendicular (s) components of the absorbance,
shown in Fig. 5c. Again, we model the substrate using the
frequency-independent dielectric constant of bulk silicon, and
we subtract the background. By comparing the set of spectra
for p and s polarization, we immediately notice striking dif-
ferences. The parallel component of the absorbance presents a
maximum at about 4.75 eV, which appears for each setup with
almost the same intensity. At lower energy, at approximately
4.2 and 4.5 eV, respectively, two additional features appear in
the p-polarized spectrum of those configurations incorporating

5



Figure 6: a) Schematic representation of an azobenzene-functionalized SAM of
alkanethiols on a substrate. The mean tilt angle η is defined between the normal
(blue arrow) of the phenyl rings plane (shaded rectangle) and the normal with
respect to the substrate (n – black arrow). β is the angle between n and the
long molecular axis. b) Azobenzene molecule considered in the calculation of
dielectric tensors: an O−CH3 end group terminates the molecules to simulate
the chemical environment of the covalent bond to the SAM. c) Parallel (p) and
perpendicular (s) components of the absorbance at varying α, corresponding to
different concentration of azobenzene molecule in the SAM. Experimental data
are taken from Ref. [18].

a flat layer. When all molecules in the thin film are oriented
to lie flat onto the substrate (setup I), these peaks disappear
and only an extremely weak shoulder is present just above 4
eV. Above 5 eV, all the spectra coincide. Conversely, in the s-
polarized component of the absorbance, the maximum is found
at about 3.8 eV, and again it is most intense in the pure bulk-
like configuration (V). The strength of this peak decreases at
increasing thickness of the flat layer, and completely disappears
in setup I (flat configuration only). Above 4 eV, weaker features
are observed. The shoulder at about 4.25 eV and the weak peak
at ∼4.8 eV behave similarly to the most intense peak, i.e., their
intensity is maximum (minimum) in setup V (I). On the other
hand, the peak at 4.5 eV maintains almost the same intensity
going from system I to IV, while it is not present in the pure
bulk-like configuration (setup V).

4.3. Polarization-resolved X-ray absorption spectra of
azobenzene-functionalized self-assembled monolayers

As a final example, we present the application of
LayerOptics to X-ray absorption spectra (XAS) from the ni-
trogen (N) K-edge of azobenzene-functionalized SAMs. In a
recent experiment [18], it was shown that the orientation of
the azobenzene molecules with respect to the substrate depends
on their concentration in the SAM. Such behavior can be ob-
served from polarization-resolved XAS, where the intensity of
the peaks, and in particular of the lowest-energy resonance,
varies significantly between parallel and perpendicular compo-
nents for different azobenzene concentrations. This resonance
corresponds to a transition from N 1s to the LUMO, which
has π∗ character and transition dipole moment along the long
molecular axis [18, 19]. For this reason, its strength is expected

to be affected by the orientation of the molecule with respect to
the substrate. This can be determined by estimating the mean
tilt angle η (see Fig. 6a), which represents the angle between
the normal of the phenyl rings plane (thick blue arrow) and the
normal to the substrate (n, black arrow).

Our starting point is the dielectric tensor of the azobenzene
molecule, including excitations from N 1s core levels to the
conduction states. The molecule has been accommodated in
an orthorhombic supercell with lattice parameters oriented ac-
cording to the coordinate axes in Fig. 6b (for additional de-
tails, see Ref. [19]). In these calculations, we have neglected
the presence of the alkyl chains, which connect azobenzene to
the gold substrate in the experimental sample (see Fig. 6a),
since, for core-level excitations from the N K-edge, they are
expected not to play a role. We represent the SAM as a thin
film of thickness 4 nm, and we model the substrate using the
frequency-independent dielectric function of bulk silicon [20].
The angle of incidence of incoming light is set to Θ=70◦, as in
experiment. We compute the p- and s-components of the ab-
sorbance at different values of η, corresponding to azobenzene
concentration of 100% (η=73◦) and 80% (η=67◦) [18], [21].
Different orientations of the molecules with respect to the sub-
strate are represented by rotations of the dielectric tensor. The
Euler angle β, between the normal direction with respect to the
substrate n and the long molecular axis (see Fig. 6a), is fixed to
30◦. Under this condition, η is related to the third Euler angle
γ by cos η =

cos γ
2 . Making use of this relationship and setting

the first Euler angle α=0◦, we can effectively simulate differ-
ent molecular orientations indicated by the angle η, by rotating
the dielectric tensor with respect to γ: η=73◦ corresponds to
γ=55◦ and η=67◦ to γ=40◦. The resulting absorption spectra
are shown in Fig. 6c. Theoretical and experimental data for the
absorbance are normalized to the height of the first resonance
[22]. The absorbance in the top panel, corresponding to η=73◦,
i.e., full azobenzene coverage in the SAM, shows a rather strong
polarization-dependence of the intensity of the first resonance,
which is at least twice more intense in the s-component, com-
pared to the parallel one. By decreasing η to 67◦, as predicted
in the SAM with 80% azobenzene concentration, the relative
spectral weight of the p-component increases for the first peak.
Although the peak in the s-component remains stronger, its rel-
ative weight with respect to the parallel component is signifi-
cantly decreased. As shown in Fig. 6c, the relative height of
the peaks is in good agreement with the experimental data in
both cases. Also at higher energy, the oscillator strength of the
peaks at about 403 eV is matched well by our calculations [23].

Finally, with LayerOptics, we are also able to estimate the
so-called magic angle, corresponding to the polarization an-
gle for which the absorbance is independent of the polariza-
tion channel s or p. Experimentally, it is considered at 54.7◦

[18]. We can determine this angle by tuning the polarization an-
gle such that the parallel component of the absorbance (Ap) is
equivalent to the perpendicular one (As). From our results, this
occurs at 59.6◦. Considering that experimentally these angles
are given with an error bar of ±5◦ [18], we regard this estimate
as satisfactory.
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5. Summary and Conclusions

We have presented LayerOptics, an implementation of the
4×4 matrix formalism of Maxwell’s equations to compute Fres-
nel coefficients in anisotropic layered thin films. We are able to
match the laboratory setup, by taking into account the direction
and the polarization of the incoming light, as well as the orien-
tation of each layer with respect to the substrate. The capabili-
ties of LayerOptics have been demonstrated by two different
scenarios, such as optical properties of organic thin films on
a substrate, and polarization-dependent X-ray absorption spec-
tra of azobenzene-functionalized SAMs. With prototypical ex-
amples, we have shown the importance of off-diagonal com-
ponents of dielectric tensors in anisotropic materials, in order
to quantitatively compare the calculated spectra with experi-
ments. Incorporating information about orientation and polar-
ization of the light allows for an even more quantitative compar-
ison. Our results confirm the potential of this approach to gain
insight into the microscopic mechanisms ruling light absorp-
tion in anisotropic thin films. LayerOptics is applied to post-
process full dielectric tensors computed with the exciting

code. Due to its simple and versatile structure, this tool can
be easily interfaced to any other ab initio package.
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Appendix A: Solutions of Maxwell’s equations for strongly
anisotropic materials

Among the four solutions kz,σ of the Maxwell’s wave equa-
tion (Eq. 1), it is commonly assumed that two have positive real
part (<(kz,σ) > 0), while for the other two <(kz,σ) < 0. This
corresponds to the physical situation of electromagnetic waves
moving through the medium up- and down-wards, with respect
to the incidence direction of the light beam [10]. We find, how-
ever, that this assumption is not generally fulfilled when the
off-diagonal elements of the dielectric tensors ε are of the same
order of magnitude of the diagonal ones. This can happen in
strongly anisotropic materials. In this case, <(kz,σ) may have
the same sign in all four components of ε, giving rise, at the
same time, to non-zero transmission and reflection coefficients
in the layered system. This occurrence leads to an arbitrariness
in the notion of parallel and perpendicular components with
respect to the plane of incidence of the incoming beam, as well
as in the notion of upwards and downwards directions of light
propagation with respect to the layer. Since LayerOptics as-
sumes the electric amplitudes of the vacuum and the substrate
layers to be isotropic, the boundary condition that no light is
emitted from z = −∞ is fulfilled. Hence, the physical meaning
of the computed Fresnel coefficients is not affected.

Figure 7: Interactive interface of the script LO-setup.py. In this example, the
layer index is 1, and a Euler rotation of the dielectric tensor is set according to
the angles α=30◦, β=45◦, and γ=60◦.

Figure 8: Interactive interface of the script LO-execute.py. In this example,
the incidence angle Θ is set to 45◦, and the polarization angle δ to 0◦. The
presented system is composed of 2 layers, the first of thickness 10 nm, the
second one of thickness 5 nm.

Appendix B: Input and Output

The main input of LayerOptics is given by full dielec-
tric tensors ε, including diagonal and off-diagonal components,
for each computed energy point. If any component is miss-
ing in the input files, the program automatically sets it to zero
for each frequency point. LayerOptics is a python script,
which in the current version works as post-processing tool of
the exciting code [12]. Through an interactive interface, the
script LO-setup.py allows to label the dielectric tensors for
each layer and to transform them using Euler rotations. The
user is asked to define the Euler angles α, β and γ, according
to the framework depicted in Fig. 2. In the example shown in
Fig. 7, the dielectric tensor of layer 1 is rotated according to Eu-
ler angles α=30◦, β=45◦, and γ=60◦. The transformed tensors
are renamed as n ij.OUT, where n indicates the layer index,
and ij the components of εi j. These files are used by the script
LO-execute.py, which implements the algorithm for calculat-
ing Fresnel coefficients (see Fig. 8). Also in this case, an inter-

7



active interface allows the user to set the input parameters for
the incoming light and the number of layers, excluding vacuum
and substrate. The value of the frequency-independent dielec-
tric function for the substrate only determines the background
of the optical coefficients, but has no impact on their spectral
shape. The incidence and polarization angles, Θ and δ, respec-
tively, can be either set by single values or through a range. In
the latter case, the user has to specify the initial and final value
of the interval, as well as the number of intermediate steps. The
user is also asked to set the thickness of each layer. An exam-
ple for a 2-layer sample is shown in Fig. 8. The output con-
sists of three files: absorbance.out, reflection.out and
transmission.out. Each file contains 4 columns: energy (in
eV), parallel (p) component, perpendicular (s) component, and
total value of the corresponding Fresnel coefficient. For calcu-
lations performed over a range of Θ or δ angles, for each point
of the interval a separate file is produced, labeled by a number,
starting with zero (e.g. absorbance0.out).
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